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1 Introduction
The development of architectures for control systems has been an active ar
research for at least twenty years [Bittici]. This research has produced many diff
structures for understanding and constructing control systems. Usually these stru
are called either architectures or frameworks. While the literature uses the t
architecture and framework almost interchangeably, we will make a distinction.
will use the termarchitectureto refer to a description of the design and structure o
system and the termframeworkto refer to a structureexternalto an architecture, which
organizes information about the architecture and the application of the architectu

A control architecture is an architecture for a control system. Different contr
architectures address a wide range of issues and discuss these issues in v
terminology. The variability in terminology makes it difficult to understand the resu
from the development and application of other researchers’ architectures; the br
of issues makes it difficult to use these results.

To remedy this situation, it is necessary to have a common terminology for discus
control architectures and a common framework for organizing information ab
control architectures. While some work in these areas has been done, neit
terminology nor a framework has been universally accepted.

Based upon the examination of many control architectures for computer integ
manufacturing (CIM) and robotics, the authors propose a terminology for discus
control architectures and a framework for describing control architectures. Toge
these give a vocabulary and a structure for discussing the construction of a co
architecture. Since our framework is more general than those described in the liter
it can also be used to relate frameworks to each other.

This paper presents our proposed terminology and framework, relates them to
proposed terminologies and frameworks and discusses issues related to the const
of an architecture using the our framework.

1.1 Related Research

In the following sections, we will discuss literature related to both terminologies
control architectures and frameworks for architectures. While our discus
concerning standardized terminology is confined to the literature on con
architectures, our discussion about frameworks includes literature from several re
fields. The search for a standardized terminology is discussed in Section 1.1.1
frameworks are discussed in Section 1.1.2.

1.1.1 Terminology

Although the need for a standardized terminology in the field of control architectu
has long been recognized, there have been few efforts to define a standar
terminology. One notable effort is a glossary of standard computer control sy
terminology [ISA] prepared by the Glossary Committee of the Purdue Workshop
Standardization of Industrial Computer Languages held at Purdue University in 1
1



 IJCIM Vol. 11, No. 4 A Framework for Control Architectures

like
al

84,
rise
puter
to

der
O2].
184,
ntral
d be

cture
ture.
d for
the

ile a
icate

s of
nt, and
with
rise
nical
s into
ted
and
uter

s a
epts
s of

turing
and

those
eral
orld
This glossary was updated in 1985 and contains definitions for many useful terms
“controller”, “real-time”, and “response-time”. However, it is oriented toward physic
systems and does not contain terms needed by more abstract architectures.

Currently, International Standards Organization Technical Committee 1
Subcommittee 5 Working Group 1 is constructing a framework for enterp
integration which can be used to coordinate standards that pertain to a Com
Integrated Manufacturing (CIM) enterprise. While the primary thrust of this effort is
identify constructs for modeling a CIM enterprise, a terminology is also un
development. The results of this effort are not yet mature enough for use [IS
Recently, International Standards Organization Technical Committee
Subcommittee 5 Working Group 3 (Electronic Data Exchange) and the ISO Ce
Secretariat have begun to define a semantic repository of terms which woul
unambiguous across several different languages.

1.1.2 Frameworks

The framework which the authors are presenting is geared toward providing a stru
for identifying issues which must be addressed in constructing a control architec
As far as the authors are aware, there is no other framework specifically designe
this purpose. However, there are many frameworks which serve either to aid in
classification of architectures or to organize information about architectures. Wh
comprehensive literature survey is beyond the scope of this paper, we will ind
some of the important work which has been done in this area.

1.1.2.1 Systems Theory

Systems theory provides a holistic approach to analyzing many diverse type
systems. It has been used to analyze systems in the fields of biology, manageme
engineering to name a few. The field of cybernetics, in particular, is concerned
control and communication theory [Checkland]. The framework for enterp
integration under construction by the International Standards Organization Tech
Committee 184 Subcommittee 5 Working Group 1, maps systems theory concept
concepts useful for modeling a CIM enterprise [ISO2]. This framework’s sta
purpose is “to provide a framework for the coordination of existing, emerging,
future standards for the modeling of manufacturing enterprises to facilitate Comp
Integrated Manufacturing (CIM)”. The framework identifies a CIM enterprise a
hybrid system with human, physical, and conceptual entities. It identifies key conc
for modeling an enterprise, dividing these concepts into the broad categorie
business modeling, organization/technical structure, and operation of a manufac
facility. Particular emphasis is placed on concepts for business modeling
organization/technical structure.

1.1.2.2 Zachman’s Framework for Information Systems Architecture (ISA)

Zachman’s framework for information architecture has gained acceptance among
familiar with systems theory for analyzing both information systems and more gen
systems. “It provides a systematic taxonomy of concepts for relating things in the w
2
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to the representations in the computer” [Zachman]. This framework was derive
analogy from examples in the disciplines of architecture and manufacturing.
framework consists of five rows and three columns, creating 15 boxes for organ
information. The rows represent different views of the information, and in each ca
different type of model is required. The rows are:

(1) scope—the overall model of the business

(2) enterprise model—model of the business from the point of view of the ow

(3) system model—model of the information system of the business

(4) technology model—design of the technological implementation of the mo
in (3)

(5) detailed description—detailed design for the implementation of
technology model

The three columns represent views or ways of looking at the data; these are
function, and network (or location). Each of the 15 cells may contain a type
information qualitatively different from that of other cells and require a separate t
of representation. In 1992, Zachman and Sowa broadened the original framewo
include three additional columns, corresponding to who is using the information, w
the information is to be used, and why (for what purpose) the information is to be u
A formal mechanism for expressing the ISA framework based on conceptual graph
also been added [Sowa].

1.1.2.3 CIM Frameworks

Within the field of Computer Integrated Manufacturing (CIM), many framewor
either for classifying architectures or for organizing information about architectu
have been advanced. We will discuss only three which we feel to be important
representative.

The Computer Integrated Manufacturing Open System Architecture (CIM-OSA) i
open architecture for the integration of the design and operation of a CIM enterpri
was developed by the AMICE consortium of ESPRIT, a European program aime
improving the competitiveness of member companies. CIM-OSA has produced, a
of the architecture, a Modeling Framework which gives main dimensions for mode
a CIM enterprise. This has been accepted as a European pre-standard [CEN].

