
THE IMS MISSION ARCHITECTURE FOR DISTRIBUTED MANUFACTURING SIMULATION

Charles McLean
Frank Riddick

National Institute of Standards and Technology (NIST)
Gaithersburg, MD (USA)

ABSTRACT

This paper presents an overview of a neutral reference
architecture for integrating distributed manufacturing
simulation systems with each other, with other
manufacturing software applications, and with
manufacturing data repositories. Other manufacturing
software applications include, but are not limited to
systems used to: 1) design products, 2) specify processes,
3) engineer manufacturing systems, and 4) manage
production. The architecture identifies the software
building blocks and interfaces that will facilitate the
integration of distributed simulation systems and enable
the integration of those systems with other manufacturing
software applications. The architecture is being developed
as part of the international Intelligent Manufacturing
Systems (IMS) MISSION project.

1 INTRODUCTION

Scientists and engineers within the NIST Manufacturing
Systems Integration Division of the Manufacturing
Engineering Laboratory are developing an architecture for
distributed manufacturing simulation in collaboration with
representatives from a number of outside organizations.
The organizations are principally participants in the IMS
MISSION Project (MISSION Consortium 1998). MISSION
is just one of many international, collaborative projects that
are currently underway as part of the IMS Program.

“The goal of MISSION is to integrate and utilize new,
knowledge-aware technologies of distributed persistent
data management, as well as conventional methods and
tools, in various enterprise domains, to meet the needs of
globally distributed enterprise modelling and simulation.
This will make available methodologies and tools to
support the definition of appropriate manufacturing
strategies and the design of appropriate organizations and
business processes. This goal will be achieved by
establishing a modelling platform incorporating engineering

knowledge and project information that supports space-
wise and control-wise design, evaluation and
implementation over the complete enterprise life cycle. This
will be the foundation stone for an architecture to support
engineering co-operation across the value chain of the
entire extended enterprise.” (MISSION Consortium 1998)

NIST is currently serving as the U.S. Regional
Coordinator for the IMS MISSION project. For further
information on the overall IMS Program, see the IMS Web
page at [www.ims.org].

2 DISTRIBUTED MANUFACTURING SIMULATION

This document takes a broad view of distributed
manufacturing simulation (DMS). Normally a DMS may be
thought of as a manufacturing simulation that is comprised
of multiple software processes that are independently
executing and interacting with each other. Together, these
simulation software processes may model something as
large as a manufacturing supply chain down to something
as small as an individual piece of industrial machinery.
Different software vendors may have developed the basic
underlying simulation software. The modules may run on
different computer systems in geographically dispersed
locations. The simulation may be distributed to take
advantage of the functionality of specific vendor’s
products, protect proprietary information associated with
individual system models, and/or improve the overall
execution speed of the simulation through the use of
parallel computer processors.

DMS may also refer to a distributed computing
environment where non-simulation manufacturing software
applications are running and interacting with one or more
simulation systems. Engineering systems may interact with
simulation systems through service requests. That is, they
submit data to a simulator for evaluation. For example, a
computer-aided manufacturing application that has
generated a control program for a machine tool may submit
that program to a simulator to verify that it is correct.

Another view of DMS is a computer environment
comprised of multiple, functional modules that together
form what today is commonly a single simulation system.
Such an environment may include model building tools,
simulation engines, display systems, and output analysis
software.

2.1 Why build distributed manufacturing simulation
systems?

A distributed approach increases the functionality of
simulation. For example, it could be used to
• model supply chains across multiple businesses where

some of the information about the inner workings of
each organization may be hidden from other supply
chain members

• simulate multiple levels of manufacturing systems at
different degrees of resolution such that lower level
simulations generate information that feeds into higher
levels

• model multiple systems in a single factory with
different simulation requirements such that an
individual simulation-vendor’s product does not
provide the capabilities to model all areas of interest

• allow a vendor to hide the internal workings of a
simulation system through the creation of run-time
simulators with limited functionality

• create an array of low-cost, run-time, simulation models
that can be integrated into larger models

• take advantage of additional computing power, specific
operating systems, or peripheral devices (e.g., virtual
reality interfaces) afforded by distributing across
multiple computer processors

• provide simultaneous access to executing simulation
models for users in different locations (collaborative
work environments)

• offer different types and numbers of software licenses
for different functions supporting simulation activities
(model building, visualization, execution, analysis).
The next section outlines the role that software

architectures will play in enabling the development of
distributed manufacturing simulations.

