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Abstract

This paper considers the integration of commercial off-the-shelf manufacturing
engineering tools to produce a manufacturing engineering toolkit. These issues are
considered by describing the work taking place in an on-going project to develop such a
toolkit. In particular, the approach being taken toward integration of the tools is described,
concentrating on the architecture of the solution that is being developed. To this end the
paper highlights four main areas: the strengths and weaknesses of an initial prototype
toolkit being used as input to the project, the approach being used to describe the
architecture of the integrated toolkit, the details of the main elements of a preliminary
architecture for the toolkit, and some issues being faced in moving from an architecture to
a working implementation that can be used in practice. As a result, the main contributions
of this paper include a survey of the key issues facing designers of integrated toolkits for
the manufacturing domain, an analysis of architectural alternatives for building integrated
toolkits, and an illustration of choices that have been made in this regard for satisfying the
requirements for a manufacturing engineering toolkit.

* Address for all correspondence.
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1 Introduction

Manufacturing engineering is the set of activities that, given the design for a particular physical part, specifies the

manufacturing procedures and resources required to transform the design into a finished product. As with other

engineering activities, manufacturing engineering involves a large number of tasks carried out by a variety of people.

Computer support for many of these tasks is commonplace, and often essential to engineers in eveiything from

product modeling and design through to production planning and scheduling. However, the use of a collection of

computer -aided support tools throughout the manufacturing engineering life-cycle raises a new set of problems -
how to use the tools collectively in as efficient and productive a way as possible across the whole product life-cycle.

Currently, engineering support tools are optimized for use in restricted, relatively narrow areas of the product life-

cycle. For example, Computer -Aided Design (CAD) tools for part design provide essential services for the design

and analysis of a particular part. Product design data is recorded persistently in some internal format based on the

needs of each tool. Clearly, the data developed in each tool is an essential resource to an organization. In particular,

it is a primary input to other areas of the engineering life-cycle such as production planning, where tasks such as

materials ordering and machine tooling definition are carried out. However, to the CAD tool vendor such a need is

secondary to the need for producing a tool with high performance, extensive design capabilities, and the ability to

operate on a variety of commonly -available computer platforms.

Hence, to allow the various tools to interact a variety of common agreements, shared interfaces, and interchange

standards must be in place. Particularly important are agreements concerning the data structures used to describe

the part (e.g., its geometry, tolerance, electrical properties, and so on), the events that cause the part data to be

changed (e.g., a fixturing error detected during manufacturing engineering), and the mechanisms used to

communicate among the tools and provide feedback from those events to end-users. This set of inter-component

agreements, together with descriptions of the major functional elements of the system and their interaction, is often

called the software architecture' of the system [A.

As can be expected, the architecture of an integrated set of tools for manufacturing engineering will be realized by

a set of tools interacting through additional software acquired or developed specifically for that purpose. This

software provides an infrastructure that facilitates integration and evolution of the toolkit, improving adaptability of

the toolkit by reducing the burden of replacing existing tools and of adding further tools to extend the functionality of

the system.

The result of this effort is a toolkit that ties together the various vendor -supplied tools through the infrastructure

software to produce a system that is able to operate cooperatively to carry out a range of manufacturing engineering

tasks. This toolkit can then be applied in practice, where it will no doubt undergo enhancements and improvements

to meet evolving end-user needs.

In the remainder of this paper the term "architecture " is used as a synonym for 'software architecture ".
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Consequently, an organization developing an integrated set of capabilities for manufacturing engineering is

concerned with producing the three major artifacts highlighted above: an architecture consisting of a set of inter-

component agreements together with a description of the major functional components of the toolkit, an integration

infrastructure that implements the integration between the different tools, and the toolkif itself. In this paper we

concentrate on the first of these products - the architecture of a manufacturing engineering toolkit. The main

contributions of this paper include a survey of the key issues affecting the architecture of integrated toolkits for the

manufacturing domain, an analysis of architectural alternatives for building integrated toolkits, and an illustration of

choices that have been made in this regard for satisfying the requirements for a manufacturing engineering toolkit.

The remainder of this paper is organized as follows. Section 2 provides background on the Manufacturing

Engineering ToolKit (METK) project and its integration goals. Section 3 describes the initial baseline system in

detail, and highlights the limitations of that system as they will be addressed in the METK. Section 4 describes the

design approach being used to understand integration as it applies to this toolkit, and to produce the architecture of

the toolkit. Section 5 describes the preliminary architecture of the METK that was developed based on the approach

described earlier. Section 6 discusses a number of issues being faced in producing the toolkit, and to it being

adopted in practice. Section 7 summarizes the main points of the paper, and outlines some of the remaining

challenges to be addressed.

2 Background
Funded by the US. Navy, the Computer -Aided Manufacturing Engineering (CAME) program is aimed at lowering

manufacturing costs, reducing delivery times, and improving product quality through the coordinated development

and use of advanced software tools. In particular, the CAME program’s vision of the future of manufacturing

engineering is the availability of integrated computing environments for supporting manufacturing engineering.

Addressing integration of the various computer -based components is seen as the key to reducing costs and

improving quality in the CAME program. That is, through the use of common databases of manufacturing

engineering data, tools will be able to share information that is used throughout the manufacturing engineering life-

cycle. This will reduce redundant data entry, ensure that different engineering functions are synchronized, and aid

validation and verification of the engineering data.

Use of commercial tools in creating a manufacturing engineering toolkit is seen as an important aspect of the

practical viability of the approach. Commercial tools offer significant functionality to end-users, and represent a large

existing investment in many manufacturing organizations. While the CAME program recognizes that there is

substantial investment required to develop and maintain interfaces among these commercial tools, the alternative

of developing and maintaining a complete integrated toolkit from scratch is neither cost-effective nor desirable given

current organizational investments and goals.
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The CAME project is focusing on providing support for a wide variety of emerging tools and techniques for designing

manufacturing processes, equipment, and enterprises, as well as tools for evaluating the producibility of product

designs. To allow such services to work in a coordinated fashion, the emphasis in the CAME program is on

developing an infrastructure that allows toolkits supporting these functions to be more easily developed. The major

components of this infrastructure include:

l an integrated framework of support services such as data management and version control;

l an operating environment of hardware and software:

l common data definitions for shared data;

l interface standards to facilitate data interchange.

To reach this goal the CAME program has established a consortium of users, researchers, developers, and vendors

to share their experiences and to cooperate in the solutions that are developed [l].Together they are working on a

collection of ideas that are embodied in infrastructure components such as system architectures, database schema

designs, and specific techniques for integration of manufacturing engineering tools. Based on these artifacts a

prototype implementation is being developed that can act as a testbed for many of the ideas, and can be used as a

vehicle for demonstrating the advantages of these techniques. It is intended that this prototype be installed at

various industry locations to engender further interest and acceptance of the ideas, and to encourage the take-up

of the ideas by tool vendors and third-party integrators.