The framework provides a structure for organizing information about architectu
There are three dimensions in this framework: architectural genericity, modeling,
views. Architectural genericity is a measure of the applicability of a concept acros
manufacturing domain. Three levels are identified along this dimension: gen
partial, and particular. Generic means the concept applies in any enterprise; part
means that the concept applies only to a specific enterprise; partial means that it a
to some subset of enterprises. The modeling dimension corresponds to tradi
software engineering stages: requirements definition, design, and implementation
3
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dimension of views identifies distinct aspects of the enterprise which must be mod
The views expressed in CIM-OSA are function, information, resource,
organization. [Sastrón] provides a lucid overview of the CIM-OSA architecture.

Two frameworks designed to identify dimensions for the comparison and classifica
of CIM architectures are advanced by Bohms and Biemans. We will discuss ea
these in turn.

In [Bohms] nine dimensions for classifying Computer Integrated Manufactur
systems are identified.

(1) modeling level—which distinguishes between different meta-levels
modeling. Bohms lists three meta-levels: reality itself, models of real
models of models (frameworks),

(2) language level—different levels of modeling language are requir
including those in which to express languages,

(3) aspect—a set of views which are thought to be important for modeling C
e.g., function, information, resource,

(4) composition—the amount of detail included in the model, ranges from glo
to detailed,

(5) scope—the range of applicability of the architecture,

(6) representation—different ways may be needed to express the same sem
content for different purposes and using different languages,

(7) product life cycle—which part of the product life cycle the architectu
includes, e.g., design, production, maintenance, etc.

(8) actuality—whether the architecture is to apply to currently existing syste
or to future systems,

(9) specification level—the degree of choice left in the architecture for
implementor.

Section 4 of [Bohms] proposes decompositions of each of the nine dimensions
points or regions. For example, the modeling level dimension has three points:
Framework, CIM Models, CIM in Practice.

In section 2 of [Biemans] a second set of dimensions is identified. They are
explicitly called dimensions in the paper.

(1) flexibility—the ability to accommodate changes in products, operations
facility layout1,

(2) precision of architecture definitions—the degree of ambiguity remaining
architectural definition,

(3) generality of a CIM architecture—applicability over different productio
organizations over time,

1. section heading in [Biemans] is “allocation of tasks”
4
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(4) level of abstraction of a CIM architecture—a facility can be described
many levels of abstraction above the physical level.

The two sets of dimensions just described reveal the difficulty of establishin
comprehensive method of characterizing architectures. Although the area cover
the last three of Biemans’ dimensions is largely covered by Bohms’ dimensions, i
case is there good match between a single dimension from one set and a
dimension from the other. Each of the dimensions may be of interest in some situa

1.1.2.4 Frameworks for Integrating Manufacturing Enterprises

In 1990, a joint task group of the IFAC (International Federation of Automatic Cont
Manufacturing Technology and Computers Committees and the IFIP (Internati
Federation for Information Processing) Technical Committee for Compu
Applications in Technology was formed to study presently available architecture
enterprise integration of manufacturing enterprises. The results of this study
recently been published in a number of forms. [Williams] The study presente
comparison of three architectures for CIM (CIM-OSA, GRAI-GIM, and the Purd
enterprise architecture), recommendations for completing each of the architectur
use as an integrating framework, and a taxonomy of the area of study which aids
identification of problems which need to be overcome in the integration effort. W
the scope of this effort is different from our own, the conclusion regarding the nee
a methodology to construct an architecture is relevant.

The task force found that, since each company is different, the methodology
building a CIM system is critical.  In the task group report, a methodology include

(1) creation of a reference model which shows in a global and generic way
to structure a project to create an integrated enterprise or subsection o
enterprise,

(2) one or more modeling formalisms to build up models to study and evalu
the reference model defined in (1),

(3) a structured approach for the program taking the existing system to a fu
system meeting the objectives. The structured approach must cover th
cycle of the project,

(4) performance evaluation criteria for evaluation from several points of v
(such as economics, reliability, etc.).

2 Proposed Framework
We propose a framework for control architectures which organizes information a
architectures in a way which is useful for the construction of an architecture.
framework may also be useful for the analysis and comparison of existing architect
but these applications of the framework will not be discussed in this paper.
relationship of this framework to others will be discussed in Section 2.5.
5
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Our framework is based upon the notions oftier of architecturaldefinition(which we
will usually shorten totier) andelementof architecturaldefinition. These terms will be
described in detail shortly.

An instance of the framework, filled out with details of a specific architecture is term
anarchitecturalcomplex. Roughly speaking, an architectural complex consists of a
of populated tiers. Each tier contains all the elements of architectural definition, an
elements from one tier are closely related to elements of the same type in other
An extremely abbreviated example of an architectural complex is provided in Sec
2.4.

2.1 Preliminary Definitions

A class of situations in which an architecture is intended to be used is terme
domain. For example, an architecture might apply to the manufacture of discrete p
The realization of an architecture in hardware and software will be called
implementation of the architecture.

The concepts used in an architecture which have specific meaning to the archite
will be referred to asarchitecturalunits. Architectural units are frequently defined b
giving each one distinct functional characteristics, although this is not the only mod
definition. We shall refer to the realization of an architectural unit in an implementa
as acomponent of the implementation.

An atomicunit of an architecture is an architectural unit which the architecture does
break down further into simpler architectural units. Atomic units are the fundame
building blocks of an architecture. An architecture typically specifies the functions
any formal interfaces of each atomic unit.

2.2 Tiers of Architectural Definition

Informally speaking, a tier of architectural definition is a set of the architectural u
grouped together to provide distinctions within the definition of the architectu
complex. For example, a tier of architectural definition can be made for each o
stages which transform the concepts of an architecture into an implementation.
tier represents a set of consistent decisions about architectural units at that ph
design or implementation.

The set of tiers of architectural definition for a specific architecture form a partition
the architecture, that is, it has the following properties:

(1) Architectural units representing each of the elements of architect
definition (defined later in this document) are present in each tier,

(2) each architectural unit is present in exactly one tier.

In addition, the tiers have a sense of order and are interdependent, so that dec
made at lower tiers are consistent with decisions made at the higher ones.
6
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Because of these properties, tiers of architectural definition may be used to d
conformance classes for the architectural complex. To be in conformance wit
architectural complex to a given tier, an implementation must conform to
specifications of the given tier and all the higher tiers of the architectural comp
Different implementations typically may use the same upper tiers to some tier lev
an architectural complex but require different tiers below that level. Two s
implementations will be in the same conformance class, as defined by the lowes
used by both. Being in the same conformance class may guarantee some deg
interoperability or compatibility.