3 SOFTWARE ARCHITECTURE

In their book, Software Architecture: Perspectives on an
Emerging Discipline, Mary Shaw and David Garlan, explain
the significance of software architectures:

“As the size and complexity of software systems
increase, the design and specification of overall system
structure become more significant issues than the choice of
algorithms and data structures of computation. Structural
issues include the organization of a system as a
composition of components; global control structures; the

protocols for communication, synchronization, and data
access; the assignment of functionality to design elements;
the composition of design elements; physical distribution;
scaling and performance; dimensions of evolution; and
selection among design alternatives. This is the software
architecture level of design.”(Shaw and Garlan 1996)

A distributed manufacturing simulation architecture is
needed to address the integration problems that are
currently faced by software vendors and industrial users of
simulation technology. Neutral simulation interfaces would
help reduce the cost of data importation and model sharing,
and thus would make simulation technology more
affordable to users. The definition of a neutral architecture
for distributed manufacturing simulation is the first step
towards identifying the information models, interfaces, and
protocols for integrating these systems.

This step can be achieved by decomposing the
distributed manufacturing simulation architecture into three
major functional views: Distributed Computing Systems,
Simulation Systems, and Manufacturing Systems. Each
architectural view defines a set of system elements, data
models, and interface specifications for integrating
distributed manufacturing simulations. Aspects of each
view are interrelated to and interconnected with aspects of
the other views. The views can be thought of as three
sides of a cube.

3.1 Distributed Computing Systems View

This architectural view is concerned primarily with
simulation as a set of computers and software processes
that are simultaneous executing and communicating with
each other across a computer network. This view also
addresses issues pertaining to the general management and
integration of the software applications that are used to
generate models and data for the simulations. The fact that
the software processes are simulations or simulation-related
is not particularly critical in this view. This view is not
concerned with simulation or manufacturing data content.

This view provides the infrastructure that allows us to
implement simulation development and execution
environments as distributed systems. Elements of this view
include: hardware computing platforms; operating systems,
distributed computer processes, integration infrastructures,
process initialization and synchronization, software
development environments (including but not limited to
editors, compilers, system build utilities, debuggers, source
code, general subroutine and header libraries, run-time
modules, and system test data), communications systems,
information models and data dictionaries, work flow
management systems, database management systems and
databases, product data management systems, version
control and configuration management, computer file
systems and files, system installation and maintenance

utilities, computer security and data protection services,
license verification systems, and World Wide Web access
mechanisms. It also includes various input and output
peripheral devices such as digital cameras, scanners,
monitors, projection displays, printers, and virtual reality
interfaces.

There are five major clusters of information systems
that are relevant to the distributed manufacturing
simulation problem: 1) software development systems; 2)
design, engineering, production planning, and simulation
model development systems; 3) distributed manufacturing
simulation execution systems; 4) manufacturing
management, control, production, support systems, and 5)
distributed manufacturing data repository systems.

Figure 1 groups these systems into four computing
environments and a shared, common data repository. The
figure presents a logical grouping of system elements.
Undoubtedly each implementation of this architecture will
be based on different information systems and physical
configurations. The major elements of the figure are
described briefly below.

The Software Development Environment is used to
develop simulation engines, visualization systems,
integrating infrastructures, and other software applications.
It is not the central focus of the architecture and will not be
addressed in this paper. The Design, Engineering,
Production Planning, and Simulation Model Development
Environment contains the systems that generate models
and data used by simulation and manufacturing itself. It is
described in further detail below. The Distributed
Manufacturing Simulation Execution Environment contains

simulation engines executing models, visualization systems,
and infrastructure systems to manage and integrate those
simulations. The Manufacturing Management, Control,
Production and Support Systems Environment is made up

of the “real” systems that are used to run and perform the
manufacturing operations.