An important aspect of the CAME program is the creation of a toolkit that can be used to illustrate many of the issues

being addressed. This toolkit, called the Manufacturing Engineering ToolKit (METK), is currently being developed

at NIST and is the focal point for examining many of the architectural and infrastructure aspects of creating

integrated toolkits. In the near-term it will provide concrete realization of many of the ideas of the CAME program.

An important by-product of the work is the identification and recommendation of standards for use in the

manufacturing community. It is hoped that the CAME program can act as a focal point for establishing common

interfaces, common data schemas, and other necessary integration components. Such standards will expedite the

integration process, and will also improve flexibility and adaptability of integrated toolkits by enabling

interchangeability of components supporting commonly defined interfaces. Working through the National Institute

of Standards and Technology (NIST), with the direct support and participation of tool vendors, will help to facilitate

this goal.

2.1 Requirements for an Integrated Manufacturing Environment
A goal of the CAME program is to develop an integrated environment to aid manufacturing engineers plan the

production of parts and to verify the plans so that the parts are made correctly the first time. Currently, after a CAD

model of a part has been created, much of the model information is manually input to a CAM package by

manufacturing process experts. There are numerous problems with this approach that an integrated toolkit would

address. These problems include the following:
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l Standard manufacturing practices are hard to enforce. Different process planning experts use different
rules for the same part and come up with different solutions. Each solution has a different impact on the
quality and cost of the part.

l Good solutions are not formally documented.

l Proper selection and documentation of the tooling, inserts, tool holders and fixtures is a tedious process
and prone to error.

l It is difficult to examine effects of alternative sequencing and setups.

l Its difficult to optimize the tool paths and tool changes.

l It is difficult to create accurate cost estimates.

l Most CAM systems do not have the ability to fully simulate machine tool motion to properly detect
program errors. These problems are usually found only on the factory floor resulting in significant loss of
time and increases in cost.

These problems are somewhat generic in nature. A more specific set of requirements was needed that could act as

the driving force for the CAME program. To obtain these requirements engineers from several manufacturing

organizations in government and industry were interviewed to discuss their needs, and later attended a workshop

that discussed the scope of an integrated manufacturing engineering toolkit in general [l].One of the first results of

these interactions was to narrow down the scope of the work that would be considered in the METK to machining

processes. This restriction provides a smaller, representative cross-section of problems to deal with since process

planning of complex machined parts requires considerable expertise in understanding the features to be machined,

planning the setups, determining appropriate fixtures and tooling, planning and sequencing the operations, creating

the machine programs and costing the process.

Summarizing the needs expressed in those interactions, it was the consensus of these engineers that an integrated

manufacturing engineering toolkit should perform the following functions:

l Examine a solid model of the part and determine the machinable features from it. This would eliminate
the errors caused by omission of machinable features during process planning.

l Determine the minimum number of setups required for the part given the machine tool configuration.

l Select the appropriate machine that can achieve the desired results. This will eliminate the differences
caused by experience and knowledge of the process planners.

l Determine the machining operations, the correct tools, cutting conditions, and the sequence in which
these operations are performed. This will allow enforcement of standard machining practices and
eliminate the errors caused by lack of experience, knowledge and omissions.

l Generate the cutter path and the correct G codes in order to eliminate the differences in numerical control
(NC) programs due to differences in NC programmers’ coding techniques and errors in data entry.

l Maintain a knowledge base of acceptable machining practices, cutting technologies, available machines,
cutting tools, available fixtures, and their costs. This will result in easy enforcement of standard machining
practices and easy updates and changes of machining practices.

l Store process planning solutions for parts. This will provide a history of how past parts were
manufactured.
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l Compare the predicted and actual tolerances, machine times, planning times, and costs. These
comparisons can be used to refine the method, rules, and models contained in the toolkit.

l Allow manual editing at all stages of process planning. Allow deviation from standard practices whenever
required.

l Provide cost estimates of the manufacturing process in order to allow the comparison of different plans
and product designs.

l Provide a complete simulation of the manufacturing process. This will give complete NC program
verification.

l Manage revisions and engineering change orders.

l Maintain the association of individual parts to a given product.

Furthermore, the outputs of an integrated toolkit should include:

l A list of all machining features, together with the estimated time and cost of each feature.

l The setups required for a part.

l The machine, fixtures, cutting tools, and tool holders required to manufacture a part.

. l The sequence of operations to be performed.

l The NC programs and tool list for each setup.

l Simulation of the generated G codes to check for errors in the G codes, tool crashes etc.

l Cost estimates.

l Routings.

These lists of expected functions and outputs form a description of the basic requirements for the METK.

2.2 Summary
There is a wide range of requirements that can be considered applicable to an integrated manufacturing toolkit. In

this section a number of them have been highlighted based on feedback from professionals in the manufacturing

engineering domain. As a result, implementing a toolkit that addresses these requirements is a major undertaking

requiring significant time and resources. Confronted with this problem, it is important to look for a starting point that

will provide the maximum leverage.

Fortunately, such a starting point exists: an initial integrated manufacturing workbench that combines a number of

commercial products to fulfill some of the requirements expressed in this section. In the following section this

workbench is described, concentrating on providing an analysis of its major strengths and weaknesses.

3 The Initial Foundation for the METK
Over the past few years an Intelligent Machining Workstation (IMW) system has been developed at Ohio University

[ll],funded under the Ohio Aerospace Institute’s Core Research Program. The IMW integrates a number of

commercial manufacturing tools to aid the process planning of a part. In the development of the METK it seems

appropriate that the IMW be examined closely, with the aim of using it as an important component of the baseline
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METK. In this section the IMW is described in terms of its architecture, and its major strengths and weaknesses as

they relate to the requirements for the METK.

3.1 Background to IMW
The past decade has seen a significant effort to automate process planning. A good summary of the issues

concerning process planning is presented by [e]. Various early generative planners include CPPP[G], GAR1 [5],

XPLANE [17], TURBOCAPP [18]. These planners captured knowledge of expert machinists, however, much of the

geometry input had to be manually entered and the output manually transferred to CAM systems. METCAPP(tm) is

an excellent commercial tool based on this technology. Current CAD technology is moving towards solid models.

The primary representation schemes for solid models include boundary representation (B-rep) and constructive

solid geometry (CSG). Researchers [ IO ] have shown that significant reasoning about how to machine a part can be

done with 8-rep CAD models. Newer systems such as the Quick Turn-around Cell [8], the Automated Part

Programming System [13] and Machinist [9] use solid models with feature reasoning to electronically extract data

from the CAD models. They also integrate CAM software to automatically generate tool paths. However, none of

these planners include support for many requirements of an integrated environment, for example in areas such as

process simulation and verification, cost estimation, and version control.

3.2 Description of the IMW
Addressing the limitations with existing process planning tools, the approach in developing the IMW was to integrate

the best commercially -available tools onto a single platform to form a powerful concurrent engineering environment

for design and manufacturing engineers. The integration approach involved developing filters to provide point-to-

point integration of tools. This approach solves the problems of integrating specific tools, but with the limitation that

is not extensible to other tools and is sensitive to updates of the underlying software modules.