A precise definition of the concept of tiers requires two additional concepts, relat
and partial orderings. Arelation defines an association between architectural un
Some relations can be used to induce an order upon the set of architectural units

they associate. Using these relations, it is possible to generate (partial) orderings2 of an
architectural complex that may be used to group architectural units into tiers.

2.2.1 Relations

Three types of relations which are of interest in control architectures

decomposition/aggregation, instantiation/classification3, and specialization/
generalization. While relations other than these three types may occur, we are
aware of any that are applicable to control architectures.

Decomposition/aggregation relates an item to its parts. For example, a jigsaw puz
an aggregation of its pieces. Each piece of the puzzle is part of the decomposition
puzzle. Any architectural unit which is not atomic is an aggregation.

As an example of manufacturing architectural units in a decomposition/aggreg
relation, let us define a functional architectural unit called a controller. A contro
performs all the functions necessary to operate a machine. We can decompos
functionality into two simpler architectural units, a planner (which performs a
planning required to control the machine) and an executor (which performs any ac
necessary to control the machine). The planner and executor are a decomposition
controller architectural unit. Conversely, the controller contains an aggregation o
planner and executor.

Instantiation/classification relates a class to instantiations (examples) of the clas
example, the jigsaw puzzle on the corner of my dresser is an example (instantiatio
the jigsaw puzzle class.

As an example of manufacturing architectural units in an instantiation/classifica
relation, let us define an architectural unit which refers to any abstract concept i
factory and call it an entity. We can define any number of instances of an entit

2. an ordering on a set is partial when not every element of the set participates in the ordering. This conce
will be defined more precisely later in this document.
3. Two senses of classification are intended: (a) to define a new abstract class of which a thing at hand is
instance, (b) to find an existing abstract class of which a thing at hand is an instance.
7
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various levels of abstraction. We can define an architectural unit called a loca
which refers to physical positions in a factory. In manufacturing, nested classificat
are frequently used. The location which is on the floor, one foot west and east of th
door jamb is a specific location. This specific location is an instance of a locat
which is an instance of an abstract entity.

Specialization/generalization relates two classes of items4. B is a specialization of A (or
equivalently, A is a generalization of B), if every item in B is also in A. For examp
jigsaw puzzles are a subclass of puzzle (other kinds include crossword puzzles, Ch
finger puzzles, etc.), and, conversely, the class of all puzzles is a generalization
class of jigsaw puzzles.

As an example of architectural units in a generalization/specialization relation, con
that, one might define a general class of messages called “command.” At a some
more concrete (specialized) level, “3-axis machining command” might be defined,
at an even more concrete level, “fly cut” might be a kind of 3-axis machining comma

2.2.2 Partial Orderings

Many relations (including all relations of the three types just defined) can be use
define apartial ordering for the set of architectural units in an architectural comple
In a partial ordering of a set, any two arbitrary set elements need not be related, b
any two which are, a sense of direction can be established for the relation. If A a
are architectural units, we may say that A is less than B (denoted A < B) or B is gre
than A (denoted B > A) with respect to the relation. A partial ordering may conne
chain of architectural units, with the sense of direction being preserved through
entire chain. For example, if A, B and C are a chain of architectural units with res
to a partial ordering such that A is less than B, and B is less than C, it follows that
also less than C.

We will require that the “<” symbol for a partial ordering have the following sense
relations of the three identified types:

For decomposition/aggregation relations, A < B means A decomposes
into B and other things.

For specialization/generalization relations, A < B means B is a
specialization of A.

For instantiation/classification relations, A < B means B is an instance of
A, or there is a C such that B is an instance of C, where A < C.

The partial orderings we allow have two restrictions beyond the normal mathema
definition: (1) we do not allow A < A, (2) the graph of the partial ordering must be
tree (i.e., if branches separate, they may not rejoin).

4. There is a relationship between classification/instantiation and specialization/generalization. Wheneve
class has instances which are also classes, instantiation and specialization are indistinguishable.
8
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2.2.3 Tiers

Within an architectural complex, several relations are usually chosen as part o
architecture. Each relation applies to a distinct set of architectural units (i.e
architectural unit belongs to two such sets), and this set may be partially ordered
respect to the relation. Since the sets are distinct, we may consider each archite
unit to belong to at most one relation.

Using thesetof partial orderings defined by the relations of an architectural comp
it is possible to divide the architectural units of an architectural complex into gro
calledtiersof architecturaldefinitionwith respect to that set of relations. The tiers a
totally ordered, and, for any relation used in generating the partial ordering <p, if
architectural unit A is in one tier, and architectural unit B is in a lower tier, it is n
permissible that B <p A. If only one relation is used in constructing the partial orderin
(e.g., abstraction), the total ordering on the tiers will have an obvious meaning
name (e.g., abstraction). If more than one relation is used in defining the tiers, the
ordering of the tiers may have a different meaning from any of the relations use
construct the partial ordering. For example, we may order the architectural uni
terms of abstraction or decomposition, but the total ordering induced on the tiers
be perceived as domain restriction. Moreover, the total ordering on the tiers ma
defined by more than one relation. For example, several tiers of an architecture m
related by abstraction, while the others are related to these tiers and each oth
domain restriction.

The grouping of architectural units into tiers must preserve the direction of e
relation, as just described, but it is permissible for both A and B to be in the same
with B < A. This differs from our previous thoughts on the subject [Kramer]. For ea
relation, the designers of an architectural complex are free to assign the archite
units of that relation to tiers independently from the methods used for other relat
If an architectural unit does not take part in any of the relations of the architect
complex, it may be placed in any tier.

Because the architectural units of any one relation may be assigned to tiers in se
ways, and because the architectural units of different relations are assi
independently; given a set of relations, there is more than one way a set of tiers c
defined. As a trivial example, it is always possible to put all architectural units i
single tier. See Figure 1 for another, more interesting example. Hence, diffe
architectures can use the same set of relations but still have different tier
architectural definition.