There are five component elements of the Design,
Engineering, Production Planning, and Simulation Model
Development Environment: 1) product design applications
and tool kits; 2) manufacturing engineering applications
and tool kits; 3) production management applications and
tool kits; 4) simulation model development applications and
tool kits, and 5) work flow management systems. In this
environment, the work flow management system provides
the integrating infrastructure. It manages and sequences
activities within the applications and tool kits that generate
manufacturing models and data. Tool kits are tightly
coupled suites of applications that work together to
perform a related set of functions. Tool kits may be
manually driven or more automated expert systems.

Product design applications may include conceptual
and detailed design, solid modeling, bill of materials
generation, design handbooks, parts catalogs, and various
analysis tools. Some manufacturing engineering
applications may include process planning and process
specification, plant layout, machine tool programming, time
standards development, line balancing, and tool and fixture
design. Production management applications may include
manufacturing resource planning, batch and lot sizing, and
scheduling applications. Simulation model development
tools include functions such as flowcharting, diagramming,
model definition, and user level programming.

Distributed Manufacturing
Data Repository

Software Development
Environment

Design, Engineering,
Production Planning and

Simulation Model
Development Environment

Distributed Manufacturing
Simulation Execution

Environment

Manufacturing
Management, Control,

Production and Support
Systems Environment

Communications Network

Figure 1: Relationships Between The Major Elements Of The DMS Architecture

A communications network connects environments
with each other and the Manufacturing Data Repository.
The Repository is a consolidation of the various data
stores and management systems that are used by the
various information systems environments. It logically
integrates the file systems, Web pages, data bases, and
libraries used for the storage of data by design,
engineering, production planning, real manufacturing
systems, simulation model development, and executing
distributed manufacturing simulations. In different
implementations of the architecture, the repository may
reside on a single computer system, a file server, or be
geographically distributed across a network.

The Distributed Manufacturing Data Repository may
include the following types of data stores and management
systems: computer file systems, Web pages and files,
object-oriented database management systems, relational
database management systems, special-purpose library
management systems, and source-code control systems for
software. A common data access interface mechanism will
be used to simplify access to the data repository by all
software environments and applications within those
environments. References to documents in the data
repository may be specified as Uniform Resource Locators
(URLs) see (Berners-Lee et al. 1998). This will allow the
identification of documents, both remotely and locally
stored using the well-established, standard, World Wide
Web access mechanism.

Figure 2 shows a decomposition of the Distributed
Manufacturing Data Repository into its component
elements. All of the types of data stores indicated in the
figure do not necessarily have to be included in an
implementation of the architecture. In the future, additional
data management schemes and data stores may be added to
the repository structure. From this point forward in this

document, the Distributed Manufacturing Data Repository
and Common Data Access Mechanism will be treated and
represented as a single module.

3.2 Simulation Systems View

This architectural view is concerned with the specifics of
building, initializing, running, observing, interacting with,
and analyzing simulations. In this view, simulation
systems, tools, and supporting applications should be
viewed generically; i.e., independent of the manufacturing
domain. The same system elements could be used for
simulating other problem domains. Major elements of this
view include: simulation coordination and management,
visualization systems, manufacturing data preparation and
model development tools, simulation models, discrete
event and process simulation engines, component module
and template libraries, mathematical and analytical models,
input distributions, timing and event calendars, and output
analysis tools.

Figure 3 illustrates the relationship between the
various elements of the distributed manufacturing
simulation execution environment. The integration
infrastructure for this environment, the Run Time
Infrastructure (RTI), is based on the U.S. Department of
Defense High Level Architecture (HLA) developed by the
Defense Modeling and Simulation Office (DMSO) (Kuhl et
al. 1999). The HLA was developed by DMSO to provide a
consistent approach for integrating distributed, defense
simulations. Several implementations of the HLA RTI
software are currently available from different sources.
There is, however, no interoperability across RTI
implementations. A distributed simulation running on
different computer systems across a network must use the
same RTI software as an integration infrastructure.