The IMW uses ICEM Technology’s PART(tm) as the process planning package, Cognition’s Cost Advantage(tm) as

the costing package, and Deneb’s Virtual NC(tm) as the CNC simulation package. The Mechanical Advantage CAD

system is used to generate the solid models for the IMW. However, other CAD tools can be used. The machine

program produced by the IMW can be downloaded to any CNC machine. The Oracle(tm) database is used as a

central data repository which all tools can access.

In Figure 1 the IMWs tool components and their primary data flows are illustrated. The primary input to the system

is the solid model of the part and the blank. The primary outputs are the machine programs, cost estimates, process

simulations, and setup descriptions. At installation, the IMW must be configured with appropriate cost models,

machine models, machining practices, available tooling, and available fixtures. This information must be maintained

as conditions warrant. The remaining portion of this section will briefly describe each of the tools in the IMW and the

interfaces among them.
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The IMW

Tooling
SetupsFeature

Cost Model I
Machines on hand
Tooling on hand
Fixtures on hand
Machining Practices
Feature Geometry

Machine Tool Model

Figure 1: Tool Components and their Data Flows in the IMW

3.2.1 PART
PART uses the Oracle relational database to store both the expert knowledge required for process planning and the

information generated during a process planning session. A solid model in the form of a STEP file2 (other formats

are also supported) of the part and blankare input to the tool. PART identifies the machining features, creates proper

setups, determines the machining operations, selects the appropriate tooling, and generates the tool paths. Any

information regarding the product, its features, the machining operations and the tools can be extracted from the

database using Structured Query Language (SQL) queries. PART'S knowledge base contains information about the

machine tools, cutters, adapters, machine holders, tools assemblies, tool sets, cutting technology, machining

practices, and product materials. The information can be easily edited and updated.

3.2.2 Cost Advantage
Cost Advantage is used as the cost estimator. One module of Cost Advantage, called the Cost Modeler(tm), is used

to create a cost model for a given manufacturing environment. This cost model contains equations and design rules

2. A file containing a solid model representation conforming to the IS0 10303 standard called STEP (STandard for the
Exchange of Product model data), which is an international standard for the computer -interpretable representation and
exchange of product data.
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needed to calculate a cost estimate. Cost Advantage then uses this model along with data specific to a particular

part to calculate an estimate of the cost of that part. The estimate is stored in a flat file called the cost note.

3.2.3 Virtual NC
The Virtual NC (VNC) provides a simulation environment capable of emulating an entire machine tool and its

controller. VNC provides the tools needed to create a workcell model capable of emulating any machine tool. The

VNC workcell model reads the actual machine programs (G-codes) and drives an accurate kinematic model of the

machine tool. Solid models of the cutting tools are geometrically subtracted from a solid model of the blank,

simulating the cutting process. VC program prove-out can be done in this simulated environment, thereby saving

valuable machine time and potentially disastrous tool crashes. In addition to emulation of machine tools, information

pertaining to tool usage, collisions, and the volume of material removed can be determined.

3.2.4 Cost Advantage Interface
This interface is designed to be invoked at any time during a typical planning session. When invoked, it examines

the Oracle database and extracts all available data to develop a cost estimate. As more information is developed

by the process planner, more accurate cost estimates are developed. Typically the interface is called twice. The first

invocation occurs when the machining features are known but no process planning has been perfomed. The

interface uses the feature information to develop a rough estimate of the product cost. The second invocation occurs

when information is available about all the operations and tools for each operation for each machining feature. This

generates a very accurate estimate of the product cost.

The interface implementation uses SQL calls to extract feature parameters and tolerances, machine tool selection,

cutting tools, required operations, and times from the database. This information is formatted into a cost note. When

the cost note is read by Cost Advantage, all the appropriate calculations are performed to generate an estimate.

The user can adjust any of the information in the cost note. Also there are provisions to add costs of the processes

not considered by PART, such as coatings, heat treating, stress relief, and inspections.

3.2.5 Virtual NC Interface
This interface is invoked after a machine program(s) has been created by PART. The first action performed when

the interface is invoked is to create all the necessary directories and subdirectories needed by a VNC workcell

model. An SQL query of the database is performed to determine the proper machine tool for each setup. The

kinematic model of the machine tools is copied to appropriate directories. Next, another query is performed to

determine the cutting tools to be used. The interface uses the dimensions of the tools stored in the database to

create the required solid models of these tools. The interface then stores the tool models in appropriate directories.

Next the interface asks the user where to place the tools on the machine. With this information, the interface

attaches the solid models of the tools to the correct locations of the machine model. Solid models of the blank and

fixtures, the offset files, and the machine program are copied to the appropriate directories. The user is asked to

confirm the location of the part, fixtures, and offset data. Finally, the interface loads the fixtures and blank onto the
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machine tool model and the fully loaded workcell is saved to disk. The user can then execute the machine model

for each setup and verify the process plans.

3.3 Using the IMW
In a typical design cycle engineers create a solid model of the proposed part and the blank it is to be machined from

on a CAD system. A bounding representation description of the part and blank in a STEP file is used as the basic

input to the IMW.

Once the models have been imported into PART, the user enters the appropriate tolerances and surface finish for

the part. These can be general tolerances for the whole model or specific tolerances on a face of any feature in the

model. PART supports standard methods, such as geometric tolerancing, to enter this information. After the

tolerances have been defined, a product is defined consisting of the desired part with tolerances defined, the CAD

model of the blank, and the desired material.

The process planning performed by the IMW relies upon manufacturing features as the primary description of the

product. A manufacturing feature is defined to be a volume that should be removed by a series of machining

operations. PART defines two types of features:

l Atomic features are elementary shapes that can be described using a predefined fixed set of parameters;

l Compound features group horizontally touching, intersecting, or partially overlapping atomic features.

PART reads the geometry files of the part and blank and automatically identifies all the atomic and compound

features. The parametric information about these features is stored in the database. Finally, PART determines and

stores all possible machining directions for the features. However, PART allows the user to edit the results.

At this point, the user can obtain a rough cut estimate of the cost of the part. By invoking the Cost Advantage

translator, all the pertinent information about the features in the database is collected into a cost note for Cost

Advantage. In the cost note, all geometrically identical features are grouped together as a single feature class plus

a replication factor. The cost model in Cost Advantage combines this parametric data with a simplistic machining

knowledge base to estimate the cost of each feature class. The user can then enter other cost items such as

finishing, heat treating, inspection, and overhead to the cost note. An analysis of the cost note can be performed

and recommendations made that will reduce the costs. The rough cost estimate can also be used to generate quotes

to produce the part, as required. When the design and manufacturing engineers are satisfied with the rough cost

estimate, detail process planning can begin.

The process planner now starts the development of the detailed operations plan for the part. The first step in this

stage is to determine the required setups. PART calculates the setups based on the machine axis configuration (e.g.

the degrees of freedom, whether the degree of freedom is in table or tool head, and the accuracy of each axes).