In the remainder of the document, we will abbreviate the term tier of architect
definition to tier and omit the defining relation when it is clear which relation
intended.
9
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2.3 Elements of Architectural Definition

The definition of an architectural complex requires a number ofelementsof
architectural definition. These are:

(1) statement of scope and purpose

(2) domain analyses

(3) architectural specification

(4) methodology for architectural development

(5) conformance criteria

h

  a     k     b       d

         g            c

e j f h

a

b

c

Architectural units in an architectural complex can be organized into disjoint (i. e.
disconnected) trees using a set of partial orderings generated by relations on the
architectural units.

The architectural complex can then be partitioned into tiers in many different
ways, preserving the order of the trees. Since the trees are disjoint, each tree can be
grouped into different tiers as the designers see fit. Three ways of building tiers
consistent with the given set of partial orderings are shown here. Trees are shown
in shaded areas.

Figure 1: Defining Tiers in an Architecture Using Partial Orderings

d

e,f,g

j,k

hd

f,g
j,k

a,b,c d,e

b,c e,f,g
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h

Unordered Architectural Units Trees of Architectural UnitsPartial Orders
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<2
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tier 1 tier 1 tier 1

tier 2
tier 2 tier 2

h

+ →
 a <1 b <1 c
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Elements of architectural definition areconceptualentities, which may or may not have
any physical realization.

These elements of architectural definition vary in indispensability. For example
architecture must have an architectural specification, but it is possible to us
architecture which omits conformance criteria. Definitions of existing architectu
include different subsets of these elements of architectural definition and p
emphasis on them in varying degrees. A completely defined architectural com
specifies each of these elements at each tier.

2.3.1 Statement of Scope and Purpose

Thestatementof scopeof a tier describes the domain to which the tier is intended to
applied. It is useful to identify explicitly items which are out of scope and to iden
general characteristics of the domain which may extend or limit the applicability of
tier to other domains. The scope of a tier is always larger than, or the same as the
of the next lower tier.

A statementof purposeidentifies what the objectives of the tier are within the give
scope. The statement of purpose of a tier should be a major determinant of the co
of the tier. If the objective is to achieve interoperability between components o
implementation, it would be expected that interfaces between components an
definition of information shared between the components would be stressed. I
objective is to guarantee real-time performance of a conforming control system, m
which describe the activities of the system may be stressed.

2.3.2 Domain Analyses

A critical step which must take place before an architecture can be formulated
perform analyses of the target domain which reveal its essential characteristics.
analyses aredomain analyses. The type of analyses done, the order in which t
analyses are performed, and the language in which the results are expressed are
the methodology for domain analysis. The results of the domain analyses may be
much different depending on the types of analysis performed and the ana
methodologies used.

Different frameworks suggest different forms of domain analysis. Functional anal
information analysis, and dynamic analysis are commonly used forms of dom
analysis [Jayaraman]. We will use these three in our subsequent discussio
architectural issues.

A functionalanalysisof a domain is an analysis of all the functions within the scope
the architecture which a conforming control system is supposed to be able to pe
and the sequence and dependencies of the functions.

An informationanalysisof a domain is an analysis of all the information external
each atomic unit within the scope of the architecture needed for a conforming co
system to function properly.
11
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A dynamicanalysisof a domain is an analysis of the characteristics of the functions
information in the domain which vary over time during control system operation
provides qualitative and quantitative information about the timing, sequence, dura
and frequency of change in the application of the functions and information of
domain [Jayaraman]. Real-time requirements would be explored as part of the dyn
analysis.

2.3.3 Architectural Specifications

An architecturalspecificationis a prescription of what the architectural units of a ti
are, how they are connected (logically and physically), and how they interact. It sh
specify which of the architectural units are atomic and specify the composition of n
atomic units. The architectural specification should provide the definitions of
relations among the architectural units used in the architecture. The architec
specification forms the core of a tier; it is an essential ingredient.

The form of architectural specification varies widely. Often, natural language is u
extensively, but formal methods may be used as well.

2.3.4 Methodology for Architectural Development

A set of procedures for refining and implementing an architecture is called
methodologyfor architecturaldevelopmentfor the architecture (which we will shorten
to methodology when the meaning is clear).

The architectural specification at each tier of architectural definition is related to,
used in, generation of an architectural specification for the other related tiers.
methodology for architectural development specifies how to go about building one
from another.

A methodology may specify working top-down (from higher tiers to lower), botto
up, or some combination of both in constructing the complete architectural comp
For example, if the code or specifications for the lowest tier is available, as is often
case when dealing with vendor-supplied equipment, an implementation-indepe
template for the code may be developed. In this case, the methodology would des
how to use the template.

A methodology for producing an architectural specification at a middle tier
architectural definition from a specification at a high tier of architectural definiti
might include:

(1) performing an activity analysis

(2) using a CASE (Computer-aided Software Engineering) tool embodying
high-tier specification to define domain-specific tasks, sensors, actuators

A methodology for producing an architectural specification at a low tier of architect
definition from a specification at a middle tier of architectural definition might includ

(1) rules for assignment of software modules to computing hardware

(2) rules for using computer language code templates
12
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(3) timing analysis

(4) methods for making performance measurements

(5) debug mechanisms

If an architecture lacks a methodology for getting between any two tiers of architec
definition, control systems developers must devise their own methods for makin
transition.

2.3.5 Conformance Criteria

Conformancecriteria are standards which specify how an architectural unit at one
of an architectural complex conforms to the architectural specifications of a higher
or how a process for building part of an architectural complex conforms to
development methodology given by the architectural complex for building that pa

A conformancetest is a procedure that determines if conformance criteria have b
met.

Conformance criteria and tests are needed for determining whether a control sy
actually implements the specifications an architectural complex.

We may defineconformanceclassesof an architectural complex which identify sets o
different and incompatible choices of architectural features. The advantage of def
conformance classes is the ability to have choices within the architecture, w
allowing the bulk of the architecture to remain unchanged. As noted earlier,
provide a convenient method of defining conformance classes. Conformance cl
could be defined within tiers, but it would seem preferable to split a tier into two t
to avoid this.

