
Proceedings of IMECE:
International Mechanical Engineering Congress and Exposition

Nov 14-19, 1999, Nashville, Tennessee, USA

ME8B1

PROCESS SPECIFICATION LANGUAGE (PSL): RESULTS OF THE FIRST PILOT
IMPLEMENTATION

Craig Schlenoff
National Institute of Standards and Technology

Mihai Ciocoiu
University of Maryland, College Park

Don Libes
National Institute of Standards and Technology

Michael Gruninger
University of Toronto

ABSTRACT

In all types of communication, the ability to share information is
often hindered because the meaning of information can be
drastically affected by the context in which it is viewed and
interpreted. This is especially true in manufacturing because of
the growing complexity of manufacturing information and the
increasing need to exchange this information among various
software applications. Different manufacturing functions may
use different terms to mean the exact same concept or use the
exact same term to mean very different concepts. Often, the
loosely defined natural language definitions associated with the
terms contain so much ambiguity that they do not make the
differences evident and/or do not provide enough information
to resolve the differences.

A solution to this problem is the development of a taxonomy, or
ontology, of manufacturing concepts and terms along with their
respective formal and unambiguous definitions. This paper
focuses on the Process Specification Language (PSL) effort at
the National Institute of Standards and Technology whose goal
is to identify, formally define, and structure the semantic
concepts intrinsic to the capture and exchange of process
information related to discrete manufacturing. Specifically, it
describes the results of the first pilot implementation, where PSL
was successfully used as an interlingua to exchange
manufacturing process information between the Knowledge
Based System Inc.’s IDEF3-based ProCAP1 process modeling
tool and the C++ based ILOG Scheduler.

1 No approval or endorsement of any commercial product in this

paper by the National Institute of Standards and Technology is intended
or implied. This paper was prepared by United States Government

1.0 INTRODUCTION

As the use of information technology in manufacturing
engineering and operations has matured, the capability of
software applications to interoperate has become increasingly
important. Initially, translation programs were written to enable
communication from one specific application to another,
although not necessarily both ways. As the number of
applications has increased, and the information has become
more complex, it has become much more difficult for software
developers to provide translators between every pair of
applications that need to exchange information. Standards-
based translation mechanisms have simplified integration for
some manufacturing software developers by only requiring a
single translator to be developed between their respective
software product and the interchange standard. By only
developing this single translator, the application can inter-
operate with a wide variety of other applications that have a
similar translator between that standard and their application.

The challenge of interoperability is especially apparent with
respect to manufacturing process information. The term
“manufacturing process information” refers to information
describing the manufacturing operations needed to realize a
product, including a high level description of the activity,
resource requirements, ordering relations, temporal constraints,
etc. Many manufacturing engineering, operations, and business
software applications use process information, including
production scheduling, manufacturing process planning,
workflow, business process reengineering, simulation, process

employees and guest researchers as part of their official duties and is,
therefore, a work of the U.S. Government and not subject to copyright.

realization, process modeling, and project management. Each of
these applications utilizes process information in a different
way, so it is not surprising that these applications’
representations of process information are different as well. The
primary difficulty with developing a standard to exchange
process information is that these applications sometimes
associate different meanings to the terms representing the
information that they are exchanging. For example, in the case of
a workflow system, a resource is primarily thought of as the
information that is used to make necessary decisions. In a
process planning system, a resource is primarily thought of as a
person or machine that will perform a given task. If one were to
integrate a process model from a workflow and a process
planning application, their first inclination would most likely be
to map one resource concept to the other. This mapping would
undoubtedly cause confusion. Therefore, both the semantics
and the syntax of these applications need to be considered
when translating to a neutral standard. In this case, the
standard must be able to capture all of the potential meanings
behind the information being exchanged.

The Process Specification Language (PSL) project at the
National Institute of Standards and Technology (NIST) is
addressing this issue by creating a neutral, standard language
for process specification to serve as an interlingua to integrate
multiple process-related applications throughout the
manufacturing life cycle. This interchange language is unique
due to the formal semantic definitions (the ontology) that
underlie the language. Because of these explicit and
unambiguous definitions, information exchange can be achieved
without relying on hidden assumptions or subjective mappings.

2.0 PROJECT APPROACH

The plan for the PSL project has five phases: requirements
gathering, existing process representation analysis, language
creation, pilot implementation and validation, and submission as
a candidate standard. The completion of the first phase resulted
in a comprehensive set of requirements for specifying processes
[SCH96]. In the second phase, twenty-six process
representations were identified as candidates for analysis by the
PSL team and analyzed with respect to the phase one
requirements [KNU98]. Nearly all of the representations studied
focused on the syntax of process specification rather than the
meaning of terms, or semantics. While this is sufficient for
exchanging information between applications of the same type,
such as process planning, different types of applications
associate different meanings with similar or identical terms.

