
NBSlR 87-3531

USING THE AMRF PART MODEL REPORT

Sanford Ressler

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
National Engineering Laboratory
Center for Manufacturing Engineering
Factory Automation Division
Machine Intelligence Group
Gaithersburg, MD 20899

February 1987

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary
NATIONAL BUREAU OF STANDARDS, Ernest Ambler. Director

Using the AMRF Part hhdel Report
bY

Sanford Ressler
National Bureau of Standards

October 1986

Introduction

The AMRF (Automated Manufacturing Research Facility) Part Model
[Tua,b,86] i s a data format used to represent the information characterizing a
part to be manufactured in the AMRF. The Part Model representation includes
descriptions of a part's geometry, topology, and features. The importance of the
Part Model lies not only in its representational capabilities but also in i ts function
as the primary nlechanism through which AMRF applications communicate
with the AMRF data base [BARK 861. To facilitate the use o f the Part Model
by AMRF applications, a parser has been developed which interprets the Part
Model and transforms it into a set o f data structures. T h i s paper describes,the
use o f the parser and methods for accessing the data structures produced.

The Part Model

The part model report contains several types of information about the part.
There are primarily two types of information in the report: f irst, the geometry
and topology description and second: the functionality o f the part (i.e. tolerance
information). The geometry provides the specific geometric description in
terms of points, curves and surfaces. The topology provides the connectivity of
the geometry in terms of a boundary representation which contains shells,
faces, loops, edges and vertices. The functionality o f the part i s described as
features which refer to faces for use in specifying tolerances. The tolerances
provide information about the accuracy required in the manufacturing
processes. The feature and tolerance information is added via an interactive
graphics system developed at NBS [CLARK 861. T h i s information can
subsequently be used in other AMRF processing systems such as process
planning [BROWN 861, deburring and the inspection workstation.

The format o f the part model report i s a series of nested blocks with
particular data in the blocks. The fi le i s a straight ASCII " flat file " readable by
humans. Blocks always begin with the format /NAME where NAME i s the block

No approval or endorsement of Sun Microsysrems, Silicon Graphics, DEC or AT&T
products by the National Bureau of Standards i s implied.

Page 2

title and end with /END-NAME. The details of the part model report are
discussed in [HOPP 861.

Parsing

Given a part model report, the user (application programmer) must be able
to retrieve specific information from the report and manipulate this infomation.
The f i rs t major step i s to interpret the report and transform it into data which
may be manipulated in the application environment. This step i s called parsing
the report and i s the function of the part model parser. The only function of the
parser i s to treat the report as a source of data and to create a set of initialized
data structures in memory. The use o f these data structures i s up to the
application developer; however, some tools to aid in the manipulation of these
structures have been developed.

The parser has been implemented using Lex[LESK] and YACC[JOHN],
UNIXTM tools which aid in the development o f lexical analysers, compilers and
translators. [" his document i s not intended to describe the usage of Lex or
YACC, the interested reader can refer to the above mentioned references and
an excelant book [SCHR 851 titled "Introduction to Compiler Construction with
UNIX" for a complete description o f these tools.] The BNF description of the
part model in [HOPP 86) was used as the basis for the BNF -like description
which forms the majority of the YACC source. The lower level implementation
language is C. A user o f the part model does not need to understand the
internal functioning of the parser or YACC however one does need to
understand how to use a parser produced by YACC.

Accessing the Parser

In order to include the parser in an application one must call the function
yyparse (1 which i s produced by YACC. This function is the parser and upon
execution it allocates space for the data structures and sets a global pointer to
the head o f the part. By default the parser wi l l look at stdin as the source of
input. To make the parser look at an arbitrary f i le one must open that f i le and
assign yyin as the pointer to that fi le or reopen stdin and associate it with
the file. At present the parser has only been used with C code, however
standard mechanisms for calling C subroutines from other languages wi l l
presumably work.

The parser i s entirely contained in the function yyparseo and this
function must be called by the particular application which will use the parser.
One simply compiles the application source with a library pmparser (Part

L N X is a trademark o f Bell Laboratories.