2.4 An Example of an Architectural Complex

A full description of a useful architectural complex takes dozens to thousands of p
so we have not attempted a full example. Table 1 shows an extremely abbreviated
of an architectural complex with three tiers. Each tier is shown in a row of the ta
The elements of architectural definition are shown as columns of the table.
example corresponds closely to an architectural complex used in more applied wo
have done. Tier 1 is a reference architecture for machine control, tier 2 is an applic
of the reference architecture to machining (metal cutting), and tier 3 is an applica
of tier 2 to a specific type of machining center. An architectural complex for a differ
specific machining center could have the same two top tiers as those shown in the
with a different third tier.
13
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able 1: E
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ple of an A

rchitectural C
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plex
CONFORMANCE

CRITERIA

1. Are controllers
defined in tier 2
arranged in a
hierarchy?
2. Are task types
defined in tier 2
provided for each
controller?
3. Are the tier 2
information models
written in EXPRESS?

1. Is each tier 2 task
implemented in tier3?
2. Is the tier3 code
written in C++ ?
3. Are the relations
among task types as
implemented in tier 3
as described in the
EXPRESS model?

1. Does the system use
the required hardware?
2. Is the system
running the correct
software?
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of task
each
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rarchy

task
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e table
k type
iscrete

C++
ch task
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METHODOLO
FOR ARCH. D

1. Define par
task types f
domain.
2. Assign a set
types to
controller.
3. Write a do
for each contr
the hie
describing the
types it can han

1. Write a stat
for each tas
involving d
states.
2. Write a
function for ea
type that in
continuous vari

1. Revise defini
task types in t
adequate perfo
cannot be attain
2. Collect fe
from users to
changes are ne

ARCHITECTURAL
SPECIFICATIONS

1. Controllers are arranged
in a hierarchy.
2. A controller executes
tasks from a fixed set of
parametric task types.
3. Information is to be
modeled in EXPRESS.
4. Tasks are defined as
subtypes of ALPS
primitive_task.

1. High-level machining
operations on features
include rough_cutting,
finish_cutting,
counterboring, etc.
2. actual EXPRESS model
gives relations among task
types.
3. Controller hierarchy will
include task, primitive and
servo levels.

1. PC must run 50 MHz or
faster.
2. PC CPU must be a
Pentium.
3. float feed_rate;(in tier 3,
source code is part of the
specifications).

DOMAIN
ANALYSES

1. High-level machine
tasks are decomposable
into subtasks.
2. Most machine systems
require closed loop con-
trolto operate effectively.
3. State tables provide a
good method of describing
tasks having discrete
states.

1. Different cutter types
are used for different high-
level machining
operations.
2. High-level machining
operations (such as finish
milling a pocket) may be
decomposed into primitive
machining operations,
(such as straight line
feeding).

1. Tool tip position must
be controlled but
workpiece rotation is not a
concern.
2. 4-axis servoing (spindle
is 4th axis) is required for
tapping.

SCOPE AND
PURPOSE

Scope: control of
a wide variety of
machine systems.
Purpose:
1. Provide low-
cost control
systems.
2. Be able to
develop control
systems quickly.

Scope: control of
3-axis machining
centers
Purpose: make
parts quickly
while holding
typical required
tolerances.

Scope: control of
XYZ Corp model
ABC 3-axis
machining centers
Purpose: provide
controller that
runs on a PC.

T
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R
1

T
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R
2

T
IE

R
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2.5 Relationships to Other Frameworks

In specifying that all the elements of architectural definition be addressed at each
the proposed framework encourages a complete and grounded description o
architecture. The IFAC report supports the inclusion of domain analysis with for
modeling methods, specification of architectures, and the inclusion of a methodo
for the application of the architectures.

As previously stressed, the proposed framework is designed specifically to facilitat
creation of an architecture. Many architectural proposals (CIM-OSA stands out in
regard) provide a multidimensional space with many cells (CIM-OSA has 36,
example) but do not give much guidance regarding development paths to fo
through the space. By using tiers, a linear development path is evident, which m
followed top down or bottom up. The multidimensional spaces create the impres
that different aspects of an architecture can be handled independently, but expe
shows this is not generally true. Rather, decisions about one dimension interac
decisions about others. Tiers form checkpoints at which there is opportunity to v
that decisions on all dimensions are consistent.

Our framework is more generic than other frameworks in that it allows the design
the architecture choice of which relations to consider.

The specialization/generalization relation is used to define dimensions in m
frameworks. For example:

(1) In Zachman’s metamodel, it is used in the definition of the implementat
dimension, with associated levels of Scope, Enterprise Model, Sys
Model, Technology Model, Detailed Description,

(2) In Biemans’ metamodel, it is used in the definition of levels of abstractio

(3) In Bohms’ metamodel, it is used in the definition of the specification lev

(4) In the CIM-OSA metamodel, it is used in the definition of the dimension
architectural genericity, with associated levels of generic, partial a
particular.

Some of the criteria for classification specified by other frameworks cannot
expressed as relations on the architectural units. The criterion of flexibility in Biem
dimensions or the dimension of representation in Bohms’ framework are exam
While each of these is an important characteristic of an architecture, the characte
is the result of variations in two or more dimensions which can be expressed as rela
on the architecture. Variations in the flexibility of an architecture results fr
variations in the generality, scope and domain of an architecture. The dimensio
representation captures variations in view, abstraction level and language level.
15
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3 Issues in Developing Architectures
We turn now to issues which must be considered in developing an architecture

issues given pertain to architectures in general, not just to control architectu5.
Throughout this section, we will assume that architectures have the five elemen
architectural definition presented in Section 2, but we will not assume that e
architecture has explicit tiers. Where appropriate, we will relate our propo
framework to the issues.

3.1 Balance among Elements of Architectural Definition

Perhaps the most basic question to be decided when developing an architecture is
should be the balance of emphasis in the architecture’s treatment of the five elem
of architectural definition.

Certainly all architectures must have a specification. And to develop a specifica
some analysis of the domain must have been done, whether this analysis is form
not. For the other elements, more variation is possible. In the literature, it is comm
read about architectures which do not have an explicit scope or purpose, or which
conformance criteria. Some architectures (see [Dornier1], [Dornier2], or [Quinte
for example) pay great attention to methodology for architectural development. O
(see [Martin1] through [Martin6], for example) do not discuss methodology at all.
believe all five elements should be defined at each tier, but the balance among ele
may justifiably vary a great deal.