As a result of this, a large focus of the third phase involved
the development of a formal semantic layer (an ontology) for
PSL based on the Knowledge Interchange Format (KIF)
specification [GEN92]. By using this ontology to explicitly and
clearly define the concepts intrinsic to manufacturing process

information, PSL was used to integrate two manufacturing
process applications in the fourth phase of the project. This
paper focuses on results of that pilot implementation.

3.0 OVERVIEW OF THE FIRST PILOT
IMPLEMENTATION

3.1 Purpose

The purpose of the PSL pilot implementations is: 1) to grow
and improve the initial process specification language, 2) to
ensure that it is able to handle real-world exchange scenarios,
and 3) to ensure that PSL can interface well with typical
process-related software packages. There are multiple pilot
implementations planned, each focusing on a different
package/field within the area of manufacturing process (e.g.,
process planning, scheduling, simulation, workflow, etc.). Each
pilot implementation will involve the exchange of process
information between two or more process-related software
packages using PSL as the interchange language.

3.2 Pilot Implementation Approach

Specific steps in these pilots include: 1) identifying and
clearly defining the concepts intrinsic to each application, 2)
mapping the application’s concepts to concepts within PSL (and
extending PSL if necessary), and 3) writing translators between
the application and PSL. As mentioned above, once an
application becomes “PSL compliant” (i.e., once a proven
translator is written to/from PSL), it becomes able to exchange
information with every other application that is also “PSL
compliant.”

Figure 1 shows the steps that were performed in the pilot
implementation to exchange process information between
ProCAP and ILOG Scheduler. The manufacturing process
information used for the exchange was based on a report
developed by Ken McKay as part of the CAM-I (Computer
Aided Manufacturing – International) State of the Art
Scheduling Survey [McK91]. This fictitious but real-world type
exchange scenario is as follows:

Within a particular company, two departments are involved
in process planning and scheduling for a given product. The
manufacturing engineering department's role is to document and
describe the types of processes that are necessary to produce
the product, specify the order in which these processes must
occur (including temporal constraints, where needed), and
describe what types of resources are necessary for the creation
of the product. Plant operations then takes this information,
instantiates the processes and allocates resources needed (i.e.
machines, people, materials and time), and optimizes the process
with respect to makespan (i.e., minimize the amount of time

necessary to create the product). The challenge is that
manufacturing engineering uses the ProCAP process modeling
package and operations uses ILOG Scheduler to do its
scheduling. These two systems currently cannot share
information.

The company decides to use PSL to allow these two

systems to work together (and to set the infrastructure so that
other applications and departments can be integrated in the
future). A translator is written between ProCAP and PSL and
between PSL and ILOG Scheduler. Then the manufacturing
engineer creates their process plan using the ProCAP tool and
runs the translator to convert it to PSL. This PSL file can
currently be displayed in one of three ways: 1) as raw KIF, 2) as
KIF in HTML format (in which all terms used in any definition
are linked to the location where that term is defined), or in an
object-oriented presentation especially designed for PSL. Once
the process engineer feels comfortable that his plan is well
represented in PSL, the operations scheduler can import this
plan into his ILOG Scheduler, instantiate the plan such that
specific processes and resources are assigned, and then
optimize the plan in ILOG Scheduler with respect to whatever
variable is desired.

3.3. Description of ProCAP and ILOG

ProCAP [KNO98] is a process-modeling tool developed by
Knowledge Based Systems Inc. (KBSI). ProCAP is based upon
the IDEF3 [MAY95] method of systems modeling. The IDEF3
method focuses on the abstraction and capture of knowledge
about a given real-world system, including the temporal, causal,
and logical relations between processes occurring within the

system; the objects that participate in the process; and the state
transitions of those objects. As a result, the method allows you
to capture and describe not what happens at this or that
particular time in a system, but instead what actually occurs in a
system: the dynamic patterns that occur again and again among
elements in a system.

ILOG Scheduler [ILO98] is a scheduling tool developed by
ILOG Inc. ILOG Scheduler is a C++ library for constraint-based
scheduling. This library is not a new programming language; it
lets users use data structures and control structures provided
by C++. Thus, the Scheduler part of the application can be
completely integrated with the rest of that application (for
example, the graphic interface, connections to databases, etc.)
because it can share the same objects.

Scheduler is, in fact, an extension of the Solver C++
constraint-programming library, providing specially adapted
classes and functions for managing the allocation of resources
to activities over time.