Common Data
Access

Mechanism

Computer File
System

PDMS Data
Bases

Product Data
Management

System

Web Files

Web Server

Object-Oriented
Data Bases

Object-Oriented
Data Base

Management
System

Relational Data
Bases

Relational Data
Base

Management
System

Special Purpose
Libraries

Special Purpose
Library

Management
System

Software File
System

Software Source
Code Control

System

Communications Network

Figure 2: Decomposition of the Distributed Manufacturing Data Repository

An HLA-based distributed simulation is called a
federation. Each simulator, visualization system, real
production system, or output analysis system that is
integrated by the HLA RTI is called a federate. One
common data definition is created for domain data that is
shared across the entire federation. It is called the
federation object model (FOM). Each federate has a
simulation object model that defines the elements of the
FOM that it implements.

A DMS Adapter Module is incorporated into each
DMS federate. The DMS Adapter will handle the
transmission, receipt, and internal updates to all FOM
objects used by a federate. The DMS Adapter Module will
contain a subroutine interface and data definition file that
will facilitate its use as an integration mechanism by
software developers. The goal of the DMS adapter is to
ease the development of distributed manufacturing
simulations by reusing implementations for some of the
necessary housekeeping and administrative work. The
DMS adapter provides a simplified time management
interface, automatic storage for local object instances,
management of lists of remote object instances of interest,
management and logging for interactions of interest, and
simplified object and interaction filtering.

Several functions may be needed for the proper
operation of a distributed simulation that are logically
outside of any one simulation federate. In the distributed
manufacturing simulation environment, the Manufacturing
Simulation Federation Manager is the architectural element
that provides these functions. Its may implement
functionality to execute initialization scripts that launch
federates, to provide initialization data to federates, to

assist in federation time management, and to provide a user
interface so that users can monitor and manipulate the
federation and invoke federation services.

3.3 Manufacturing Systems View

This architectural view is concerned with modeling the
behavior and data of specific manufacturing organizations
and systems, from the supply chain down to individual
machines on the factory floor. Major elements of this view
include, but are not limited to
• manufacturing organizational templates and structures,

business process and organizational models
• supply chain systems - refineries, mills, factories,

warehouses, distributors, transportation systems,
wholesalers, retailers, customers, and so on

• manufacturing facility departments, areas, and
subsystems - design, engineering, procurement,
finance, production shops, work cells, production
lines, workstations, inventory storage areas, shipping
and receiving, and so on

• production resources and support equipment -
machine tools, inspection equipment, material handling
systems, storage buffers, robots, workers,

• tools and materials - cutting tools, hand tools, jigs and
fixtures, consumables, components, part blanks, sheet
and bar stock, work-in-process inventory, and so on

• manufacturing information systems - design,
engineering, production planning and scheduling, tool
management, shop floor data collection systems, and

• manufacturing documents and data - work flow
patterns, orders, jobs, product data, part designs,

Manufacturing Simulation
Federation Manager

Distributed
Manufacturing Data

Repository

HLA Run-Time
Infrastructure and
Communications

Network

Simulation
Visualization

Federate

DMS Adapter

Manufacturing
Simulation
Federate

DMS Adapter

Real Manufacturing
System

Federate

DMS Adapter

Simulation Output
Data Analysis

Federate

DMS Adapter

Figure 3: Distributed Manufacturing Simulation Environment Elements Integrated By The
HLA Run Time Infrastructure

process plans, production calendars, schedules,
layouts, and other reference data (machinability data,
statistical distributions).
Different manufacturers will create different supply

chain organizations and arrangements of systems within
each organization. The DMS architecture must be flexible
enough to allow these different system configurations, but
still enable increased integration. As such, the architecture
does not mandate a particular manufacturing organization.
It does require the development and specification of one
DMS FOM.