3.2 Issues Regarding the Scope and Purpose of an Architecture

Defining the scope of an architecture involves determining the degree to which
architecture, or part thereof, depends upon its context. It is possible to define con
free infrastructures (e.g., Common Object Request Broker Architecture [OMG]),
then it is not clear where it is appropriate to use them. It is not clear how context-fr
is feasible for architectures to be. Much research on control architectures
emphasized defining architectures with as broad a scope as possible. Some rese
propose that there are aspects of control which are generic [Hatvany], but we pro
that every specification of any value has some limit to its applicability.

In determining the broadest possible scope for an architecture, it is frequently nece
to look beyond the primary subject matter of the domain. Secondary characterist
the domain (such as performance requirements, importance of safety, and ne
resource sharing, among many others) are likely to be the determining character
It is not unusual for many domains to share relevant secondary characteristics
classification of such characteristics is a challenge. To date, we have not seen s
classification.

5. A list of control architecture issues developed using the framework as a basis may be found in [Krame
16
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The purpose of an architecture may also affect the scoping. For example, a co
architecture which is designed to make it easy to build conforming implementat
will be much different from one which guarantees that controllers built according to
specifications will be interoperable.

The authors propose that there are some generic aspects to control, but that,
architectural specifications of an architecture become more detailed, the scope
architecture will usually have to be narrowed. The concept of tiers provide
mechanism for permitting different parts of the architecture to have different scop

Natural language seems to be most suitable for the statement of scope and pu
However, it may be helpful, in addition, to use an N-dimensional space spanning s
large range and to identify a portion of the space as being within the scope o
architecture. The selection of axes for this N-dimensional space for the classificati
architectural efforts has been one focus for both the work of the CIM-OSA pro
[Jorysz] and the work of ISO 184 SC5 WG1 [ISO1]. In earlier work, we examined
use of domain, life cycle, and organizational extent as dimensions of scope [Kram

3.3 Domain Analysis Issues

Whatever domain analyses are chosen to perform, the purpose and the scope
architecture affect the content of the analysis which is performed. Moreover, dom
analyses should be chosen which are compatible with the purpose of the archite

An architecture reflects the domain analyses upon which it was based. Domain an
is a broad field, and an extensive literature search is beyond the scope of this pape
more details and a bibliography, the reader is referred to [Prieto-Diaz].

In formulating an architecture, selecting what part of the domain should be analy
and the methodology for analysis are decisions with many ramifications. The firs
these issues is discussed in Section 3.3.1, the second in Section 3.3.2.

3.3.1 Aspects Covered

As suggested in [Bohms], one dimension along which an architecture can be ana
is aspects. This is distinct from scope. Anaspect is a cross-cutting view of an
architecture from some specialized viewpoint, such as information, communication
control flow. Specifying a set of aspects from which to view the problem domai
essential in formulating an architecture, but often aspects must be inferred from
architectural specification, since they are not explicitly stated.

Existing architectures place varying amounts of emphasis on different aspect
previously mentioned, an architecture tends to reflect the domain analysis aspects
In Section 2 we mentioned functional analysis, information analysis, and dyna
analysis. The corresponding aspects are, simply, functional, information, and dyn
aspects. The two most widely accepted of these are functional aspects and inform
aspects. Thefunctionalaspectsof an architecture describe what a system conformi
to the architecture does. A functional specification would describe what r
17
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components could fill in the architecture and what functions each of these roles w
encompass. Theinformation aspectsof an architecture describe the informatio
required for the operation of an implementation of an architecture.

The relationship between analysis of functional aspects and analysis of inform
aspects is an open issue. Some methodologies insist that they are inextr
intertwined, whereas others view the two as separable.

An additional aspect which the authors have found to be important in their own w
is the dynamic aspect of the architectures. Thedynamicaspectsof a control system
describe how the information and exercise of functions vary over time. In the cas
information, an examination is made of which architectural units need w
information and when, and which architectural units create or change the inform
and when. The dynamic analysis of function looks at when architectural units per
each of their functions. Dynamic analysis includes examining whether the speed o
system is sufficient to meet the requirements of the application.

For each type of analysis, an appropriate representation must be found. The follo
sections discuss the representation of results for each of these types of analysis

3.3.1.1 Functional Aspects

Frequently, the functions performed by a system are expressed only in the comp
executable language (C, C++, Ada, etc.) of the implementation. A different approa
to extract the required functions and express them in a more generic fashion. Su
extraction gives a functional analysis of the system.

Functional analyses may be stated in natural language or in a formal langu
Examples of formal languages used for this purpose are Activity Scripting Langu
(AcSL) [Dornier2], Structured Analysis and Design Technique (SADT) [Ross], a
IDEF0 [FIPS2]. State tables and petri nets [Tanenbaum] may also embody the re
of functional analysis.

3.3.1.2 Information Aspects

As with the functions of a system, required information is often expressed only in
structures of the computer-executable languages (C, C++, Ada, etc.) of
implementation. A different approach is to develop conceptual models of the requ
information. Aconceptualinformationmodelof a set of information is a description o
the information, always giving relationships among the members of the set, us
including the data type of the members of the set, and often giving some of the sem
content of the information. A conceptual model is expressed in a formalinformation
modeling languagedesigned for this purpose, such as EXPRESS [ISO3], NIA
(Natural-Language Information Analysis Methodology) [Verheijen], and IDE
[FIPS1]. Some compilers exist which can translate a conceptual model into a sp
computer language or a database schema.
18
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These languages are suitable for defining items of information in an architecture
as part designs, tools descriptions, or process plans. They can be used for mo
other parts of an architecture but were not built for that purpose.

The existence of “domain-independent” information models for architecture
currently a topic for debate. Some efforts (such as STEP and CIM-OSA) h
attempted to construct such models, while others confine themselves to the constr
of models for more explicitly limited domains [Barkmeyer], [Fiala], [Wavering].

3.3.1.3 Dynamic Aspects.

The performance of a system over time is often one of the most poorly docume
aspects of a system. An analysis of the dynamic aspects is most frequently done
the system fails to perform satisfactorily. It is, however, possible to build dyna
models for the system for design and analysis.