3.4. Advantage of using a formal ontology during
translation

PSL is unique from most other interchange languages for
the primary reason that it is based on a formal ontology that
explicitly and unambiguously defines all terms introduced within
the language. This ontology provides at least two distinct
advantages with respect to translation: 1) because all
assumptions and definitions are explicitly represented in the
ontology, translation (and in particular the mapping of concepts
among different representations) becomes a theoretical and

Optimized
Schedule

C++
code

 Object
Oriented
Repres-
entation

HTMLized
KIF

IDEF3
Text
Form

Graphical
Display

ILOG
SchedulerPSLProCAP

Figure 1: Information Exchange

provable exercise as opposed to being based on the opinions of
the integrator, and 2) because PSL focuses on the meaning of
concepts as opposed to what term is used to represent the
concept, an application which is “PSL compliant” only has to
become compliant with the definition stated within PSL as
opposed to having to adopt the terminology the PSL happens
to use. This allows software applications complete freedom in
choosing the term that best describes the concept they are
trying to bring across in their respective domain by being
bound to PSL terminology.

4.0. DESCRIPTION OF THE COMPONENTS USED IN
THE EXCHANGE

4.1. The PSL Ontology

4.1.1. Initial Status of the PSL Ontology

An ontology is a lexicon of terminology along with a
specification of the meaning of this terminology. Within the PSL
Ontology, the meaning of terms is specified using KIF
(Knowledge Interchange Format). Briefly stated, KIF is a formal
language developed for the exchange of knowledge among
disparate computer programs. KIF provides the level of rigor
necessary to unambiguously define concepts in the ontology, a
necessary characteristic to exchange manufacturing process
information using the PSL Ontology.

The PSL Ontology has two major components -- the axioms
of PSL-Core, and sets of extensions.

PSL-Core is used to specify the semantics of the primitives
in the PSL Ontology. Primitives are those terms for which we do
not give definitions; rather, we specify sentences that constrain
the interpretation of the terms. There are three basic classes and
four basic relations in the ontology of PSL-Core. The classes are
OBJECT, ACTIVITY, and TIMEPOINT, and the relations
PARTICIPATES-IN, BEFORE, BEGINOF, and END OF.
ACTIVITIES, TIMEPOINTS (or "POINTS," for short), and
OBJECTS are collectively known as entities, or things. These
classes are all pair-wise disjoint.

All other terms in the ontology are given definitions using
the set of primitive terms. The defined terms can be grouped
into modules, each of which is an extension of PSL-Core. The
modules are organized by logical dependencies -- one module
depends on another if the definitions of the terminology of the
first module require the lexicon of the second module. PSL-Core
is therefore intended to be used as the basis for defining
terminology of the extensions in the PSL Ontology.

Figure 2 illustrates the modules in PSL at the beginning of
the pilot implementation; intuitively, they are the concepts
required to define the terminology of the simplified process
planning domain. There are four extensions to PSL-Core:
Ordering Relations, Resource Roles, Processor Actions, and
Resource Paths. The arcs in the diagram illustrate direct logical
dependencies – if there is an arc from one module to another,
then there exists a term in the second module which uses a term
defined in the first module. Thus, the definition of the ordering
relations and resource roles depends only on PSL-Core. The
definition of processor actions uses resource roles, but not any
ordering relations. Finally, resource paths are partially ordered
sets of processor actions through which material resources
flow; hence, the definition depends on both ordering relations
and processor actions.

4.1.2. Concepts Introduced in ProCap

IDEF3 is a graphical language designed for capturing
information about the objects and processes involved in a
system. It offers both a process-centered and an object-
centered perspective, and it includes the ability to capture and
structure descriptions of how a system works from multiple
viewpoints. However, apart from its graphical element, there is
no standard textual representation.

A preliminary textual representation based upon the EPIF
(Enhanced Process Interchange Format) [KNO95] which is
being developed by Chris Menzel at Knowledge Based
Systems, Inc. was selected as the basis for this pilot
implementation. Below is a description of the major components
of this representation.

PSL
Core

Resource
Paths

Processor
Actions

DurationOrdering
Relations

Resource
Roles

Figure 2: Original PSL Modules

UOB's

UOB's (Units of Behavior) are IDEF3's most fundamental
building blocks that are used to represent activities.
Furthermore, IDEF3 distinguishes UOB's (generic activities),
UOB-uses (occurrences of UOB's in particular IDEF3
schematics), and UOB activations (collections of instances of
UOB-uses that satisfy the temporal and logical constraints
imposed by an IDEF3 schematic).

