
REACTIVE SCHEDULING SYSTEM IMPLEMENTATIONS USING A SIMULATED SHOP
FLOOR

FRANK RIDDICK
Manufacturing Engineering Laboratory

National Institute of Standards and Technology
Gaithersburg, Maryland USA

ABSTRACT

Developing approaches to integrating manufacturing
applications is important for increasing manufacturing
productivity. A reactive scheduling system architecture
has been developed that defines how to integrate
scheduling technology with manufacturing shop floor
applications. Prototype implementations based on this
architecture have been built using a simulation of a shop
floor instead of a real shop floor. A composite
representation of commonly available simulator
technology is used as a basis for describing the common
approach used for several prototype implementations.

Keywords: Scheduling, Discrete-Event Simulation,
Manufacturing, Integration

INTRODUCTION

Enhancing manufacturing capability through the
introduction of integrated manufacturing applications has
proven to be a daunting task. While individual
manufacturing applications now provide a vast array of
powerful capabilities, they often become “islands of
information” within an enterprise. This leads to vast
storehouses of important information isolated because
they cannot communicate or exchange this information
with other applications. Many businesses have attempted
to overcome this problem by implementing custom, point-
to-point integration solutions. Such solutions have many
negative characteristics. They are costly to implement,
difficult to maintain, dependent on proprietary
technologies, and difficult to integrate with other
applications in the enterprise. Increasing manufacturing
efficiency and production capability with integrated
manufacturing applications requires a more flexible and
cost-effective integration approach. Government,
academia, hardware and software vendors, and
manufacturing application customers must work together
to develop such an approach.

At the National Institute of Standards and
Technology (NIST), there is a program that seeks to
address some of the problems associated with integrating
manufacturing applications. The Systems Integration for
Manufacturing Applications (SIMA) program is working
with U.S. industry to develop potential information
exchange and interface protocol standard solutions to

manufacturing integration problems, and to foster the
adoption of these solutions by manufacturing enterprises
[1]. Some of the objectives of this program are to develop
models, interfaces, techniques, and prototypes for
integrating production system engineering, production
management, simulated production facilities, and product
data management systems with each other and with other
manufacturing applications and support systems.
Towards this end, a project is underway that seeks to
develop methods for effectively integrating scheduling
applications with shop floor operations. In this project,
information models, generic interface specifications, and
methods for describing shop floor entities and
manufacturing processes are being developed. Also,
significant events that modify those entities and processes
during production are being defined.

The approach taken in this research is to develop a
reactive scheduling system testbed that integrates
commercially available scheduling technology with other
shop floor applications. In a typical manufacturing
scenario where a shop floor scheduling application is
used, start and finish times for all shop floor operations
are scheduled using the scheduling software. Most
scheduling application vendors provide user controllable
parameters that allow for schedule optimization with
respect to minimizing work-in-progress, lateness, etc.
The schedule information is then transferred to some form
of shop floor controller. Production on the shop floor
then proceeds according to the schedule. Once the
schedule has been put into operation, events often happen
which may “break” the optimization. After such events,
production continues in an inefficient manner. This is
unfortunate because scheduling applications typically
have the capability to produce schedules that can
effectively account for such events, but usually there is no
mechanism for communicating the necessary information
about those events back to the scheduling application.

With reactive scheduling, data about important events
that occur during the execution of the schedule by the
shop floor is collected. Mechanisms for updating the
scheduling application’s data with this information are
implemented. Once the scheduler’s data has been made
up-to-date with respect to the current state of shop floor
operations, a new schedule can be created that accounts
for the production inefficiencies. The essential feature of

systems designed in this way is the ability to produce, and
put into production, schedules that are based on the
current state of manufacturing operations.

Several prototypes of reactive schedule systems
based on these principles have been developed at NIST.
These prototypes use a discrete-event simulation of shop
floor operations. Through the use of a simulated shop
floor, research using the reactive scheduling concept can
be carried out with many different shop floor
configurations without the expense of building,
modifying, and maintaining a dedicated real shop floor.