Many objects in the FOM may reference documents
containing more detailed information that are stored in a file
system, PDM system, or database. An example of such a
document might be a part design file or a process plan. The
Extensible Markup Language (XML) can be used to define
new document types (Goldfarb and Prescod 2000). XML
allows for the definition data that has semantic information
in addition to the data values. XML data-type-definitions
(DTD) may be used to define new document formats.
Advantages of this approach include:
• the set of supported document types can be easily

extended
• each individual document format can be easily

modified
• COTS tools are available to implement creation,

parsing, interpreting, and displaying the documents
• XML documents from other sources can easily be

supported
• different instances of file structures may be created to

convey the same semantic information
• XML-enabled browsers can intelligently display the

data
• semantic validation of the files is possible.

Even without the DTD, XML files are often both
human and machine readable because of the semantic
information that is included.

There are potentially many document types that will be
stored as distributed manufacturing simulation data. Some
of these document types have widely-accepted or
standardized formats. Examples of these include the many
kinds of CAD files (DXF, IGES, etc.), image files (GIF, TIFF,
BMP, etc), and executables (EXE, com, bat, dll, etc.).
However, many manufacturing documents do not have
standardized format. Schedules, BOMs, and process plans
are examples of such documents. While it is easy to come
up with acceptable representations for such data that are
appropriate for short-term use, it is highly likely that these
representations will need modifications, possibly major
modifications, over time. A mechanism is needed to allow
the definition of extensible formats for new document types
without adversely affecting the rest of the DMS
architecture or interfaces. XML can be that mechanism.
XML DTD's must be stored in and uniquely accessible from

the DMS data repository. An initial set of document
formats should be developed and allowed to expand over
time as the need arises.

4 INTEGRATION VIA DMS ADAPTER AND THE
HLA/RTI

In the discussion and diagrams below, the changes
necessary for integrating a legacy simulation into a
distributed simulation using the HLA and the DMS
Adapter will be discussed. The term legacy simulation is
used to indicate a manufacturing-oriented or general-
purpose discrete-event simulation tool that does not have
native support for the HLA or DMS Adapter technologies.

4.1 Simplified Simulation Execution Architecture

In Figure 4, a simplified view of a non-distributed legacy
simulation application is shown. It consists of a simulation
execution system executing a simulation model. The
simulation model is a behavior-oriented description of the
logical system that is to be simulated. Simulation execution
systems often support the visualization of the executing
model and statistical reporting of the simulated events that
are generated during execution. Data that are needed as
input to or that are generated by the executing simulation
are maintained in the persistent data store.

4.2 Integration using the HLA/RTI

Figure 5 shows the architecture of a legacy simulation that
has been integrated into a distributed simulation using the
HLA. On the right side of the diagram, a simplified view of
the HLA architecture is presented (constructs or concepts

Legacy Simulation
Execution System

Legacy
Simulation
Persistant
Storage

Simulation
Model

Figure 4: Simplified View of a Typical
Legacy Simulation System

that are beyond the scope of this presentation have been
left out for brevity). The Federate Object Model (FOM) is a
description of the data that can be exchanged between
federates. The FOM is usually different for each
distributed simulation that is developed. The RTI
Ambassador implements the interface through which
federates send information to the RTI. This interface
contains over 120 methods that provide the capability to
manage federation creation, manage object class
definitions, manage information exchange using objects
and interactions, and manage the advancement of time for
the federation.

While the RTI Ambassador provides the mechanism
for sending information to the RTI, an implementation of
the Federate Ambassador interface is necessary to be able
to receive information from the RTI. The Federate
Ambassador is an interface that contains around 40
methods that define how the RTI sends information to a
federate asynchronously in response changes in the state
of the federation. These state changes may be in response
to calls to the methods on the RTI Ambassador interface
made by any federate in the federation. An implementation
of the Federate Ambassador interface is not provided with
the RTI software. The rules of the HLA require that an
implementation of the Federate Ambassador be provided
by the legacy simulation. Furthermore, this implementation
must be consistent with the information defined in the FOM
that is being used in this federation.