Examples of formal languages used for this purpose are IDEF2 [Mayer] and ID
[Menzel]. IDEF2 produces a dynamic model appropriate for constructing simulati
IDEF3 produces a dynamic model which captures the behavioral aspects of the sy

Commercial tools exist (ObjecTime and StateMate, for example) which provide
building executable system models. As the model is executed, a graphical user inte
lets the user see how states change, when different modules (which generally em
different functions) are active, and how information changes. These tools gene
provide log files and utilities which capture and analyze this data. The output typic
might be a table giving how many times a function was executed, how many tim
message of a given type was sent, or how much time was consumed by each m

3.3.2 Domain Analysis Methodologies

Determining a methodology for domain analysis involves two distinct decisions:

(1) determining which domain analyses should be used, and

(2) how the various analyses can be combined to give a picture of the dom
sufficient for the purpose and scope of the architecture.

One frequently used set of analyses is the triple of functional, information, and dyn

analyses. This triple is supported by the IDEF languages6 mentioned in the previous
section. The associated methodology specifies that functional analysis is perfo
first, followed by information analysis, and finally, dynamic analysis.

A currently popular alternative is object-oriented analysis [Dewhurst1]. This techn
mandates that function and information be analyzed simultaneously. This appr
produces “objects” which have both information and operation content. The opera

6. There are many other languages which support each part of this triple. The IDEF languages were design
to support the triple together with an associated methodology.
19
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are one degree removed from functions; the user is required to specify operations
will cause the system to perform the desired functions. Overall analysis of the dyna
of the system of objects created is not explicit in this methodology.

The Feature-Oriented Domain Analysis Method developed by the Softw
Engineering Institute [Kang] is another methodology which uses multiple type
analyses to develop an integrated domain analysis. The method is focused on prom
software reuse, and hence extracts the generalizable aspects of the dom
incorporates the following analyses:

(1) Context analysis—setting the boundaries of the domain,

(2) Features analysis—determination of the external interfaces of
architectural units,

(3) Functional analysis—functional analysis as previously discussed in
paper and state table description of those architectural units which h
states,

(4) Information analysis—information analysis as previously discussed in
paper.

Many other alternatives are available. It is unclear what the best methodology is
the selection may well involve the domain, scope and purpose of the architectur
the availability of tools for assisting in the analysis.

3.4 Architectural Specification Issues

In creating the architectural specification, the two basic categories of issues are:

(1) what type of information the specification should include,

(2) how the specification should be described.

Within each of these categories, additional issues are discussed in the follo
sections.

3.4.1 Contents of Architectural Specification

In constructing an architectural specification, a key decision is the mode
specification of the architectural units. Frequently, the mode of specification is rel
to the methods used for domain analysis. For example, if separate informationa
functional analyses are performed, it will be natural to describe architectural uni
embodying sets of functions, which have certain inputs and outputs. If an ob
oriented analysis of the domain has been made providing the operations on c
objects, it will be natural to describe architectural units as objects with assoc
behaviors. Once the mode(s) of definition of architectural units are determined
types of architectural units must be determined and defined. If the number of typ
atomic units is large, and each type of unit has few functions, the number of requ
interactions becomes large. In this case, defining the types, defining the interac
20
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and understanding the dynamics becomes difficult. If atomic units have many func
and few types of atomic units are used, the overall architecture does not add
functionality above that of the atomic units. Clearly a balance must be maintaine

The way in which architectural units are defined depends on the purpose o
architecture, as well. If, for example, we are interested only in using the architectu
structure our knowledge about a situation, we may well give only a functio
definition of the architectural units. If we are interested in providing an architec
which guarantees interoperability of the architectural units, additional interfac
specifications must be defined.

The relationships between the architectural units must also be defined. The des
of the architecture must decide which of these units are atomic and how these uni
be combined to form other architectural units. At one end of the spectrum, it migh
decided to select an algorithm for combining any number of arbitrary architect
units. In this case, it is not necessary to enumerate the allowed combinations. A
other end of the spectrum, an architecture might allow only specific combination
architectural units to exist, i.e., it may enumerate all the combinations. An architec
can specify some combination of the two strategies for different sets of architec
units, or may devise a different strategy.

The designers of the architecture must decide which relations should be drawn be
architectural units. For example, one might use the abstraction relation to des
which architectural units are specializations of each other, or domain restrictio
describe which architectural units are valid in different domains.

The builders of an architecture must decide if they are going to use tiers in
construction of the architecture. If they do, they must determine what the m
appropriate division is. If the builders have a clear idea of what conformance cla
they wish to define, that may be used as a guideline for specifying tiers, since a tie
be used to define a conformance class, as observed earlier. For control system
believe that at least three tiers of an architectural complex should be used. Ro
speaking, tier 1 is a fairly general architecture, tier 2 is an engineering design fo
application, and tier 3 is a description of the software and hardware of the applic

If an architecture defines its architectural units functionally, two large transitions f
the abstract to the concrete will be encountered in implementing the architecture:
going from a functional description of an architectural unit to a description of
interfaces and external behavior of the unit, and, second, assigning the interface
behaviors to (computer) executable processes. In both cases there is a wide ra
choice of how to distribute the more abstract across the more concrete. In the
transition, specific functions (say, sensory processing or control execution) ma
assigned to single modules or each function may be distributed as subfunctions a
modules. In the second transition, several modules (maybe all of them) may be ass
to one computer process, or each module may be assigned to its own process, or
extreme) each module may distributed across several processes. Note that in the
case, the architectural specification will have to be augmented. We have found tha
modules are distributed across processes is critical in the more abstract tiers
21
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architecture as well as the more concrete ones, because communications issu
arise in distributed systems percolate back up into the logic of how architectural
deal with one another.

3.4.2 Description of Architectural Specification

Most architectures are defined in natural language, but this is often vague. A degr
vagueness is appropriate at a high tier of architectural definition. In fact, several au
explicitly endorse vagueness. Unfortunately, it is often not clear what is vague by in
and what is vague inadvertently. The areas of intentional vagueness should be c
defined. This is easy in formal modeling languages, and possible, but rarely don
natural language.

Formal languages have several advantages over natural languages:

(1) formal languages are much clearer and less ambiguous;

(2) formal languages provide formal methods of linking tiers;

(3) models constructed in formal languages may be checked algorithmicall
logical completeness and syntactic correctness; for some langua
compilers do these jobs automatically;

(4) when formal languages are used at a low tier of the architecture, comp
may be written which will produce executable computer code or datab
schemas automatically.

The elements of architectural definition are very different, so it is appropriate to
different formal languages for different elements. Formal languages for expres
analyses and architectural specifications have been mentioned already. We a
aware of any formal languages for expressing methodologies for architec
development.