In this paper, a reactive scheduling system in which a
simulator executes manufacturing operations as directed
by a schedule is discussed. First, a description of the
conceptual entities necessary for understanding shop floor
operations is presented. This will include a description of
the status messages that define changes in the state of
those entities. Next, the conceptual description of a
reactive scheduling system is presented. Following that
will be a more detailed examination of the system
component that encapsulates the shop floor. Next, the
modifications necessary to implement the simulated shop
floor are presented. The modifications are discussed in
terms of a “generalized” simulator, which is a composite
description of the capabilities of several of the simulators
used in building reactive scheduling system prototypes.
The paper concludes with a brief summary.

Factory Entities and Status Messages

The goals of a reactive scheduling system may be
characterized as: to produce a feasible initial schedule that
is suitable to be used in production; to monitor shop floor
status as it changes during the course of production; to use
current shop floor status to assess the effectiveness of the
schedule; and to react to changes in the shop floor
environment by producing an improved schedule based
on current shop floor status. A salient feature of this
statement of goals is the concept of shop floor status.
Shop floor status is the collective state of all of the
essential shop floor entities that are being affected by
shop floor operations. In a reactive scheduling system,
the shop floor entities for which status must be tracked are
of four types: loads, resources, buffers, and materials.

Loads represent the groups of parts that are being
transformed by shop floor operations into finished
products. Each load has attributes whose values define its
characteristics. These characteristics include a unique
identifier, the planned start and due date, the related
product, the current job step being executed, the starting
number of pieces, and the current and previous processing
state for the load. The processing state for the load,
called the load status, defines whether a load has started
processing a particular job step, has been held or
interrupted because of a production problem, or has
completed all of its processing.

Resources represent the machines, operators, tools,
and fixtures necessary to carry out production on the shop

floor. Each resource has attributes whose values define its
characteristics. These characteristics include a unique
identifier, the load currently being processed, the amount
of time the resource has been in use since its last
maintenance event, the current setup, and the current and
previous processing state for the resource. The
processing state for the resource, called the resource
status, defines whether a resource is available, busy, in
preventive maintenance, broken, undergoing a setup or
tear down process, or not scheduled to do any processing
during this work shift.

Buffers represent locations in a production facility
where unfinished loads are temporarily stored. Each
buffer has attributes that define a unique identifier for the
buffer and a list of the loads contained in the buffer.

Materials represent quantities of substances that are
not associated with loads but are required for and are
consumed during manufacturing operations. Examples of
materials are gallons of paint or a quantity of loose 1-inch
flat head screws. Each material has attributes that define
a unique identifier for the material and the quantity of the
material.

Loads, resources, buffers, and materials define a
minimal set of factory entities useful for describing the
current state of production on the shop floor. They are
not intended to exhaustively describe all aspects of
factory operations, but to provide a common conceptual
model of the important elements of a shop floor that is
sufficient to allow the communication of important
production related events to the scheduler. A more in-
depth discussion of the attributes associated with factory
entities can be found in [2].

To facilitate the communication of changes to the
factory entities, status messages have been defined.
These messages represent the information necessary for
the creation, modification, or destruction of each of the
different factory entities. Each message contains
information that associates it with a particular factory
entity and defines a new state for the associated factory
entity. Manufacturing applications that use the factory
entity definitions as a basis for understanding the state of
the shop floor can use similar status messages to keep
their representation of shop floor operations up-to-date.
For a more in-depth discussion of status messages and
how they define state transitions on the factory entities
see [3].

While information models for four factory entities
and twelve status messages have been defined, the project
currently focuses on the load and machine resource
factory entities and the six status messages that define
transitions on them. The remainder of the paper only
addresses issues related to these factory entities and status
messages.

The Conceptual Reactive Scheduling System

To accomplish the goals stated in the previous
section, the functionality required for such a system has
been partitioned into six subsystems called components.
Each component has specific responsibilities and
coordinates with the other components to accomplish its
goals and the goals of the system. Figure 1 shows the
components and the inter-component data flow of a
reactive scheduling system. Below is a brief discussion of
the functional responsibilities of each component.

The Scheduler takes in order information and
produces schedules that are executed on the shop floor.
Note that in the lexicon of the reactive scheduling system,
an order is just a group of one or more loads related by a
common order identifier. Any other information that
might commonly be associated with order, such as
customer or cost related information, is beyond the scope
of this discussion. Before producing schedules, the
Scheduler is responsible for gathering current information
about the state of operations on the shop floor so that it
can make informed decisions when producing a new
schedule. The output of the scheduling process is a new
schedule and a list of orders upon which the schedule is
based. Each line of the schedule defines the machine
resource, associated load, job step name, and start and
completion times for a production step.