Model Parser) which contains the parser and a l l utility functions associated
with the parser. For example the following l ine wi l l compile an application with
the parser:

cc -0 application app1icationMain.o applUti1.o applDTFns.0 \
-1pmparser -11 -1yacc

Al l o f the object f i les (applicationMain. 0, applicationutil .o
app1DTFns.o) must include (# include) the file parse.d which contains the
definitions for the data structures created and initialized by the parser. In
addition the f i le containing the main () function must include the fi le parse. h
and al l other object f i le must include the f i le parse.%. The parse.h and
parse. x files respectivly contain the global variable and external declarations
used in the parser and in application code. The fi le app1DTFns.o i s
application specific Dictionary Traversal routines which traverse the parser
data structures and is explained later in th is document.

Data Structures

The key to effective use of the parser i s understanding the data structures.
(See Appendix A for the details of the data structures.) The best way to view
these structures i s as a relatively direct reflection of the part model report
itself. A part in the report i s composed of a header, geometry, topology,
features and functionality blocks. Likewise the P a r t data structure contains
entries for each of these blocks. The data structures (Figure 1) are quite
complex and were written with several goals in mind. First they must be the
repository of the infomation obtained in the parsing and second they must be
manipulable in a variety o f ways. Additionally, the extra complexity o f a
general l i s t structure (Figure 2) was added to allow the writing of generic
routines, which have proved to be a great aid in the development o f real
applications.

?age 3

Model Parser)
with the parser.
the parser:

which contains the parser and a l l utility functions associated
For exampIe the following line wil l compile an application with

cc -0 application app1icationMain.o applUti1.o app1DTFns.o \
-1pmparser -11 -1yacc

Al l o f the object files (applicationMain. 0, applicationutil. o
app1DTFns.o) must include (# include) the file parse.d which contains the
definitions for the data structures created and initialized by the parser. In
addition the f i le containing the m a i n () function must include the file parse.h
and al l other object fi le must include the f i le pars0.x. The parse.h and
parse. X files respectivly contain the global variable and external declarations
used in the parser and in application code. The fi le app1DTFns.o i s
application specific Dictionary Traversal routines which traverse the parser
data structures and is explained later in this document.

Data Structures

The key to effective use of the parser i s understanding the data structures.
(See Appendix A for the details of the data structures.) The best way to view
these structures is as a relatively direct reflection of the part model report
itself. A part in the report i s composed of a header, geometry, topology,
features and functionality blocks. Likewise the P a r t data structure contains
entries for each of these blocks. The data structures (Figure 1) are quite
complex and were written with several goals in mind. First they must be the
repository of the information obtained in the parsing and second they must be
manipulable in a variety o f ways. Additionally, the extra complexity of a
general l i s t structure (Figure 2) was added to allow the writing of generic
routines, which have proved to be a great aid in the development o f real
applications.

Part

FunctionalitvList -

List
1H e a d e n

I Topology 1 1 NextListI

I NexttistI I I

l Surface
Curve
Point
Unitvector

I ' FeatureList

I I NextList I

Figure 1

List

Header

Topology
I I

ShellT-1
I I Edge 1

I Vertex
Geometry

* Surface
Curve
Point
Unitvector

Feature

FunctionaIity

Fields in dotted boxes
are part of a union.

Page 5

When using these data structures in general one must go through one level
of indirection to get to the actual data for a particular structure. For example:

If one wanted to get to the Surface structure, which i s part o f the
Geometry structure, one would use the following C code:

surfp =
Partp->geometryLp ->geometryL ->surfaceLp ->surfaceL;

The C code corresponds to the data flow illustrated in figure 3. (Naming
conventions: variables ending in Lp are pointers to lists, variables ending
inL are List entries.)

List Geometry List Surface
-.Surface +-

.. ! I
...........................

eomet
...........................
...........................
...........................

i...........................

...........................

....