PART identifies the minimum number of setups required to machine all the features and associate each feature with

a proposed setup. PART selects the best direction to machine each feature to minimize the number of setups.
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Additional setups may be generated if the accuracy of the machine cannot produce the tolerance required for all the

features.

Next, the appropriate machine tool and cutting tools for the part is selected. PART selects the first machine tool in

the database that has the proper axes configuration, can handle the size and weight of the blank, and has the

required accuracy. Once the machine tool has been selected, a tool set with all the defined tools for that machine

tool is selected. The machine and its tool set can also be manually overridden by the user based on availability of

' the machines. The user then places the fixtures to be used. The fixtures are selected from the set of all available

fixtures stored in the database.

Now the machining operations required to create each feature can be determined. PART has a knowledge base of

methods that describe how to create each feature. More than one method can be defined for a given feature. These

methods will be selected based upon a priority system. For example, there are methods to ream, bore and drill a

hole. The drill method is assigned the highest priority since it is the least expensive operation. For an elementary

method to be selected a set of well defined conditions have to be satisfied. So if the position tolerance on a hole is

too tight to be attained by drilling, then the next highest priority method is selected, say boring. Once a method is

found that satisfies all the conditions, the method will determine the needed tooling for the operation and any pre-

existing geometry that is required. For example, to drill a large hole, a pilot hole is required. The pre-existing

geometry is then submitted to PART to be solved. Methods are defined for both atomic and compound features.

Methods for compound features can be used to optimize the machining operations needed to create the complex

features. Next, PART gathers together all the required operations and determines their optimal sequence to

minimize the tool changes, table rotations and the total tool path length. The user can edit the sequence of

operations or the tools to be used.

PART has a knowledge base of the cutting technology based on the cutting operation, cutting tool material and the

part material. Based on this knowledge the cutting conditions (speeds, feeds, and depth of cut) are determined for

each operation. The effect of tool deflection on the tolerance of the feature is also used in these calculations. At this

point the cutter path is determined and is described using the Automatically Programmed Tool (APT) format. PART

shows these tool paths graphically. Finally, PART uses the post processor of the selected machine to generate the

machine programs from the APT files. It also gives as output a list of tools to be used, their position on the tool

holder, setup sketches and list of operations.

At this point, a complete operations plan has been generated for the part. The machine tool, cutting tools and

machine times are precisely known and stored in the database. The user can now augment the cost note in Cost

Advantage with this information. This produces the second, more accurate cost estimate of the part, with a

breakdown in terms of feature classes.

The final step is to verify the machine programs. The Virtual NC interface extracts the machine tool, cutting tools,

raw stock, and fixture information from the database. From this information the translator automatically constructs
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a simulated workcell that can produce the part. The workcell consists of an accurate kinematic model of the machine

tool, the blank fixtured to the machine table, geometric models of all the tooling mounted on the machine, and the

appropriate CNC program for the part. Virtual NC simulates the machining process using these models. VNC will

identify any errors in the machine programs, tool crashes and part gouges. If errors exist, appropriate editing can

be performed in PART.

3.4 Limitations of the IMW
The IMW has been a success. It has created plans for several actual industry -designed parts. However, there are

several limitations:

l The filters used have been designed for the specific software tools. The filters would need to be
completely reconstructed if other tools are to be used in the IMW.

l There is no central repository for the information; each tool maintains its own data. This makes version
control and archiving all the data for a given product difficult.

l There is no provision, except for using a naming/directory convention, for linking the data of all the
individual parts that comprise an assembly.

l PART only generates plans for prismatic parts. There is no support for turned parts in the IMW.

l Because the cost filter is uni-directional any data added to a cost model will be lost the next time the cost
translator is called.

l PART and VNC do not have a common CAD format to store part and fixture models. Nor are there
translators available to convert between the supported CAD formats. Therefore, multiple models of the
parts and fixtures need to be created, stored, and maintained for the two tools.

3.5 Summary
The IMW provides a substantial baseline for the development of the METK. In particular, the IMW has addressed a

number of the problems of integrating manufacturing tools and developed a point-to-point approach to creating

interfaces and translation mechanisms between its components.

However, the IMW has a number of shortcomings. Most relevant to the METK is that the IMW solution is very

specific to the tools being integrated, and does not provide any integration infrastructure that is independent of those

particular tools. As a result, adding new tools, or replacement of existing tools with new ones, involves a significant

amount of work on behalf of the system integrators.

The METK will attempt to build upon the lessons learned from IMW and address a number of issues with respect to

developing an integration infrastructure for manufacturing engineering tools. Such an infrastructure can then be

used as the basis for identifying and defining standards that can make integration of manufacturing engineering

tools more efficient and effective.

Similarly, the architecture of the IMW is closed in the sense that it was designed to ensure that the specific tools

selected for the IMW can be made to operate together in the most pragmatic way. As a result, the IMW architecture
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does not facilitate addition of new capabilities, or the use of the existing capabilities in new ways. This openness to

supporting multiple tools and manufacturing processes is a key requirement for the METK.

In the next section the design approach that will be used for the development of the METK architecture will be

described to provide a basis for understanding the details of the architecture.

4 High Level Design Approach
In developing integrated solutions for the manufacturing engineering community, it is important to establish an

integration approach that is understandable, repeatable, and measurable. In this way the specific integrations that

are attempted by the CAME program can be repeated and improved upon in subsequent work elsewhere.

Hence, in this section previous and current approaches to tool integration are examined, and based on these

examples the approach to tool integration that will be applied in the CAME program is developed. This integration

approach will be especially important in describing the METK architecture as it will guide the selection of integration

services and mechanisms.

4.1 Previous Approaches to Tool Integration
Following is a brief examination of some common architectural approaches toward tool integration. This will give a

flavor of the current state-of-the-practice in the area. Further details of tool integration approaches can be found

elsewhere [4].

The obvious baseline, seen in most manufacturing enterprises, is that no integration is in place. The tools are

acquired individually, and no explicit attempts have been made to integrate them. This is typical when different

departments in the same organization have purchased tools, when managers and engineers have separate

environments, or when different projects assemble their environments with little or no concern for others. Inter-

operation of the tools takes place primarily through manual efforts -- frequent re-entry of data, use of hard copies of

designs and process descriptions, and so on.

In some cases large organizations have spent many millions of dollars developing their own in-house toolkit

environments. As well as the development cost they have the on-going burden of maintenance and upgrade of the

toolkit. While this approach offers greater control of the environment, many companies are regretting this choice as

it diverts large amounts of resources from the main activities of the organization (manufacturing,

telecommunications, or whatever).

Recognizing the need expressed by customers, some vendors are beginning to cooperate with others to develop

collections of tools that are more easily used together. The coalition approach is an attempt by tool vendors to react

to user needs by forming specific alliances with other tool vendors to address a perceived market. Typically the

vendors amend their tools to make them work together in a more consistent way, or develop specific filters and
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translators to convert data from one format to another. The interfaces and protocols they develop may or may not

be made public (usually depending on the size and economic importance of the customer requesting them!).

An approach that is beginning to reach operational practice is the use of a framework product to ease integration.