The Dispatcher maintains the information necessary
for shop floor operations and provides it to the shop floor
when requested. Two kinds of information are
maintained. The load release list is a list of information
related to each load that is to be released for production.
Each element of the list contains information necessary
for the shop floor to create a load, the time and date that
the load should be released to production, and whether the
load has been released or has completed all of its
processing. The Dispatcher also maintains information

for each machine resource called a dispatch list. The
dispatch list defines the order in which the jobs associated
with a machine resource are to be processed. A job
defines one step in the processing of a load and contains a
job step, a load identifier, and an order identifier. The
dispatch lists information comes from reordering schedule
information, primarily by resource and secondarily by
start time. The dispatcher is also responsible for merging
order list and schedule information in with the current
load release and dispatch list information when new
information is produced by the Scheduler.

The Executor is the component that represents the
manufacturing capabilities of the system. The shop floor
is a part of this component. The Executor coordinates
with the Dispatcher for job and load release information,
executes the manufacturing operations specified by that
information, and reports on the status of manufacturing
operations to the Status Manager. A detailed discussion
of its makeup and operation will be presented in the next
section.

The Status Manager is responsible for encapsulating
and providing access to a current “snapshot” of the state
of operations of the shop floor. It contains a database of
information about all of the loads and resources that are
being used in production. This database is kept current
by receiving the status messages generated by the
Executor and merging the new information in with the
current data. It also provides an interface for accessing
load and resource information.

The Monitor is responsible for analyzing shop floor
performance. It gathers information from the Status
manager and other components and uses it to determine if
the system is operating within acceptable performance
parameters. If the system is not operating acceptably, it
initiates the creation of a new schedule.

The Conceptual Executor Component

Figure 2 is a Unified Modeling Language (UML) [4]
class diagram of the Executor component of the reactive
scheduling system. The classes in this diagram are meant
to represent typical elements of real manufacturing
environments. The two sub-components of the Executor
are the Shop Floor and the Shop Data Collector (the
names of the sub-components of the Executor in this and
future UML diagrams will be in presented in Italics). The
Shop Data Collector is used to collect information about
the Shop Floor and report it to other components in the
reactive scheduling system. The Shop Floor is the means
by which raw materials are turned into finished products.
Associated with the Shop Floor are Resources and Loads.

Loads are groups of parts that are transformed into
finished products through the processing of Resources.
Resources are the elements of the Shop Floor that
perform processing on the parts contained in Loads.
Although they generally represent machines, Resources
may be used to represent any Shop Floor work area that is
used to transform Loads from an unfinished state of

Scheduler

Dispatcher

Executor

Status
Manager

Status
Database

New Order
Information

Schedule Work Orders

Shop Floor
Status Messages

Current
Shop Floor Status

Monitor

FIGURE 1
REACTIVE SCHEDULING SYSTEM COMPONENTS

processing to a more finished state. Each Resource must
be a part of a Resource Family. These are groups of one
or more Resources with identical capabilities, combined
with an Input Queue to contain Loads awaiting processing
and an Output Queue to contain Loads awaiting transfer
to the next Resource that is to process them. The
important state information about Resources and Loads is
defined by the resource and load entities that were
discussed earlier.

The manufacturing capabilities of the Shop Floor are
defined by the Shop Floor Configuration. Contained in
this collection of information are descriptions of: how
Resources are allocated to Resource Families; the
processing capabilities of each type of Resource; and the
routing of Loads from Resource Family to Resource
Family.

The Shop Foreman represents the people and
software applications that enable the Shop Floor to
perform manufacturing operations based on the schedule
produced by the Scheduler. Its responsibilities include:
communicating with the Dispatcher to get information
about load creation and release; communicating with the
Dispatcher to get the next job that each Resource is to
process; and ensuring that Loads move from Resource
Family to Resource Family according to the routing
specified by the Shop Floor Configuration. It also works
with the Shop Data Collector to communicate the current
status of the Shop Floor to other components in reactive
scheduling system.