Junctions

Branching is represented in IDEF3 using junctions. A
process can branch (converge or diverge) into multiple parallel
(AND_junction) or alternative (OR-junction or XOR-junction)
sub-processes. Also, branching can be done in asynchronous
(default) or synchronous mode. Particular junctions exist for all
those combinations, and their exact semantics are defined in
[MAY95].

Links

The three generic types of links in IDEF3, namely, simple
precedence links, constrained precedence links, and relational
links are used mainly to specify temporal constraints among the
UOB's of a process schematic. Additional constraint links can
also be used to express logical, causal, natural, and
conventional relations [MAY95].

4.1.3. ProCap-Related Extensions to the PSL
Ontology

In order to be able to capture the semantic concepts of
IDEF3, some extensions were created for the PSL language.
Those extensions fall into several broad categories, which deal
with: splitting of processes, synchronous splits, type-instance
relationships for both activities and objects, and temporal
sequencing of activities.

Within the PSL splitting extension, three new terms,
OR_SPLIT (representing a branch in which one or more ordering
decisions are made from a set of choices), AND_SPLIT
(representing a branch where all ordering decisions are selected
from a set of choices) and XOR_SPLIT, (representing a branch
in which only one ordering decision is made from a set of
choices) are introduced, representing the A. The OR_SPLIT (P1,
J1) is shown in Figure 3.

Also introduced were two additional terms, SYNC_START
and SYNC_FINISH. The SYNC_START term specifies that all
subactivities within an activity start at the same time. The term
SYNC_FINISH specifies that all subactivities within an activity
finish at the same time.

4.1.4. Concepts Introduced in ILOG

ILOG Scheduler consists of an extensible library of C++
classes and functions that implement scheduling concepts such
as activities and resources [ILO98]. The library enables the
representation of scheduling problems as a collection of
scheduling constraints, such as activity durations, release dates
and due dates, precedence constraints, resource availability,
and resource sharing. These constraints in turn are used as
input for ILOG Solver, which can solve the constraints to
provide schedules, in which activities are assigned to resources
over different time intervals.

There are three main classes within ILOG Scheduler:

§ IlcActivity
§ IlcResource
§ IlcSchedule

An instance of the class IlcSchedule is an object that
represents a schedule. Any schedule is associated with a time
interval, during which all activities in the schedule must occur.

The class IlcActivity is the root class for all activities that
may occur in a schedule. All activities have a start time and an
end time; the duration of an activity is the difference between
these times.

B

D

C

A
OR

Figure 3: Example of an “Or-Split”

J1

P1

Activities within a schedule satisfy precedence constraints.
These constraints are used to define orderings over the
occurrences of the activities. The following precedence
constraints are defined in ILOG Scheduler: endsAfter,
endsAfterEnd, endsAfterStart, endsAt, endsAtEnd,
endsAtStart, endsBefore, startsAfter, startsAfterEnd,
startsAfterStart, startsAt, startsAtEnd, startsAtStart, and
startsBefore.

ILOG Scheduler provides two predefined classes of
activities: IlcIntervalActivity and IlcBreakableActivity. An
instance of IlcIntervalActivity is an activity which occurs
without interruption from its start time to its end time and which
requires the same resources throughout its occurrence. An
instance of IlcBreakableActivity is an activity whose occurrence
can be interrupted.

Activities may also require resources, as specified by
resource constraints. An activity consumes a resource if some
amount of the resource capacity must be available during the
occurrence of the activity and the capacity is non-recoverable
after the occurrence of the activity. An activity produces a
resource if some amount of the resource capacity is made
available through the occurrence of the activity. An activity
requires a resource if some amount of the resource capacity
must be available during the occurrence of the activity and the
capacity is recoverable after the occurrence of the activity.

There are two main subclasses of IlcResource -- resources
with capacity (IlcCapResource) and resources with arbitrary
states (IlcStateResource). Capacity-based resources in turn
have two subclasses -- resources that are simply required by
activities (which are specified by the class IlcDiscreteResource)
and resources that are provided by activities (which are
specified by the class IlcReservoir).

4.1.5. ILOG-Related Extensions to the PSL
Ontology

At the beginning of the pilot implementation of PSL, there
were no extensions capable of defining concepts completely
such as ILOG temporal or resource constraints. It was therefore
necessary to design new extensions within PSL containing
terminology whose definitions captured correctly and
completely the intuitive meaning of the ILOG Scheduler
concepts. The semantics of the ILOG classes and member
functions which were used for extending PSL were gleaned from
the Reference Manual for ILOG Scheduler 4.3 [ILO98].