...........................I Figure 3

In English this translates as follows: First start at top with the pointer to
the part, Partp. To get the geometry information we use the geometry
l is t pointer: geometrylp. Next, to get the actual geometry information
from the union field of the list use: geometryl. The geometry structure
i s also a set o f l ists so now get the surface l is t pointer: surfacelp.
Finally get the l i s t union field for the surface with: surfacel.

In practice, these long structure references can be annoying, so a set o f
gloBal variables exists which point to the head of each list. These variables are
set by the parser. All o f these variables end with the suffix HLp (Header of List
pointer). To get to the Surface structure one can simply write:

su r fp = SurfaceHLp ->surfaceL;

Pase 6

Uti l i t ies

In order to aid in the development o f applications which use these data
structures, several utilities have been provided. Additionally, an example
application (Appendix B) i s provided which illustrates the actual usage of the
utilities and the data structures. It i s in the development of utility functions
where the implementation of the general l i s t structure pays off. Generic
routines may be developed which can do a variety o f manipulations on the
structures. The description o f a few of these utilities follows.

Most o f the data associated with the report contain identifiers which are
used as ASCII pointers to data in the report. For example:

In the following section o f a part model report Loopl consists o f four
edges. The connections between the loops and the edges are made
through the identifiers for the edges. To f i id the defiition of Loopl start
looking down the l i s t o f edges which make up Loopl: Edgel, Edge2,
Edge3, and Edge4. The list that i s searched to find each of these edges
is the EdgeId l i s t which i s in the edge block: Edge2, Edge3, Edgel,
Edge5, EdgelO, Edgel1 and Edge4.

/LOOPS
Loopl; Edgel +y Edge2 + ,Edge3 -y Edge4 - .
Loop2; Edge5 +, Edge2 + ,EdgelO Edge11 - .

/END-LOOPS
/EDGES

Edge2; Vertex2, Vertex3 ;Curve2 +.
Edge3; Vertex4; Vertex5 ;Curve3 +.
Edgel ; Vertexl ; Vertex2 ; Curvel +.
EdgeS; Vertex7; Vertexl ;Curve7 + .
EdgelO; VertexS; Vertex9 ;Curve9 +
Edgel1;Vertex3; Vertexl 0 ;Curvel 0 + .
Edge4; Vertexl1; Vertex4 ;Curve5 +.

/END-EDGES

Please note that the names Edge, Loop, Vertex in the identifiers are not
keywords and are used simply for clarity, Foo, froboz, Yomama are al l
valid identifiers.

Page 7

The function FindId searches for data specified by the an id. FindId

takes two arguments, both are pointers to lists. The first i s the list whose id one
wants to find, the second i s the l i s t to search through. I t returns a pointer to a
l i s t which contains the id, or NULL if the id is not found.

/ * generic l i s t I d searcher */
L i s t *
FindId (id l is tp, l is tp)

L i s t *idlistp; /* contains the i d t o look f o r */
L i s t * l is tp; /* the l i s t t o look through */

if (l i s t p == NULL) return (NULL) ;
do

if (0 == s t r a p (idlistp ->id, listp ->id)) {
/*then i t s found */
return (l i s tp);

1
if (listp ->nextLp == NULL) {

/ * couldn’t find it */
return (NULL) ;

} wh i le (l i s tp = listp->nextLp);
1

idlistp: The id in a l ist structure

+ , Edge3 -, Edge4 - .
+ , Edgel 0 -, Edge11 - .

/LOOPS

/END-LOOPS
EDGES

Vertex3 ; Curve2 + .
Vertex5 ;Curve3 + .
Vertex2 ; Curvel + .
Vertexl ; Curve7 + .

Vertex9 ; Curve9 + .
Vertexl 0 ; Curvel 0 + .
Vertex4 : Curve5 + .

Figure 4: FindId’s Arguments
/END-EDG

I
I

I

An example function which uses FindId i s the following function: DTLoop
(The DT stands for dictionary traversal). T h i s function looks down the loop l is t
looking for a particular edge id.