Two approaches are evident - a database approach as exemplified by use of relational and object -oriented

databases, and a service -oriented message passing approach as seen in the SoftBench(tm) and ToolTalk(tm)

products, and in systems based on the Common Object Request Broker Architecture (CORBA).

The use of these framework products, together with additional standards and interchange formats to agree on the

semantics of the data and events being shared between tools, is an attempt to factor out common services and data

used by the tools and treat them as a separately maintained resource. The potential rewards of this approach are

huge. However, it often requires a significant level of agreement between a collection of vendors, integrators, and

end users - agreements that are difficult to make and reduce flexibility.

In practice, attempts at developing a tool kit environment will be a hybrid of these approaches. Pragmatic reasons

dictate that this is so. For example, in buying tools and framework products from different vendors there are

inevitably different ways that will be more appropriate for connecting them. Legacy tools and data, and the

immaturity of much of the technology, are two more reasons that contribute to this hybrid approach. It seems as

though this will be true for at least the next few years.

Unfortunately, while useful progress has been made, there is still a significant way to go. In particular, the state-of-

the-practice as it is commonly found is not very advanced. Point-to-point integrations of tools and the use of scripts

and filters still predominate. These ad hoc approaches are allowing people to develop and maintain quite large and

complex systems, although often at great cost. The next generation of technology that will help to relieve the burden

of development has been much talked about, but has yet to see serious use. Initiatives such as the CAME program

provide a significant opportunity to investigate these technologies in more detail.

4.2 Integration as a Design Approach
Integrating a set of tools can best be considered as a design or engineering activity. Viewed in this way, tool

integration takes place by:

l designing a toolkit environment with integration in mind;

l matching integration aspects to the needs of an organization;

l making trade-off among costs and benefits of different integration strategies that could be adopted.

This leads to considering a method for tool integration. A major element of this method is matching the technology

to the needs of an organization as expressed in the understanding of their end-user processes. In particular, an

organization will have a goal for their integrated solution that must be met in order for the integration to be deemed

successful. Then, decisions that are made in terms of the approach to integration can be considered in the light of

achieving this goal.
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How should the process of examining the different aspects of the tool integration problem begin? A useful approach

is to separate issues on three different levels: process, end-user service, and mechanism.

The process level consists of the procedures and policies of an organization that must be supported by the

integrated environment. It is these process elements that provide the context (Le., the requirements and constraints)

that determine what functionality is required of the integrated tools, and what coordination will be required between

the tools.

The services level provides a means of describing the main functional components of the integrated tools and the

coordination policies that must be supported. This allows for discussion of the conceptual integration of the

functionality in support of an organization’s process needs. This intermediate level provides a buffer that bridges the

gap between the detailed mechanistic aspects of the components, and the high level needs and constraints of users.

The mechanism level is concerned with the physical characteristics of the available technology- the internal

structure of the tools, the peculiarities of specific framework and infrastructure technology, the ad hoc “glue” that

must be developed, and so on. This level is concerned with making components work together to provide the

required functionality in an efficient and effective way.

One way in which this distinction between process, service, and mechanism is useful is in considering who “owns”

the integration problem. Different aspects of the problem can be considered and evaluated based on where the

primary responsibility for that aspect lies.

At the process level technology consumers have the major role. End-user organizations have in depth knowledge

of their processes and practices, and provide the criteria for establishing the success or failure of an integrated

toolkit environment.

At the services level the technology integrators usually hold the key. They will be familiar with the range of

technology components available in the marketplace, and have a general understanding of an organization’s

process needs. Matching the technology to those needs is their main goal.

At the mechanism level technology producers such as tool vendors have a deep understanding of the innerworkings

of their tools, their relationship with framework products, and so on. Wrapping and adapting tools to make them more

usable, or easier to integrate, can typically best be handled by specialist system integrators with direct support from

the tool vendors themselves.

Identifying and describing these three levels of integration is important because it leads to a method for tool

integration based on describing the required system at each of these three levels. These descriptions provide

documentation which is vital for the validation and evolution of the system. In particular, the decision points

concerning what needs to be done, and how it will be achieved, will inevitably need to be revisited. This leads to an

interactive process where many steps in this method will be revisited and decisions will be changed. By documenting

this process there is the raw material to allow such controlled change to take place, and for decisions concerning

integration of tools to be made within the context of the overall needs, constraints, and goals of an organization.
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4.3 Summary
In this section the current mechanisms available for integrating tools and the approach of considering integration as

a design activity have been described. Combining these ideas produces a method for designing a toolkit

environment to achieve an integrated result. This approach follows the classic design life-cycle of modeling the

current physical situation, abstracting the current logical situation, devising the future logical situation, and then

implementing that in a future physical situation. At each of these steps there are products to produce, and methods

and techniques that facilitate the production of those products.

The CAME program will build on these design ideas in the development of the METK. In particular, the architecture

of the METK will be particularly concerned with ensuring:

l process aspects of the METK are assigned to a separate component of the toolkit to allow different
manufacturing engineering processes to be supported by the METK;

l functional capabilities of the METK are designed as a set of services with well-defined abstract interfaces:

l mechanisms used for implementing the integration infrastructure of the toolkit are sufficiently flexible and
open to allow the addition of new functional components as the METK evolves.

5 The Architecture of the METK
The METK architecture describes how information models, validation methods, and Commercial Off-the-shelf

(COTS) applications are to be integrated to provide a system for the development of machined parts using valid

manufacturing engineering practices. In this section a description of the architecture is provided, followed by more

detailed discussion of some of the major elements of that architecture.

5.1 An Overview of the Architecture of the METK
An architecture has been defined for the METK. This has been produced as a result of examining the design and

implementation of the IMW, and developing an enhanced architecture based on the requirements for a

manufacturing engineering toolkit expressed at the CAME workshops. The basic components of the METK

architecture are illustrated in Figure 2 and briefly described below. Further details of the major components are

provided in the sub-sections that follow.

Figure 2 illustrates that there are the three primary sources of integration in the METK:

l The WorMlow and Product Data Manager- responsible for coordination of all actions with the METK,
and for the management of multiple shared versions of product and process data.

l The Application Programming Interfaces (APls) -a library of operations provided by the COTS tools to
allow access to the major services that will be provided by the METK.

l The Common Data Repository-long-term persistent data that can be archived and used for re-creation
of manufacturing data concerning a part at some future date.

The METK architecture is discussed by considering a typical operation using the METK. End-users of the METK

initially interact with a workflow and product data manager. This is responsible for maintaining business workflow
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models of the manufacturing engineering process being enacted by an organization, and for controlling multiple

versions of the major product data items. Activities being carried out by end-users will be tasks that are represented

in a workflow model within the workflow and product data manager. Additionally, this component records information

on the product design and quality plans. Hence, it acts as the major coordinating agent for all actions that take place

in the METK.
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Figure 2: The Main Components of the METK Architecture

Typically, an end-user working within the workflow and product data manager will request that some action takes

place (e.g., generation of a tool list, update to a routing sheet, etc.). The effect of this will be that the appropriate
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service is requested by the workflow and product data manager through the application programming interface (API)

of the tool that provides that service. An API is essentially a library of operations provided by the tool vendor to allow

external access to internal tool functionality. To integrate tools it is often necessary to write additional code that

converts between each tool’s internal data format, make calls to operations with appropriate parameter information,

and so on. Essentially much of the complexity of building a toolkit is embedded in this code. Hence, understanding

each tool’s API and writing appropriate integration code will be a primary focus of the METK developers.