Resource capacity constraints were already captured in the
Resource Requirements Theory of PSL at the time of the pilot
implementation. However, the biggest hurdle was the
axiomatization of discrete capacity resources. The major problem
in this case is that the discreteness of the resource arises from
the fact that it is actually composed of a set of resources, and

any activity requires or provides some subset of resources in
this set. Within the PSL Ontology, this led to the introduction of
the following extensions, presented in order of increasing
specialization:

§ Set Theory, which defines the basic notion of a set of
objects

§ Resource Sets, which define the class of sets of resources
that themselves behave as resources

§ Resource Set-based Activities, which define classes of
activities that use resource sets

§ Substitutable Resources, which make the distinction
between sets of arbitrary resources and sets of resources
that can be substituted for others in an activity (e.g., the
set of carpenters in a house construction activity)

§ Homogeneous Sets, which define different classes of
substitutable resources

§ Resource Pools, which are equivalent to discrete capacity
resources within ILOG Scheduler

§ Inventory Resource Sets, which are equivalent to reservoirs
within ILOG Scheduler

§ Reasoning about Fluents, which define the notion of state
within PSL

The resource constraints in ILOG, such as REQUIRES,
COMSUMES, and PRODUCES, were completely defined within
the Resource Roles extension of PSL, which had been specified
before the pilot implementation.

The classes of INTERVAL and BREAKABLE_ACTIVITIES
within ILOG Scheduler were defined in the Duration-based
Complex Actions extension.

The precedence constraints among activities in a schedule
within ILOG were defined in the Temporal Ordering extension of
PSL.

4.2. IDEF3 to PSL (KIF) translator

4.2.1. Brief description

The PSL representation of an IDEF3 schematic is a set of
KIF sentences. The translation process can be described by a
set of compilation rules that associate KIF sentences with the
IDEF3 constructs (writing such compilation rules can also be
seen as providing formal, declarative semantics into PSL to
IDEF3 constructs) .

The notion of compilation was defined relative to a process
specification for each type of IDEF3 declaration and rules for
the compilation of the individual slots of a declaration were
written in the style used in [KNO95]. For a complete account of
the compilation rules used, please refer to [CIO98].

Once the compilation rules were written, implementing the
translator was a trivial task. The compilation rules were written
as lisp macros, and the translator itself just expands those
macros for all the forms of the IDEF3 file and stores the results
in the PSL file.

The translator was later provided with a KIF expression
simplifier. This simplifier was used to convert from the higher
level KIF expressions generated by the compilation rules, that
may contain a form of typed quantifiers and polymorphic
operators, to a simple syntax form that uses typeless quantifiers
and standard operators. A KIF-to-Prolog extension that was
needed for subsequent translation steps was also included.
This allowed the translator to generate three output formats for
an IDEF3 file, that is, PSL terminology using KIF syntax, PSL
terminology using the simplified KIF syntax, and PSL
terminology using Prolog syntax.

4.2.2. Issues Faced and How They Were Resolved

In writing the compilation rules, there were three issues for
which decisions had to be made as to how to solve them:

§ how to encode IDEF3 junctions into PSL
§ how to encode the type-instance relationships for objects

and activities
§ what was the right abstraction level in PSL at which to do

the translation?

With respect to the first issue, IDEF3 junctions were mapped to
PSL complex activities. Components of this were the activities
after the junction (for Fan Out IDEF3 junctions), before the
junction (for Fan In IDEF3 junctions), and the junction itself. In
this way, the ordering constraints imposed by the junction in
the IDEF3 schematic get imposed by the ordering constraints of
the activity - subactivities relationships in PSL.

With respect to encoding the type-instance relationships for
objects and activities, both activities and objects are type-level
in IDEF3 and in PSL. However, they are encoded as predicates
in IDEF3, but as objects in PSL. For the moment, these
predicates are defined in terms of PSL's occurrence predicate.

With respect to determining the right abstraction level in PSL at
which to do the translation, it was determined that the level of
abstraction at which the translation is done doesn't really matter.
One has to think of translation rules that go all the way to the
bottom (i.e. the PSL primitive concepts) and define the IDEF3
constructs in terms of these. Alternatively, once semantic
agreement has been checked by going to the lowest level, the
compilation rules can be written in terms of higher level
concepts reused from the PSL Ontology, or in terms of concepts
defined in a PSL extension.

However, to facilitate the style currently chosen for translating
out of PSL, the higher level approach was chosen. That is, new
high level semantic concepts were defined in terms of the PSL
Ontology (see Section 4.1) and the compilation rules were
written in terms of those concepts.