DTLoop (11)
L i s t *ll;
{

L i s t *ep;
L i s t *et;
L i s t *lh;

/ * get a pointer t o the i d we w a n t t o find */
ep = 11->loopL->edgeTagLp;
/ *
* get a po in te r t o t h e head o f
* the l i s t we w i l l search: the head o f
* the loop l i s t
*/

do t
l h = Partp-XopologyLp ->topologyL ->loopLp:

e t = FindId(ep, lh);
if (et != NULL){ / * found an i d */

pr intf ("Ifound the id: %s\n ",et->id) ;
break;

1
/ * w e ' r e a t the end */
if (ep->nextLp = NULL) break;

} w h i l e (ep = ep->nextLp);

Another useful list function i s TrList (traverse list). I t takes two arguments,
the first being a pointer to a l is t and the second a pointer to a function. TrList
executes the function upon each node of the l i s t as it traverses down the list.

Page 9

/* general l i s t t r a v e r s a l utility */
T r L i s t (lp, fn)
L i s t *lp;
char *(* fn) () ; / * po in te r t o a function

returning pointer t o a char
(r e a l l y j u s t a generic po in te r) */

L i s t *tp;
if (lp != NULL) {

tp = lp;
do {

(*fn) (tp); /* execute fn */
if (tp->nextLp = NULL) break;

} wh i le (tp = tp->nextLp);

T h i s has proven quite useful in writing functions which print the contents of
the lists. These printing functions are used to create part model reports after
modifications to the data structures have been made. The following functions
wi l l print the l is ts o f faces contained in the shell data structures.

/ * print a s h e l l l i s t */
P r S h e l l L (l i s t)
L i s t * l i s t ;
I:

printf ("\n %s 'I, l ist - >id);
TrList(1ist - >shellL - >faceIdLp,PrListId);

/* print a l i s t i d */
P r L i s t I d(lp)
L i s t *lp;
{
if(lp->id != NULL)

pr int f (I' %s 'I, lp->id);
e lse

printf ('Inil 'I);

1
The AMRF part model report i s currently in use in the AMRF. Several

utility programs and one major system have been written which use the data
structures described. In particular the Geometry Modeling System makes
extensive use o f the data structures both for reading the part model repxt,

Page 10

adding information to the data structures and then producing a new part model
report. The parser has been ported to a Sun Microsystems workstations,
Silicon Graphics I r i s and DEC Vax. The parser i s available and i s easily ported
to any machine running YACC and Lex.

References

[TUa 861 Tu, J., Hopp, T., "Part Geometry Data in the AMRF",
An overview o f our approach toward modeling and management o f
part geometry data.
NBSIR inpreparation.

Describes an implementation of the AMRF Part Model.
NBSIR inpreparation.

[BARKMEYER 861 Barkmeyer, E., Mitchell, M., Mikkilineni, K., Su, S.,
Lam, H., "An Architecture for Distributed Data Management in
Computer Integrated Manufacturing ", NBSIR 86-3312 Jan 86.

[CLARK 861 Clark, S., Ressler, S., "Geometry Modeling System User's
Guide" Describes functionality and use of the GMS. NBSIR 87-
3508 Jan 87.

[BROWN 861 Brown, P., McLean, C. "Interactive Process Planning in the
AMRF" winter ASME, Anaheim Ca. Dec 1986.

[LESK] M.E. Lesk, E. Schmidt, "Bell Laboratories, Murray Hill New
Jersey, part of UNIX documentation included with a l l UNIX
sys tems.

[JOHN] Stephen C. Johnson, "Yacc - Yet Another Compiler -Compiler ", Bell
Laboratories, Murray Hill, New Jersey, part of UNIX
documentation included with a l l UNIX systems.

[SCHR 851 A. Schreiner, H Friedman, Jr. "Introduction to Compiler
Construction with UNIX" Prentice Hall, Englewood Cliffs, New
Jersey.

Detailed specification o f report format, syntax (BNF) and
semantics.
NBSLR inpreparation.