In making a request via a API, the appropriate tool for that API will need to be executing. At this point the workflow

and product data manager must make a copy of the appropriate version of the product data from its own data store

into the specific data store for that tool. In this way the METK can resolve the problem of ensuring the correct version

of product data is being used. If user interaction is required to carry out the task, the end-user is then positioned

within the executing tool and can interact with the tool.

Once the task is completed the end-user will exit from the tool. At this point the workflow and product data manager

will again take control and make copies of any amended data in its own data store. Appropriate version control

principles will be applied to ensure that the new data becomes the latest version. The end-user will then be

positioned within the workflow and product data manager and can execute further tasks.

The Common Data Repository provides persistent data storage and common access capabilities for reference

information relating to manufacturing. Reference information defines the characteristics of the tools, machines, and

materials which will be used in the manufacturing process. The common interface for accessing reference

information will allow all of the tools which are a part of the METK to base their operation on a common set of data,

which will increase the consistency of, and aid in verifying, the correctness of the information produced by each tool.

Manufacturing information other than reference data is stored by the Workflow and Product Data Manager. It is

responsible for maintaining and providing access to product and process data relating to the manufacturing of

specific products.

The remainder of this section describes the major components of the METK in greater detail. However, while both

the information models for manufacturing data and validation methods may be referenced in the discussion of the

elements of the architecture, specific details about these components are beyond the scope of this paper. The

components of METK which will be discussed are: Workflow and Product Data Management, Data Management,

Application Interfaces, COTS Computer -Aided Manufacturing (CAM) tools, the Reporting and Maintenance module,

and the hardware platform and system software.

5.2 Workflow and Product Data Management
The Workflow and Product Data Manager will act as a central point of control for the development of manufacturing

information for the production of a machined part. It will provide mechanisms for:

l the definition, configuration management, and version control of the manufacturing engineering data for
a part that is to be produced:
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l the definition of a workflow plan for the development of the manufacturing engineering data for a part. The
workflow plan defines all of the processes that are needed to move a engineering data from the
conceptual stage until the data has been verified as ready to release to production. It is a specific instance
of the METK workflow model, modified for the specific characteristics of the part to be produced:

l maintaining status information on the current state of each component of the manufacturing engineering
data such as NC programs, tooling lists, CAD files, etc.;

l controlling access to and recording use of all applications that are integrated into METK;

l specifying and recording information necessary to support the verification models being developed for
METK.

As stated previously, efforts are currently underway for the definition of workflow and verification models. This

application is the vehicle through which the processes and procedures defined for the models are enforced in the

METK system.

5.3 Data Management in METK
A key component of the METK is the common data repository. This will conceptually consist of a set of databases,

each recording information on a different aspect of the METK. Such an arrangement is often called a federated

database (FDB). The METK federated database will be used to hold information that changes infrequently and is

common to two or more applications in the toolset. A federated database is a database system constructed by

building a common interface to a collection of existing databases [15]. In the following discussion two views of the

federated database will be distinguished: issues relating to the federated database as a whole will be referred to as

“global”, as in “global schema”, while issues relating to one of the component databases of the federated database

will be referred to as “local”, as in “local schema”.

Following is an examination of the data the FDB will contain, the organization of data in the FDB, the mechanisms

for accessing database information, and the reason for choosing an FDB architecture.

5.3.1 Local Databases of the Federated Database
The local databases that METK FDB comprise include:

l a tools database which contains the physical and operational characteristics of all tools and tool
assemblies that can be used by METK applications for specifying manufacturing processes:

l a machine database which contains the physical and operational characteristics of all machines that can
be used by METK applications for specifying manufacturing processes;

l a fixture database which contains physical and operational characteristics of all fixtures that can be used
by METK applications for specifying manufacturing processes;

l a material database which contains physical characteristics of all materials that can be used by METK
applications for specifying manufacturing processes:

l a process reference database which contains information on how different manufacturing processes
should be carried out such as feature recognition and classification, operation selection, etc.;
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l an archive database which contains snapshots of information pertaining to a manufacturing engineering
data package, stored together and in a compressed format, such that the state of the manufacturing
engineering data package at the time of the snapshot could be restored from the information in the
snapshot.

5.3.2 Database Organization
With the exception of the archive database, the information in these databases is highly interrelated. An effort

concurrent with the development of the METK architecture is underway to define the information models for each of

the classes of data that make up the local databases. The local database schemas for each of these databases will

be based on those information models. A global database schema will also be developed that provides a logical

view of all of the data in the FDB.

The structure of the information to be contained in the local databases and the nature of the relationships between

information units in different local databases is highly complex. While flat file or a relational database could be used

for storing these complex relationships, the METK will explore the hypothesis that the problems associated with

inter- and intra-database complexity can best be mitigated through using an object -oriented database (OODB).

There has been a significant amount of research showing the advantages of using an OODB for persistent storage

of data related to engineering (e.g., [13, 31). That work describes how an OODB can be used not only for the local

database schemas, but also for the global database schema representing all data in the system. In this way the

relationships of the global schema are not logical, but are real relationships which can be encoded into and enforced

by the database. This approach will be explored in detail in the METK.

5.3.3 Database Access
Access to the data in the FDB will be through a common data interface (CDI). The CDI provides encapsulation of

many of the details related to the federated databases. Encapsulation allows for modifying the implementation of

the local databases and database relationships in ways that are advantageous to the METK system. Clients will

access the services provided by the interface for common data definition and data manipulation functions. Also if it

is determined that several applications will frequently need to perform the same complex access, the CDl’s interface

can be extended to provide a single point of access to that function.

5.3.4 The Need for a Federation
Since the global database schema can be directly supported by the OODB that will be used to contain the data, the

services of the CDI will be implemented in terms of the underlying data definition language (DDL) and data

manipulation language (DML) provided by the OODB. It is anticipated that many of the services can be implemented

simply as pass through functions. The structure of the FDB can be characterized as an OODB with an interface

program to provide a somewhat thin layer of encapsulation. The need for the CDI may seem minimal when the

underlying capabilities of the OODB can provide for all of METK‘s data storage needs. This might be true given the

initial METK architectural requirements, but it is highly probable that as the METK project progresses data storage

and access requirements will be expanded to support additional classes of data. Separating the interface for
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accessing data from its implementation makes the architecture more robust in that it will be resilient to the inevitable

changes that occur as systems evolve.

5.4 Application Interfaces
Application Programming Interfaces (APls), also called Application interfaces, are software components that

provide access to the services needed to implement the process capabilities. These services are implemented

through the integration of system mechanisms. In section 4.2 an approach was discussed for designing an

integrated system by logically partitioning system capabilities into 3 levels called process, service, and mechanism.