4.3. KIF to HTML translator

4.3.1. Brief description

For demonstration purposes, KIF files were marked with
HTML tags. This provided two benefits. Both definitions and
uses were highlighted. All uses were hyperlinked to the
definitions. For example, clicking on the word "during" brought
up the KIF definition for "during." As the KIF data were spread
across many files, this HTML markup provided the ability to
follow a chain of definitions merely by clicking on anything
unknown to the user.

4.3.2. Issues faced and How They Were Resolved

For simplicity, the markup software had no deep knowledge
of KIF but merely applied a series of textual regular expression
substitutions, replacing all words with HTMLized replacements.
Two passes were used, one to build a diction of definitions and
link destinations, and a second pass to decide whether to
provide a use- or definition-style markup - or none at all if the
word was unknown.

The only substantive implementation issue was related to
speed. The markup software was written in Tcl [TCL94] and the
first version was extremely slow; enough so that we would not
be able run it real time for the demonstration. KIF input with
35000 words took approximately 20 minutes of processing
(Sparc 10). After hotspot analysis, the software was rewritten -
still in Tcl - with the same 35000-word input finally taking 20
seconds. The difference was using Tcl's built-in primitives such
as regexp and subst instead of a manual string manipulation and
sorting.

4.4. Object oriented presentation of PSL Ontology

4.4.1. Brief description

Once ProCAP’s IDEF3 representation is converted to PSL
(i.e., KIF), the user may be interested in looking at the
representation to ensure that what came out of the translation is
truly what they expected. However, since the native form of the
neutral representation is KIF (a representation that many users
would not feel comfortable looking at if they were not already
familiar with the language), the user has the option to view the
information in an object-oriented representation. This object-
oriented representation was developed specifically for the PSL
project. A snapshot of part of this representation is shown in

Figure 4. This is one of many representations that can be used
to either textually or graphically display the information
captured in PSL. There are currently other efforts within PSL
that are creating mappings from the PSL semantic concepts to
both the eXtensible Markup Language (XML) [W3C98] and the
EXPRESS representation [ISO94].

4.4.2. Issues Faced and How They Were Resolved

During the creation of the object-oriented representation of
PSL, many issues were faced. Some of the most important issues
focused on ensuring that the representation:

§ is easily understandable yet powerful enough to represent
all concepts within PSL

§ can capture data at multiple levels of abstraction
§ is mapped directly back to the PSL ontology
§ is extendable to be able to handle new process-related

concepts as they arise
§ introduces as few predefined terms as possible (to ensure

extensibility)

There are still many issues remaining to be worked out with
the representation of PSL, including whether or not the current
object-oriented representation is going in a promising direction
or whether we should take a different direction. For the purpose
of this pilot implementation, we physically modeled the scenario
in an HTML-like format and hard-linked it into the tool that ran
the pilot implementation. This approach allowed us to work
around the challenge of automatically generating this
representation from the information within the PSL ontology
(i.e., writing a KIF to object-oriented presentation translator).

This challenge will be addressed in future pilot implementations.

4.5. PSL (KIF) to ILOG translator

4.5.1. Brief description

The translator for ILOG/PSL consists of two parts -- a
semantic translator and a syntactic translator.

The semantic translator maps concepts in ILOG to concepts
in PSL by specifying the translation definitions between the
terminology of the ILOG ontology and terminology within the
corresponding PSL extensions. These translation definitions
have the following form: -- each relation in the ILOG ontology
has a definition using only PSL terminology, and conversely,
each relation in the PSL ontology has a definition using only
ILOG terminology.

Syntactic translation of PSL to ILOG Scheduler is a
mapping from KIF sentences to C++ code specifying class
definitions and/or instances of ILOG Scheduler classes. This
code can be compiled and executed to generate schedules
based on the activities, resources, and constraints specified
within the file.

4.5.2. Issues Faced and How They Were Resolved

The development of the ILOG/PSL translator faced three
major issues:

§ Specification of ILOG Scheduler ontology
§ Implementation of semantic translator between PSL and

ILOG Scheduler
§ Implementation of syntactic translator between KIF and

C++

The first challenge in the development of the semantic
translator was the specification of the ILOG ontology,
particularly given the object-oriented representation of ILOG
Scheduler. Since ILOG Scheduler provides a set of object class
definitions, we can consider the member functions of the
objects to be representations of relations in the underlying
ILOG ontology.

For each member function of an ILOG class, there
corresponds a relation within the ILOG ontology, and for every
relation in the ILOG ontology, there exists either an ILOG class
or a member function of an ILOG class.