In the reactive scheduling system, the elements of the
Executor collaborate with the Dispatcher and Status
Manager components to carry out production according to
the schedule. Each Resource, with the aid of the Shop
Foreman, requests the next job that is to process from the
Dispatcher. If the Load specified by that job has not
arrived at the Resource’s associated Input Queue, the
Resource waits until that Load is available. It does not

attempt to process another Load because that would
undermine the sequencing of jobs defined by the
schedule. The Shop Foreman coordinates the movement
of Loads from Resource to Resource based on a Product
Routing defined in the Shop Floor Configuration. When
important production events occur such as the arrival of a
Load at a Resource Family, the completion of processing
of a Load by a Resource, or the breakdown of a Resource,
the Shop Data Collector creates a status message
describing the event and sends it to the Status Manager.
In this way, production occurs according to the schedule
produced by the Scheduler, and production status
information is reported so that updated schedules may be
produced based on the current state of the shop floor.

The Executor Implementation Using A
Generalized Simulator

The conceptual models of the reactive scheduling
system and the Executor component are meant to be a
guide to building real systems based on the described
concepts. Several prototype implementations of the
Executor were done using different commercially
available discrete-event simulation tools. Following is a
discussion of the Executor implementation based on a
“generalized” simulator. The Generalized Simulator
combines the common functional elements of the
commercial simulators that were used in the project
prototypes. A detailed discussion of an implementation
using a specific simulator can be found in [5].

Figure 3 shows a UML class diagram of an
implementation of the Executor. The most prominent
feature of this implementation is the Generalized
Simulator, which has three main sub-components. The
Simulation Engine provides the capability to perform
discrete-event simulations of manufacturing operations.
The Visualization Engine coordinates with the Simulation
Engine to provide a 2D or 3D visual representation of the
simulated manufacturing operations. In addition, one or
more Integration Mechanisms are provided to allow for
the dynamic introduction of information during
simulation execution. Integration Mechanisms include
the ability to read and write files, communicate over pipes
or sockets, make system calls, or execute programs.

To perform its task, the Simulation Engine requires a
Simulation Model. The Simulation Model describes: the
manufacturing elements that are to be simulated (the
products and resources of the shop); their relationships to
each other (machine A is connected to machine B); and
the standard behaviors that the elements of the simulation
should exhibit given specified circumstances (machine C
processes part A1 for 10 seconds). To enable the
Generalized Simulator to act as a component of the
Executor, the Simulation Model has been extended into
what is called the Enhanced Simulation Model. The
relationship between the Simulation Model and the
Enhanced Simulation Model is described in detail later.FIGURE 2

CONCEPTUAL VIEW OF THE EXECUTOR

 The final element needed for implementing the
Executor is the Communications Manager. It coordinates
with the Integration Mechanisms to implement the
sending and receiving of messages to and from the other
reactive scheduling system components. This
collaboration provides the capabilities needed to
implement the communication requirements of both the
Shop Foreman and the Shop Data Collector of the
conceptual Executor.

The Enhanced Simulation Model

 The Simulation Models that are typically executed
by Simulation Engines do not allow for the
implementation of the complex behaviors needed by the
Executor like status message processing, Dispatcher
driven product creation, and Resource Family processing
of Loads. To implement these behaviors, it was necessary
to enhance the Simulation Model. Figure 4 shows how
the Enhanced Simulation Model is derived from the
Simulation Model. An essential characteristic of the
Simulation Model and the Enhanced Simulation Model is
that they represent a characterization of the common
elements of the input models of several simulation tools.
The modifications therefore are characterizations of
modifications that have been made to the different
simulators represented by Generalized Simulator.

A Simulation Model has several components.
Product Descriptions describe the parts that are to be
produced by the simulated factory resources. Resource
Descriptions describe the factory resources that are to be
used to define the simulated manufacturing facility and to
simulate production. The resources are things like
machines, conveyers, pallets, etc. Logic Descriptions
specify the behaviors of the simulated factory resources.
They define how the manufacturing processes are carried

out by the simulated resources. They are specified as
sequences of pre-defined or user-defined behaviors.
Some form of scripting or programming language is
supplied to allow for this specification. The manner in
which the simulation is initialized may also be modified
by user-defined behaviors. Configuration Data contains
information that relates the Logic Descriptions to the
Resource Descriptions and Product Descriptions.
Information about how parts are to be routed and how the
Shop Floor is to be presented by the Visualization System
are specified here.