4.2.1 HLA/RTI Integration Issues

Since legacy simulation systems are not designed to be
used with the HLA/RTI, code must be developed to adapt
the legacy simulation system for such purposes. Normally
this code is complex. In addition, although some of the
code can be reused, a significant amount of code will need
to be added or modified for each distributed simulation that
is developed. In the following sections, some of the
important issues related to the complexity and reusability of
the adaptation code are discussed.

RTI Interface Complexity: There are roughly 120
methods in the RTI Ambassador interface and 40 methods
in the Federate Ambassador interface. Depending on the
current state of the RTI, the federation, and the data that is
defined in the FOM, invoking a method can cause vastly
different outcomes to occur. While the richness of the
RTI's interfaces provide for an extremely flexible simulation
integration approach, a side effect is that the learning curve
for understanding these interfaces is quite high.

The RTI's Implicit Invocation Architecture: The
architecture of the RTI is based on what is called an
"implicit invocation architecture." In this approach, a
federate can modify the state of the federation by invoking
methods of the RTI Ambassador interface. Information
relating to changes in the state of the federation is passed
back as asynchronous callbacks to methods in the Federate
Ambassador that was implemented by the federate. While
this is an efficient and flexible approach, it makes adapting
legacy simulation difficult because legacy simulations
usually provide only procedurally oriented mechanisms for
integration.

Inadequate Integration Mechanisms Are Provided By
The Legacy Simulations: To use the interfaces of the RTI,
some adaptation code must be written using a language
supported by one of the RTI language mappings.
Mappings currently exist for languages such as C, C++,
Java, and CORBA IDL (Ben-Natan 1995). While some
simulation systems provide mechanisms to call functions
written in such languages natively, many do not.
Integrating those legacy simulations usually requires a
combination of proprietary-language code, file
input/output, and socket programming, depending on
which mechanisms are provided. This situation increases
the complexity of developing and maintaining the
adaptation code.

Cooperative Time Management: In distributed
simulations in which federates must cooperatively manage
the advancement of time, the legacy simulation must be
modified to cede some of the control over the advancement
of time where previously it had complete control. Because
the RTI provides multiple mechanisms for coordinating time
advancement, choosing the appropriate mechanism and

Legacy Simulation
Execution System

Legacy
Simulation
Persistant

Storage

Simulation
Model

HLA
Runtime

Infrastructure

Federate
Object
Model

Custom
Adaptation

Code

Federate
Ambassador

Implementation

RTI
Ambassador

Figure 5: Legacy Simulation Integration
Using the HLA/ RTI

properly implementing the adaptation code to support it
can require significant forethought and development.

Storage And Maintenance For Instances Of FOM
Objects: Many legacy simulations have internal
representations for entities such as parts or machines, and
these simulations can maintain the information about such
entities as they are created during a simulation execution.
The definitions of these entities will differ between different
legacy simulations. To enable the exchange of data
relating to these entities, neutral representations of these
entities are usually defined in the FOM as object classes
and associated attributes. However, the HLA/RTI
provides no mechanism for storing object class instances.
It only provides for storage of information related to the
owner of a particular object instance, the class of the
instance, and the attributes that are associated with an
instance. Therefore, storage for instances of FOM objects
must be provided by the legacy simulation. This is in
addition to whatever storage has been set aside to maintain
the legacy simulation's internal representation of an object.
Adaptation code to maintain FOM object storage and to
coordinate state changes between the internal
representations and the FOM representations of objects
must be developed.

4.3 Integration using the DMS Adapter

In the previous section, some of the issues that are related
to integrating legacy simulations using just the facilities of
the HLA were discussed. It shows that developing the
Federate Ambassador and adaptation code can be a
significant undertaking when developing a distributed

simulation, and that this effort must be repeated for each
legacy simulation that is to be integrated.