The mechanism level consists of the COTS applications, operating system tools, and utilities that provide the low

level functionality of the system. The process level provides the means for defining and enforcing the domain

specific practices, procedures, and policies of the organization that is to use the system. The service level is the

means through which the processes are implemented using the mechanisms. Application interfaces provide the

service level for METK.

Following is an examination of the architecture of an application interface, the services that will be supported, some

reasons for including application interfaces in the METK architecture, and some of the advantages that application

interfaces provide to the METK architecture.

5.4.1 Application Interface Specifications and Implementations
There are two logical parts to an application interface, the interface specification and the interface implementation.

The interface specification provides functions and procedures that are invoked by architectural elements of METK.

This includes COTS CAM applications, the workflow and product data manager, and other application interfaces.

Procedure invocation is the means through which service level capabilities are accessed by the process level. The

interface implementation is the collection of implementations of all of the procedures and functions in the interface

definition. The relationship of the interface specification to the interface implementation is analogous to the

relationship of an Ada package specification to an Ada package body, or a C++ class definition to the class member

and class method implementations. The procedure and function implementations will make use a combination of

UNIX scripts, UNIX utilities, custom written C/C++ programs, embedded SQL, and any functionality provided by

APls of the COTS CAM applications in METK.

5.4.2 Services Provided by Application Interfaces
An application interface component will be associated with each COTS CAM application in METK. It will provide

some services that are common to all application interfaces and some services specific to interfacing with its

associated COTS CAM application. The complexity of the capabilities provided by different services will vary greatly.

Some services will be simple, such as “Copy File xxx” or “Delete File xxx.” Some will be of a medium complexity,

such as “Convert file xxx to aaa format.” But other services may be very complex, such as “Create Process Plan for

part ‘abcl23.” Because the information models, worMlow model, and list of COTS CAM tools for the METK are

being developed concurrently with the definition of the METK architecture, it is not possible at this time to state a
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definitive list of services that are to be provided by the application interfaces. The best that can be said is that the

services provided will be sufficient to support the required functionality defined by the processes of the process level.

Furthermore the list of services provided by the application interfaces is required to be extensible to support the

definition of new policies, procedures, and practices in the process level.

5.4.3 Adaptability and Extensibility using Application Interfaces
Traditional system analysis and design often proceeds based on assumptions that the system requirements are well

understood and as a result that changes to the system will be minimal [14]. The ongoing collaborative nature of

METK‘s requirement specification effort and the ongoing concurrent development of METK‘s information and

workflow models makes such assumptions false. Hence, a key architectural motivation was to make the METK

architecture as resilient to change and as open to extension as possible. The flexibility afforded to METK through

the use of application interfaces should allow for integrating existing COTS CAM tools while minimizing the impact

of each tool’s unique operational and architectural idiosyncrasies.

More specifically, application interfaces provide many advantages to the METK architecture:

l Support separation of concerns and information hiding. Clients of the services in an application interface
need not be concerned with how those services are provided. The workflow model can be developed
based on the services that are provided and not need detailed knowledge of application internals.

l Support enhanced access to each application’s functionality. The services of an application interface
provide a common interface to each application’s processing capabilities which can be accessed by many
application interfaces.

l Support enhanced adaptability/extensibility of COTS applications. Through its services, application
interfaces allow a COTS CAM application’s native interface to be extended and adapted for use in the
METK system.

l Provide for straightforward extension of METK toolset, Adding a new kind of tool to METK‘s toolset can
be accomplished through defining the services that are to be provided by the new tool’s application
interface and then implementing the services using the new tool.

l Provide for tool substitutability. A new tool which provides processing capabilities similar to those
provided by an existing tool in METK‘s toolset can replace the existing tool by implementing the existing
application interface’s services using the new tool.

l Support network deployment. Although METK is now slated for deployment on a single workstation,
network deployment could be accomplished through implementing the application interface’s services
using remote procedure call (RPC) or more sophisticated mechanisms for achieving distribution such as
the Common Object Request Broker Architecture (CORBA).

l Support incorporating future computer integrated manufacturing research innovations. Much research
into computer aided manufacturing is being done which might, at some future time, be advantageous to
include in METK. Areas such as distributed knowledge representation (data is not stored commonly but
is distributed throughout the system), distributed control logic (workflow and PDM capabilities are
distributed throughout the system), and intelligent agents (data and control logic distributed throughout
the system) could provide interesting enhancements to METK’s capabilities. Application interfaces would
provide a starting point for incorporating these research ideas.
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5.5 COTS CAM Tools
The integration of COTS CAM tools is the major focus of the METK project. Manufacturing engineers are currently

using these tools to help run their operations, but there is little integration between the tools and it is difficult to

replace a tool with another that provides similar capabilities. A candidate list of tools to be integrated as part of the

METK has been chosen, but the architecture should not be directly based on the capabilities of the chosen tools.

The architecture should treat tools to be included in METK in a generic way. Focusing on the processing capabilities

that a tool provides will lessen the chance that shortcomings of a chosen tool will unduly influence the architecture.

Following are descriptions of processing capabilities required of the COTS tools that will be integrated as part of

METK. In some cases more than one tool will be needed to provide the desired functionality.

The METK system will include COTS tools that provide the capability of performing the following manufacturing

engineering functions:

l Computer Aided Design (CAD):

l Process planning;

l NC Program Verification:

l Shop floor Process Verification.

A brief description of each of these functions and key inputs and outputs follows.

5.5.1 Computer Aided Design(CAD)
This function provides for the development of geometric models and the specification of the physical characteristics

of a part that is going to be manufactured, and of the machines, tools, tool assemblies, and fixtures that will be used

in the manufacturing process. The data generated may be used as an input to other functions and therefore the tool

should produce its output in a standard CAD format.

5.5.2 Process planning
This function will be used to produce reports which define how a part is to be produced. These reports include tooling

lists, operation plans, NC programs, and routings. Tooling lists define the tools needed to produce the part.

Operation plans define what each machine will do to produce a part. NC programs define operations for numerical

controlled machines. Routings define the movement from machine to machine of a part being produced. A key input

to achieve this is a CAD model describing the product to be produced.

5.5.3 NC Program Verification
This function will take a NC program and verify that it can be used to enable a NC machine to perform the specified

operations that transforms a part from one state to another state. CAD models for the machine and for each tool and

fixture used in the process may be required as input. Also CAD models for the part at the beginning state, ending

state and each intermediate state may be required. Both reports and a visual presentation of the NC machine

operating to perform the operation may be produced to satisfy verification.
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5.5.4 Shop Floor Processing Verification
This function will verify that the routing of the part through machines in the shop floor will produce the desired part.

CAD models for the machines, tools, fixtures, and the part at each stage of its manufacture may be required. Again,

both reports and a visual presentation of the parts flow through a representation of the shop floor may be produced

to satisfy verification.