The Enhanced Simulation Model is a Simulation
Model in which modifications have been made to each
component to enable the Generalized Simulator to behave
as required by the Executor. To enable the parts defined
in the Product Descriptions to be used as Loads, each part
is augmented with Load Attributes. To enable the factory
resources defined in the Resource Descriptions to behave
as Shop Floor Resources of the Executor, Resource
Attributes are associated with each resource defined in the
Resource Descriptions. The Logic Descriptions are
modified to initialize the Load Attributes and Resource
Attributes, and to keep them updated during simulation
execution. In addition, new Logic Descriptions were
created to define four new kinds of factory resources.
Input Queue and Output Queue Resources coordinate
with machine Resources to implement Resource Families.
The Load Release Resource implements the subset of the
Shop Foreman’s responsibilities related to creating Load
representations. It interacts with the Dispatcher to create
Loads at the appropriate time and to put them into
production. The Transfer Agent Resource implements the
Load Transfer function of the Shop Foreman. It uses
Product Routing information to facilitate the movement
of Loads from Resource Family to Resource Family. It

Enhanced Simulation Model

Simulation Model

Resource
Descriptions

Product
Descriptions

Configuration
Data

Logic
Specifications

Visualization
Data

Load
Attributes

Shop Floor
Configuration

Resource
Attributes

Resource
Logic

Queue
Logic

Initialization
Logic

Transfer
Agent
Logic

Load Release
Logic

FIGURE 4
THE ENHANCED SIMULATION MODEL

FIGURE 3
IMPLEMENTATION VIEW OF THE EXECUTOR

Executor (Implementation View)

Generalized Simulator

Visualization
System

Integration
Mechanisms

Simulation
Engine

Communication
Manager

Enhanced
Simulation

Model

can accomplish this because it is connected to the Input
Queue and Output Queue of all Resource Families in the
Shop Floor. The Product Routing information is available
because the Simulation Model’s Configuration Data has
been augmented with Shop Floor Configuration
information, and new Initialization Logic been added to
provide for loading and accessing that information. With
the Enhanced Simulation Model, Generalized Simulator,
and Communication Manager all of the required
functionality of the Conceptual Executor can be
implemented.

Conclusion

 In this paper, the conceptual architecture for the
reactive scheduling system was presented. An approach
for implementing the shop floor functionality using a
simulated shop floor was described. While the products
of this research must be eventually applied to real
machines doing real production, the use of a simulated
shop floor facilitates a broader examination of the reactive
scheduling concept while the research is in its initial
stages. The description of the implementation is in terms
of a Generalized Simulator, which represents the common
characteristics of the commercially available discrete-
event simulators used to develop prototypes based on this
concept and acts as a guide for future implementations.

Acknowledgments

Work described in this paper was sponsored by the
U.S. Navy Manufacturing Science and Technology
Program and the NIST Systems Integration for
Manufacturing Applications (SIMA) Program. The work
described was funded by the United States Government
and is not subject to copyright.

References

[1] E. Barkmeyer, T. Hopp, M. Pratt, and G. Rinaudot
(Editors), Background Study: Requisite Elements,
Rationale, and Technology Overview for the Systems
Integration for Manufacturing Applications (SIMA)
Program, NISTIR 5662, National Institute of Standards
and Technology, Gaithersburg, MD, 1995.
[2] A. Jones, F. Riddick, and L. Rabelo, Development Of
A Predictive-Reactive Scheduler Using Genetic
Algorithms and Simulation-based Scheduling Software,
Advanced Manufacturing Processes, Systems, and
Technologies Conference Proceedings, AMPST96, 1996,
589 - 598.
[3] F. Riddick and A. Loreau, Models For Integrating
Scheduling And Shop Floor Data collection Systems, 16th
IASTED International Conference on Modelling,
Identification and Control, Innsbruck, Austria, 1997, 276-
279
[4] H. Erikson and M. Penker, UML Toolkit, (New York;
Wiley, 1998)
[5] F. Riddick, Using Simulation As A Proxy For A Real
Shop Floor And Data Collection System, NISTIR 6173,

National Institute of Standards and Technology,
Gaithersburg, MD, 1998.