Using the translation definitions, the semantic translator
between PSL and ILOG Scheduler was implemented. The input
and output of the semantic translator is a set of KIF sentences;
terminology in one ontology is simply substituted by their
translation definitions.

Class Foundry
Annotation: [Description: “A description of the Foundry
class for the CAMILE process”];
Ontology: [Name: Gruninger, Version: 0.5] ;
isWithinOperatingHours: Condition : :

isCurTimeInRange(CurrentTime, [“8:00”, “24:00”]),
isCurDayInRange(CurrentTime, [“Monday”,

“Friday”]);

MaxOvertime: Values: :
2; // Max overtime allowed

PreventiveMaintenance: ProcessSteps :
isDueforPM(StartTime) :

DoPreventiveMaintenance();
EndClass

Figure 4: Example Object-Oriented Presentation of PSL

The major challenge faced by the syntactic translator was
understanding the relationship between KIF sentences and C++
objects. Ground KIF sentences (i.e. KIF sentences with no
quantifiers or variables) within PSL are translated into instances
of ILOG Scheduler classes. Quantified KIF sentences (i.e. KIF
sentences containing quantifiers) within PSL are translated into
class definitions within ILOG Scheduler. Conversely, instances
of ILOG Scheduler classes are translated into ground KIF
sentences and class definitions within ILOG Scheduler are
translated into quantified KIF sentences.

Syntactic translation of ground atomic KIF sentences into
instances of ILOG Scheduler classes is straightforward --
constructor functions within ILOG Scheduler are used to
generate each slot value of an ILOG Scheduler instance. The
actual implementation uses Prolog to extract the relations
satisfied by activities and resources within the PSL theory. For
each activity, the associated KIF relation is represented as a slot
on the ILOG Scheduler instance that represents the activity; the
appropriate accessor function assigns the object that is the
argument of the KIF relation as the value of the slot on the ILOG
Scheduler instance.

Syntactic translation of instances of ILOG Scheduler
classes into ground KIF sentences is also straightforward --
within a C++ function, accessor functions within ILOG
Scheduler are used to generate a sentence for each slot value of
an ILOG Scheduler instance.

Syntactic translation of quantified KIF sentences requires a
correspondence between the classes of sentences used within
the PSL theory and the underlying sentences used to represent
C++ classes. This presents a series of challenges:

§ There may be logically equivalent sentences with different
syntactic forms. In this case, a syntactic translator would
need to be able to recognize and manipulate each of these
different forms in order to translate to the correct C++ class
definition.

§ Translating arbitrary classes of KIF sentences into a
particular set of C++ classes is not guaranteed. In general,
the class of KIF sentences which can be directly
represented as C++ classes is restricted to sentences in
which the class variable is universally quantified, and the
variables in the member functions are existentially
quantified. That is, for every object that is an instance of a
class, there exists another object that is equal to the value
of the member function. To specify other classes of KIF
sentences within C++ requires explicit definition of
constraints as C++ classes themselves, such as
IlcConstraint in ILOG Scheduler. However, even these
represent restricted classes of KIF sentences.

Syntactic translation of ILOG Scheduler class definitions
into KIF sentences was not implemented in the pilot project.

4.6. Web-based tool

4.6.1. Brief description

A World Wide Web (WWW) site effectively demonstrated
the PSL-as-interlingua concept. The web pages both explained
the concept and demonstrated the transformations involved. In
practical terms, the user selected a set of definitions and then
clicked on the given transformation, doing this through several
transformations. At each step, the user downloaded or
examined the resulting data or upload replacement or additional
data.

The web site provided a convenient demonstration
platform. It was relatively portable, being able to run on any
WWW-connected Windows-based computer. The browser
interface transparently melded multiple processes that run on
the client and on the server host.

4.6.2. Issues Faced and How They Were Resolved

Most of the issues were typical integration issues - we face
them in many projects. For example, some of the software ran
only on Windows, while some of the software ran only on
UNIX. Unifying this is tricky. Even worse, some software didn't
exist. Real-time response (at least for existing software) was very
desirable. An early integration issue, with important design
consequences, was the choice of a front end - whether to use a
browser or a traditional programmable graphical user interface
such as Tk [TCL94]. A browser could provide uniformity and
portability. A programmable GUI would provide vastly more
flexibility. The choice of these inevitably dictated the
interaction style of the demo.