[Tub 861 TU, J. ,Hopp, T., "Geometry Data Modeling in Smalltalk -80"

[HOPP 861 Hopp, T., "AMRF Database Report Format: Part Model ",

I*
Data Structures for Geometry Display and Traversal

Sandy Ressler May 86

The data structures described below are creeated 5y the flat f i le
parser which mallocs space for these structures and f i l l s in the data
as i t parses.

The fundamental data structure i s a l ist (struct list) which
contains a union of pointers to most other data types. This in
combination with a l i s t type identifier enables the creation of
generic l ist manipulation and id searching functions, which work
with all the various data types.
*I

/*************** ** Naming Conventions ******* *********/
/* Names ending in D are structures which contain real data
*as opposed to lists.
* Names ending in Lp arc List pointers
* Names ending L are l i s t entries
*I

/* al l of the types of lists, used to enable congtruction of
* generic l ist manipulation routines
*I

enurn ListType (id, tag, sense, topology, geometry, shell, face, loop,
edge, vertex, surface, curve, point, unitvector,
tolerance, drf,datum, datumfeature, feature, faatr,
ftratrval, func, modifier, header };

/* The #defines below refer to the union entries of a struct list
* and are merely a convienient short hand notation.
"/

#define sense
#define topologyL
#define geometryL
#define shellL
#define faceL
#define loopL
#define edgeL
#define vertexL
#define surfaceL
#define curveL

list-union.LU-sense
list-union.tp
list-union.@
list-union.sp
list-union. fp
list-union.lp
list-union.ep
list-union.vp
list-union.surp
list-union.cp

Appendix A: Data Strnctures

#define pointL
#define unitvec torL
#define featureL
#define ftratrL
#define ftratrvalL
#define funcL
#define drfL
#define datumL
#define datumfeatureL
#define toleranceL
#define modifierL
#define headerL
#define UniKey

list-union.pp
list-union.up
list-union. featp
l i st-union.fap
list-union. favp
list-union.funcp
list-union.drfp
list-union.dp
list-union.df$
list-union. tolp
list-union.modp
list-union. hp
appl-data.ke y

S t r U C t l i s t {
char id[80];
enum ListType ltype;
struct l ist *nextLp;
S t N C t {

long
1 appldata;,
union (

int LU-sense;
struct header
S t r u C t topology
struct geometry
struct shell
struct face
StTuCt loop
struct edge
struct vertex
struct surface
struct curve
StrUCt point
struct unitvector
struct feature
struct ftratr
struct ftratrval
struct func
S t r u C t drf
s m c t datum
struct datumfeature
struct tolerance
struct modifier

l i st-union;

key;

*hp;
*p;
*a;
"sp;
*fp;
'1p;
*ep;
*vp;
* s q ;
"cp;
*PP;
*up;
*featp;
*fap;
*favp;
*funcp;
*q;
*dp;
*dfp;
*tolp;
*modp;

typedef struct list List;

S t ruC t part (
struct l i s t
s m c t l i s t
S r n l C t l i s t
struct l is t
StrLlCt l i s t

1;
typedef struct part Part;

*headerentryLp;

*geometryLp;
*featurelp;
*funcLp;

*topologyLp;

enum HeaderType (par-name, drawing-number, designer, gt];

struct string (

1;
char cs[80];

smxt header {
enum HeaderType
StrUCt string

1;
typedef struct header Header;

struct func (
S t l u C t l i s t
struct l i s t
S t r u C t l is t

1;
typedef struct func Func;

S t r u C t topology {
smct l i s t
S m l C t l i s t

*tolerancelp;

*datumLp;
*kdrfLp;

/* Get you to the head of the parts data and lists */
shellLp; / points to the first shell */
faceLp; / point to first face */

StruCt l is t *IoopLp;
struct l is t *edgeLp;
struct l i s t *vertexLp;

1;
typedef struct topology Topology;

struct geometry (
S m l C t list *surfacelp;
struct l i s t *curveLp;
S t N C t l i s t *pointLp;
struct l i s t *unitvectorLp;

1;
typedef struct geometry Geometry;

Page 14

struct shell (
S t r u C t l i s t

typedef struct shell Shell;
1;

struct face {
s m c t l i s t
smct l i s t

1;
typedef struct face Face;