5.6 Reporting and Maintenance Module
Each of the components being integrated as part of METK has the capability of generating various reports relating

the processing it does and the data that it generates. Since METK is to provide an integrated system, there is a need

for reports to be generated which are made of information from several of these tools and from the federated

database. The Reporting and Maintenance Module will provide the capability to define and generate such reports.

Also some basic querying and maintenance capabilities for end-users to interact with the federated database will be

provided.

5.7 Hardware Platform and System Software
The METK system will execute on a Silicon Graphics ONYX Extreme(tm) workstation. A workstation of this class is

needed because many of the COTS tools to be integrated require a high performance workstation. Fortunately, all

tools in the current toolset support this platform.

The operating system is the IRlX(tm) 5.3 operating system, a UNlX variant for Silicon Graphics workstations. Future

plans for the METK system may include porting it to other platforms, and using a UNlX variant should facilitate

porting. It is expected any new software modules developed for METK, or customizations to COTS tools, will not be

carried out at the system programming level nor require operating system kernel extensions.

Any new software modules developed for METK that require a graphical user interface (GUI) must be developed in

a platform independent way. This can be accomplished through the use of commercially available cross-platform

libraries, which will also facilitate porting to other hardware platforms.

5.8 Summary
In this section an overview of the architectural elements of METK has been presented. Some of the project goals,

stated requirements, and derived requirements were examined for their impact on the architecture. The key factor

influencing the architecture is that it must be adaptable to facilitate change, since the project is being run as a

collaborative effort with inter-dependent parts of the project being developed concurrently. The application

interfaces and federated database should provide a firm enough architectural basis for the project to proceed and

provide the flexibility necessary for the METK to evolve.
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6 Commentary
The design, implementation, and adoption of the METK raises a number of important issues with respect to

integrated manufacturing engineering support. In this section we examine a number of these issues, in each case

describing the problem being faced and the approach we are taking.

6.1 Working with COTS Product Vendors
The primary inhibitor to the integration of COTS products is the fact that the COTS products themselves are not

constructed with their future integration needs in mind. As a result, COTS products must be carefully examined in

terms of various characteristics that increase the likelihood that they can be used in combination [15]. Hence, an

important outcome of the CAME program as a whole, and the METK in particular, is to work with software vendors

to encourage them to make amendments to their tools to facilitate COTS integration.

From a software vendor perspective, however, making major modifications to their products to aid integration is

typically a hard sell. Most of these vendors are relatively small organizations with many competing demands on their

resources, with the result that their priorities are usually focused on tasks associated with their current and

immediate sales: fixing urgent bugs, adding new user features, optimizing system performance, porting to popular

operating systems and hardware plafforms, etc.

While recognizing the difficulty of this task, the CAME program believes it is in a good position to affect the COTS

product vendors. This is a result of a number of factors.

First, the CAME program has the backing of a strong consortium of manufacturing organizations in government,

industry, and academe. This raises the prospect that the vendors supporting the CAME work and its

recommendations will have an eager market ready to accept their products.

Second, the CAME program is taking place within the context of the National Institute of Standards and Technology

(NIST). NIST has an important role within both government and industry, and has been instrumental in developing,

supporting, and introducing a wide range of standards and technologies into widespread commercial use.

Third, the development of the METK will provide a realistic demonstration of capabilities to the COTS product

vendors. This demonstration can act as a prototype of future capabilities to focus design decisions, and can be used

as the basis of requirements elicitation from potential customers.

6.2 Adoption Issues
Regardless of the technical qualities of the METK, it is vital that the technology has a realistic adoption path for it to

be acceptable to practicing manufacturing engineers. Many attempts at developing technology improvements have

failed due to the lack of such considerations.
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Technology transition issues have been an important concern of the CAME program. The intent is that the METK is

provided as a complete, packed prototype that will be installed a a number of organizations for trial use. To assist

in this effort a number of important steps will be taken:

l produce the METK as a stand-alone system on a single Silicon Graphics Onyx machine, and provide the
complete system of software and hardware to an organization for a trial period lasting several weeks;

l encode a range of actual part designs in the METK that are applicable to the organizations - the task of
identifying, encoding, and recording these part designs is already underway:

l develop a range of support materials (e.g., user manuals, training guides, etc.) that will accompany the
METK;

l consider the practicality of providing a knowledgeable system administrator on-site with the METK at
each trial installation.

It is expected that further adoption steps will be decided in the coming months.

6.3 Balancing Short-term vs. Long-term Goals
The goals of the CAME program are very ambitious. In particular, in the development of the METK we recognize a

number of goals in which potential areas of conflict may arise. It is important to recognize these and define

approaches that reduce the risk of that conflict.

One source for potential problems is in the relationship between the short-term goals of building a demonstration

system based on current COTS product technology, and the long-term goals of creating standards and interfaces

that influence future COTS products. For example, in prioritizing costs and resources, decisions must be made as

to how much effort should be devoted to the immediate activity of hand-crafting, specific integration solutions for the

initial set of tools as opposed to the more long-term activity of creating generalized integration solutions that may be

appropriate to a wider selection of COTS products.

It is not possible to take a single approach to address such conflicts (e.g., to assert a fixed set of priorities). Rather,

such conflicts must be resolved individually as they arise. For example, in the case of specific versus general

integration solutions a mixed approach is being pursued. On the one hand, substantial use is being made of the

existing IMW prototype, with plans to improve and enhance its capabilities. On the other hand discussions are taking

place with COTS product vendors to define data schemas that can be used as the basis for a more general approach

to data sharing among a range of manufacturing engineering products.

7 Summary and Conclusions
Integrating manufacturing engineering tools is a complex task requiring a great deal of resources and effort. This

paper has described one large program that is directed at this challenge. It involves a consortia of government,

industry, and academe, and is aimed at developing practical techniques, standards, and interfaces that will enable

integrated manufacturing engineering toolkits to be developed in a predictable, cost-effective manner. Key concerns
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being addressed include support for flexibility and adaptability of the toolkit through an architecture that clearly

separates process, service and mechanism aspects.

The program is facing a number of technical, organizational, and political challenges in carrying out its work:

l Technically There are many issues in the design and implementation of the METK that must be
addressed in building a substantial demonstration that can be used to convince potential users of the
value of integrated manufacturing engineering system;

l Organizationally The different strengths of the various organizations must be harnessed to ensure
measured progress is being achieved in a reasonable timescale;

l Politically The individual needs of the government, industrial, and academic organizations must be
balanced to ensure that widely applicable results are achieved that can be readily transitioned into off-
the- shelf products while addressing the interesting technical challenges that advance the state-of-the-art.

Thus far the program is making steady progress toward its goals. A prototype METK has been developed and has

been demonstrated to members of the consortia. Many essential requirements have still to be addressed, and

further enhancements of the METK are planned.

Progress has also been made in the development of standard data schemas for integrating manufacturing

engineering tools. Substantial input to these data schemas from tool vendors, system integrators, and end-user

organizations provide the promise that such schemas will achieve relatively wide-scale acceptance. Drafts of these

schemas are under review and will be revised based on further feedback from the CAME consortia members.
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