Figure 6 shows the architecture of a legacy simulation
that has been integrated into a distributed simulation using
the DMS Adapter. Instead of having legacy simulations
integrated directly with the HLA/RTI, those simulations will
interact with the interface of the adapter. The goal of the
adapter is to provide a simplified method for integrating
legacy simulations into distributed simulations while also
providing as much of the capabilities of the HLA/RTI as
possible. The reader should note that simplified does not
imply simple. Adaptation code must still be developed to
integrate a legacy simulation system with the DMS
Adapter. However, by reducing the complexity of the
interface to which the legacy simulation is being integrated,
the level of effort for performing the integration should be
greatly reduced

4.3.1 Architectural goals for the DMS Adapter

What follows is a list of design goals for the architecture of
the DMS Adapter. If met, implementing distributed
simulations using the DMS Adapter should be simpler than
when using the approach that was depicted in Figure 5.

Reduce interface complexity: The interface of the
adapter will have approximately 35 methods instead of the
120 methods with 40 callbacks defined by the RTI and
Federate Ambassadors.

Distributed Manufacturing Simulation
Adapter HLA

Runtime
Infrastructure

Federate
Object
Model

Adapter
Interface

Implementation

Federate
Ambassador

Implementation RTI
Ambassador

Legacy Simulation
Execution System

Legacy
Simulation
Persistant

Storage

Simulation
Model

Custom
Adaptation

Code

Adapter Maintained Information

� List of Federates in the Federation
� Instantiations of locally owned objects
� Copies of objects owned by other federates
� Queue of messages from other federates
� Object type definitions
� Object and message filtering data
� Adapter initialization and configuration
 information

Figure 6: Legacy Simulation Integration Using the DMS Adapter

Remove Federate Ambassador implementation issues
from the legacy simulation: Legacy simulations will not
have to develop Federate Ambassador implementations.
The adapter will implement a federate ambassador and use
it to receive information from the RTI.

Define an interface that facilitates integration with
procedurally oriented legacy simulations: The results of
invoking most of the methods in the adapter's interface will
be returned immediately to the legacy simulation.
Information that must be passed back asynchronously to a
federate will be stored in a message queue in the adapter
associated with that federate. This includes information
that is generated by the activities of other federates in the
federation. The adapter will provide the storage for this
information and provide methods to access this information
upon request from the legacy simulation.

Minimize the impact of changes to the information
model through the development of generic FOM objects
that contain XML stings: To overcome the problem of
having to develop different FOM's for each distributed
simulation configuration, the information about the classes
and attributes for the objects that are to be exchanged will
not be defined in the FOM. A generic object will be defined
in the FOM and this object will be exchanged between
federates. This generic FOM object will contain an XML
string that contains the semantic content for the object.
The XML string is the information that will be passed to the
legacy simulation. The generic FOM object will also contain
information about the type of data contained in the XML
string. This will facilitate filtering and routing of object
updates by the RTI. There are five major benefits to this
approach:
1. Only one FOM needs to be developed for use with the

DMS Adapter.
2. Only one implementation of the Federate Ambassador

needs to be developed for use with the DMS Adapter.
3. The DMS Adapter does not have to be modified and

recompiled for each distributed simulation
configuration.

4. The information model (the definition of the entities,
attributes and messages that will be exchanged
between simulations) can be changed without
changing the FOM, Federate Ambassador
implementation, or the DMS Adapter Implementation.

5. Implementations of mechanisms for manipulating XML
data are widely available and can be used in the
development of both the DMS Adapter and the
adaptation code for legacy simulations.
Maintain storage for the objects that are to be

exchanged between simulations: As discussed in a
previous section, the definition of an object (class and
associated attributes) that is to be exchanged between
simulations will differ from the internal definition that each
simulation supports for that object. Since each legacy

simulation only provides storage for its internal objects and
the RTI provides no mechanism for the storage of objects,
storage and maintenance for the objects that are to be
exchanged must be provided. The DMS adapter will
provide this capability.

Each adapter will provide methods that allow a legacy
simulation to create, modify, and delete objects that can be
shared with other federates in the federation. Objects will
have "owners", and ownership will be granted initially to
the adapter (and associated legacy simulation) that created
it. Ownership is required for modification or deletion
operations on an object to succeed. Storage for "owned"
objects will be provided by the DMS Adapter that owns the
object. In addition, storage for copies of objects owned by
other DMS Adapters will be provided. Each DMS Adapter
will use the services of the RTI to distribute object update
information for the objects it owns, and will incorporate
object update information it receives about objects owned
by other DMS Adapters. In this way, the DMS Adapters in
the federation can work cooperatively to maintain updated
information about all the objects in the federation, without
the direct intervention of their associated legacy
simulations.