To minimize effort, a browser was used to provide a basic
infrastructure for the demo. As mentioned earlier, this limited
flexibility and will be revisited for future demonstrations.
However, for a walk-through-style demonstration, a browser
provides a suitable interface. We had originally hoped to
produce a portable demonstration, however as components of
the software arrived to be integrated, we discovered some
pieces that would only run on the PC and some that would only
run on UNIX. The PC software required direct access to a
graphics display. In those cases, the browser was directed to
simply turn control over to the Windows executables. UNIX
software ran via common gateway interface (CGI) scripts on a
local Web server. The result appeared as a unified collection of
tools, all accessible through a web browser. The web pages
themselves were all generated dynamically using the Tcl
language and cgi.tcl, which provided the ability to easily
customize all pages simultaneously or independently.

5.0. CONCLUSION

This paper highlights some of the issues that arose during
the first PSL pilot implementation. Although many of these
issues were resolved, this exercise helped bring to light many of
the challenges that exist in using an ontology-based neutral
exchange representation for the integration of manufacturing
applications.

This is the first of a series of pilot implementations in which
PSL was/will be used to exchange process information among
manufacturing software applications. Each pilot implementation
will include software packages that focus on different areas
within manufacturing (e.g., process planning, scheduling,
simulation, workflow, execution, etc.). By focusing on a wide
variety of areas, we will not only be able to expand the PSL to
capture the concepts represented in each area, but we will also
be able to help identify what types of process-related concepts
are important to exchange between any two areas within
manufacturing (e.g. what aspects of a process plan are of most
interest to a scheduling application).

ACKNOWLEDGMENTS

This project is funded by NIST’s Systems Integration for
Manufacturing Applications (SIMA) Program. Initiated in 1994
under the federal government’s High Performance Computing
and Communications effort, SIMA is addressing manufacturing
systems integration problems through applications of
information technologies and development of standards-based
solutions. With technical activities in all of NIST’s laboratories
covering a broad spectrum of engineering and manufacturing
domains, SIMA is making information interpretable among
systems and people within and across networked enterprises.

REFERENCES

[CIO98] Ciocoiu, Mihai, “Translating IDEF3 to PSL,” University
of Maryland Computer Science Technical Report 98-63, 1998.

[GEN92] Genesereth, Michael R. and Fikes, Michael R.,
“Knowledge Interchange Format Version 3.0 Reference
Manual,” Technical report, Logic Group, Stanford University,
CA., 1992.

[ILO98] “ILOG Scheduler 4.3 Reference Manual,” June 1998.

[ISO94] ISO 10303-11: 1994, Product data representation and
exchange: Part 11: EXPRESS language reference manual

[KNO95] Knowledge Based Systems Inc. “Foundations for
Product Realization Process,” Knowledge Sharing. Technical
report, U.S. Department of Commerce, NOAA Contract No. 50-
DKNB-7-90095, 1995.

[KNO98] Knowledge Based Systems, Inc., “ProCAP Automated
Process Modeling for Windows User’s Manual,” 1998.

[KNU97] Knutilla, A., et al, “Process Specification Language:
Analysis of Existing Representations,” NISTIR 6133, National
Institute of Standards and Technology, Gaithersburg MD,
October 1997.

[MAY90] Mayer, Richard J., Menzel, Christopher P., Painter,
Michael K., deWitte, Paula S., Blinn, Thomas, and Perakath,
Benjamin, “Information Integration for Concurrent Engineering
(IICE) IDEF3 Process Description Capture Method Report,”
Technical report, Knowledge Based Systems Inc., KBSI-IICE-90-
STR-01-0592-02, 1990.

[McK91] McKay, Kenneth N., Moore, John B., “CAM-I
(Consortium for Advanced Manufacturing International)
Report: Intelligent Manufacturing Management Program: State
of the Art Scheduling,” Survey 06-23-91, Technical Report R-91-
IMM-01, 1991.

[POL98] Polyak, Stephen T. and Aitken, Stuart, “Manufacturing
Process Interoperability Scenario,” Technical report, AIAI-PR-
86, Artificial Intelligence Applications institute (AIAI),
Edinburgh, 1998.

[POL982] Polyak, Stephen T., Gruninger, Michael , Lee, Jintae
and Menzel, Chris, “Applying the Process Interchange Format
(PIF) to a Supply Chain Process Interoperability Scenario,” 1998.

[SCH96] Schlenoff, C., et al., “Unified Process Specification
Language: Requirements for Modeling Process,” NISTIR 5910,
National Institute of Standards and Technology, Gaithersburg
MD, September 1996. (also available at
http://www.nist.gov/psl/)

[TCL94] Ousterhout, John K., “Tcl and the Tk Toolkit,”
Addison-Wesley, ISBN 020163337X, 1994.

[W3C98] W3C Architecture Domain, “Extensible Markup
Language (XML),” http://www.w3c.org/XML/, November 17,
1998.