When an architecture includes several tiers of architectural definition, it may
appropriate to use different languages for the same element of architectural defin
at different tiers. For example, at the lowest tier, the architectural specification cou
given in a standard computer language, while at the highest tier a formal mod
language may be suitable.

3.5 Methodology For Architectural Development Issues

As discussed in Section 2, one of the most important elements of architec
definition is a methodology for architectural development. A methodology tells how
build an architecture or how to apply the architecture to create an implementa
Methodologies for the development of control architectures have typically b
adapted from software engineering methodologies. While a literature surve
software engineering methodologies is beyond the scope of this paper, we
mentioned three which are frequently used in connection with architectures.
22
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One of the most widely used software engineering techniques is thewaterfall method.
In this methodology, requirements are developed which the system must satis
design is made which satisfies the requirements, a detailed design is developed,
system is developed according to the design. Parts of the system are teste
integrated, the system is then installed and must be maintained, as long as the sys
in use [Conte]. It is important that the requirements and design phase be dilig
performed, as correcting design mistakes is quite costly.

A popular alternative is thespiral modelof software development [Boehm]. In this
model one begins with requirements definition, develops designs, then prototypes
prototypes are tested and the results fed back into a design phase where the
design is refined or modified as required. This process may be repeated several t

A variant of the spiral model which may be applied to control system developme
to create a prototype implementation which demonstrates a vertical slice throug
tiers of architectural definition such that only a narrow subset of the total inten
capabilities of the control system is included in the slice. This results in a work
control system with limited capabilities whose performance can be assessed
lessons learned from the assessment are applied in revising the architecture. The r
architecture is used in the next turn around the spiral, at which time, a wider sli
included in the implementation. This methodology is commonly referred to ascyclic
development[Quintero], [Senehi2].

Another useful methodology is thetransformmethodology. In this methodology, a
formal specification of the desired product is made, and the specification
automatically transformed into code. An iterative loop can improve the performanc
the code, leading to an evaluation of the product. An outer iterative loop may be m
to change the specification based on changing requirements [Boehm]. Many C
tools embody this methodology.

CASE tools can be of great help in developing architectures because many aspec
methodology for architectural development can be built into a CASE tool. If thi
done, using the CASE tool ensures that the methodology is followed. Thus
provision of CASE tools alleviates the problem of there being no formal language
methodologies.

3.6 Conformance Issues

Conformance criteria and tests are defined in Section 2. In the sections be
conformance issues are discussed.

3.6.1 Conformance Testing Methods

To determine if an implementation of an architecture conforms to the architectu
tests must be devised. Methods for determining conformance might include rea
source code, running documents that should be computer-processable th
computers, observing an implementation in action and comparing its behavior wit
behavior expected from a conforming implementation, devising test cases and
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them to test control systems, and requiring documentation of development activ
Conformance testing could also include establishment of an organization to do
testing.

3.6.2 Usefulness of Conformance Testing

The end user of a control system may want to be assured that a compone
conformant with a particular architecture to ensure that it can be used with o
conformant components previously installed or being acquired. Conformance tes
provide such assurance.

Conformance testing can be useful to the developers of an architecture in the cont
evaluating the architecture. To evaluate an architecture, implementations o
architecture would have to be built. Each implementation would be a test of
architecture, provided that the implementation conforms to the architecture.

3.6.3 Testing Conformance in Development

If an architecture includes one or more methodologies for architectural developm
the development process for building an implementation should use them. Usin
methodologies is part of conforming to the architecture.

How can conformance to a methodology be tested? To the extent a methodolog
architectural development is embodied in a CASE tool, conformance to a methodo
may be obtained by ensuring the tool is used. If the methodology is supposed to pro
specific documents (or other products) these can be examined.

3.6.4 Conformance Classes

The builders of an architecture must decide whether to define conformance classe
if so, how they should be defined. If it is anticipated that features of the specializat
or implementations of an architecture will differ, defining conformance classes ma
useful. The conformance classes will make it evident to potential users of
architectures where they share features and where they differ. As discussed earlie
of an architectural complex provide ready-made conformance classes.

3.6.5 Conformance Metrics

In addition to the conformance class itself, which identifies the specifications to w
conformance is required, there is the issue of degree of conformance, which con
how close something is to conforming. If the degree of conformance is to be meas
aconformancemetricwhich assesses how closely the implementation conforms to
architecture must be devised. This is commonly done by means of a checklis
implementation identifies those specifications of the architecture to which it confo
and those to which it does not.
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3.6.6 Non-Conformance

Once an implementation is built (or while it is being built), it is common that t
implementation offers easy opportunities for improvement by making small chan
contrary to the architectural specifications, so that the implementation is no longer
in conformance. Typically, easy changes of this sort have a high hidden cost, in
they compromise the modularity of a control system, make its behavior
understandable, make it less portable, and make it harder to reuse, maintain, exten
modify, some or all of which are likely to be undesirable to the system’s users. S
changes may, however, have high value in terms of performance or initial cost. T
factors should be considered in establishing conformance criteria, classes, and m

3.6.7 Standards Issues

To be readily implementable, it helps if an architecture makes use of internatio
national or industrial standards. It is unreasonable to expect to find standards f
features of an architecture, but where standards are appropriate for the needs
architecture, they should be used. Some features of an architecture may be cove
no standards or by developing standards. An architecture must specify which stan
are required and which are not.

For developing standards there is an issue of suitability of the current state o
standard. The standard may not yet have a degree of maturity which the develop
an architecture need. In this case, it is possible to use the standard as much as p
and add the necessary enhancements to make it useful. When using a deve
standard, there is an additional issue of when to upgrade from one version to an
Considerable cost may be involved in upgrades, so it is important to evaluate
stability of the version before switching to it.

4 Conclusion and Future Work
The authors have found the terminology and framework presented here to be use
considering control architectures of all types. We put it forth with the hope that ot
will also find it useful and, perhaps, improve it.

We have used the terminology and framework to develop a set of issues which ne
be addressed when constructing a control architecture. These issues have been
compare two architectures developed at National Institute of Standards
Technology: the Manufacturing Systems Integration (MSI) architecture [Kram
[Senehi1], and the Real-Time Control System (RCS) architecture [Albus1], [Albu
The issues and the results of the comparison are documented in [Kramer]. W
currently using the framework and issues in the construction of an architecture blen
the features of both architectures [Senehi3].
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