Simplify time coordination: The RTI provides a
multitude of time synchronization methods that are
extremely flexible and powerful but are also quite
complicated. The adapter implements a "time- stepped"
synchronization approach. DMS Adapter methods are
provided to declare that the associated legacy simulation
wishes to advance to a certain simulation time, and to check
if it is ok to advance to this time. When the DMS Adapter
indicates to the legacy simulation that it is ok to advance,
the legacy simulation can then "simulate" from its current
simulation time to the new simulation time that it requested.
It can then use the other methods in the DMS Adapter
interface to get information about what was going in the
rest of the federation while it was executing its "simulation
step." When all of the simulations use this method, the
functionality of the RTI's time management services
ensures that the collective advancement of all of the
simulations proceeds properly.

5 CONCLUSIONS

This document has provided a brief overview of the
distributed manufacturing simulation architecture that is
being developed as a part of the IMS MISSION Project.
The approach taken in the architecture is to facilitate
integration of existing commercial systems with minimal
new development work. The architecture also should
enable experimentation with research systems that are
based on evolving technology. The architecture describes
the major system modules, data elements or objects, and
interfaces between those modules. It uses the DOD High

Level Architecture and Run Time Infrastructure as an
integrating infrastructure. Detailed specifications will have
to be prepared for the key interfaces identified in this
document. Prototypes of each of these systems are being
developed, tested, and integrated with commercial
simulation systems, modeling tools, and other related
manufacturing software applications as part of the IMS
MISSION Project.

ACKNOWLEDGEMENTS

Work described in this paper was sponsored by the NIST
Systems Integration for Manufacturing Applications
(SIMA) Program. No approval or endorsement of any
commercial product by the National Institute of Standards
and Technology is intended or implied. The work
described was funded by the United States Government
and is not subject to copyright.

REFERENCES

MISSION Consortium. 1998. Intelligent Manufacturing
System (IMS) Project Proposal: Modelling and
Simulation Environments for Design, Planning and
Operation of Globally Distributed Enterprises
(MISSION), Version 3.3. Shimuzu Corporation, Tokyo,
Japan

Shaw, M., and D. Garlan. 1996. Software Architecture:
Perspectives on an Emerging Discipline. Prentice-Hall:
Saddle River, NJ

Berners-Lee, T., R. Fielding, and L. Masinter. 1998. Uniform
Resource Identifiers (URI): Generic Syntax (RFC 2396).
Internet Engineering Task Force

Kuhl, F., R. Weatherly, and J. Dahmann. 1999. Creating
Computer Simulations: An Introduction to the High
Level Architecture. Prentice Hall: Upper Saddle River, NJ

Goldfarb, C., and P. Prescod. 2000. The XML Handbook,
Prentice Hall: Upper Saddle River, NJ

Ben-Natan, R., 1995. CORBA: A Guide To The Common
Object Request Broker Architecture. McGraw-Hill: New
York, NY

AUTHOR BIOGRAPHIES

CHUCK MCLEAN is Leader of the Manufacturing Systems
Engineering Group in the U.S. National Institute of
Standards and Technology (NIST) Manufacturing Systems
Integration Division. He has managed research programs in
manufacturing simulation, engineering tool integration,
product data standards, and manufacturing automation at
NIST since 1982. He has authored more than 50 papers on
topics in these areas. He holds a Master's Degree in
Information Engineering from University of Illinois at
Chicago and Bachelor's Degree from Cornell University.

FRANK RIDDICK is a staff member in the Manufacturing
Systems Engineering Group in the U.S. National Institute of
Standards and Technology (NIST) Manufacturing Systems
Integration Division. He has participated in research and
authored several papers relating to manufacturing
simulation integration and product data modeling. He
holds a Master's Degree in Mathematics from Purdue
University.