S t r u C t loop {
struct l i s t

1;
typedef struct loop Loop;

struct edge (
S t r u C t l i s t
struct l i s t

1;
typedef struct edge Edge;

*faceIdLp;

*loopIdLp;
surfTag;

*edgeTagLp;

*vertexIdLp;
curveTagD;

struct pointId { l

char id[20];
1;
typedef struct pointId PointId;

struct unitvectorId (
char id[20];

1;
typedef struct unitvectorId UnitVectorId;

struct vertex {

1;
struct pointId

typedef struct vertex Vertex;

pointIdD;

/* Used every place a tuple i s needed not just for vectors, also
* for point coordinates and in a variety of other structures.
*/

struct vector {

1;
typedef struct vector Vector;

float

Appendix A: Data Structures

struct SrfPlanePms {
struct unitvectorId
float

struct SrfCylinderPsrms {
struct pointId
struct unitvectorxd
float

struct SrfConePms {
struct pointId
struct unitvectorId
float

struct SrfSphereParms {
struct pointId
float

normal;
distance;

axis-point;
&xis;
radius;

vertex;
axis;
vertex-angle-cosine;

center;
radius;

enum SurfaceType { plane, cylinder, cone, sphere);

/* The following #defines refer to the union in struct surface */
#define planeD data.planeparms
#define cylinderD data.cylpms
#define coneD data.coneparms
#define sphereD data. sphereparms

struct surface {
enum SurfaceType type;
union (

struct SrfPlaneParms
struct SrfCylinderParms
struct SrfConePanns
s m ct Sr fSphereparms

} data;
1;
typedef struct surface Surface;

enum CurveType { line, circle);

planeparms;
cylparms;
coneparms;
sphereparms;

struct CrvLineParms {
struct pointId start;
struct unitvectorId direction;

struct CrvCircleParms (
struct pointId center;/* center of circle */
smc t unitvectorId axis; /* normal vector */
struc t pointId start; /* point on circle */

/* The following #defines refer to the union in struct curve */
#define lineD data.lineparms
#define circleD data.circleparms

struct curve [
enum CurveType type;
union (

struct CrvLineParms lineparms;
struct CrvCircleParms circleparms;

} data;
1;
typedef struct curve Curve;

struct point [
struct vector

1:
typedef struct point Point;

vector;

struct unitvector (
struct vector vector;

typedef struct unitvector Unitvector,
1;

/* Defines for Features */
#define ftrSD
#define ftrPD
#define ftrDD

data.ftrsimpieparms
data. ftrpatternparms
data. ftrdeburrparms

enum FeatureType { simple, pattern, deburr};
struct FtrSimpleParms {

Lis t *facelp;
1;

struct FtrPatternParms {
List *featureIdLp;

r
Appendix A: Data Structures

struct FtrDeSurrParms {
L i s t
L i s t

*faceLp;
*edgeLp;

srmct ftratrval{

1;
typedef struct ftratrval FtrAtrVal;

List value;

Page 27

enum FtrAtrType (faces, edges, features];
struct ftratr {

enum FtrAtrType
L is t

1;
typedef struct ftratr FtrAtr;

struct feature (
mum FeatureType type;
s m c t l i s t *ftratrLp;

1;
typedef struct feature Feature;

S t ruC t drf (
S t ruC t l i s t

typedef struct drf Drf;

*datum€eatureLp; /*the list i s only valid up to 3 levels*/

struct datumfeature (
enum MaterialCondition materialcond;
StruCt l is t *datumIdLp;

typedef smc t datumfeature DatumFeature;
1;

struct datum {
struct l i s t
char

1;
typedef struct datum Datum;

*featureIdLp;
datumname[20];

Page 13

Appendix A: Data Structures

/* Tolerance Structures*/

enum Characteristics { size, straightness, flatness, circularity,
cylindricity, limit, plus-minus,
intrinsic-line-profile, intrinsic-surface-profile,
extrinsic-line-profile, extrinsic-surface-profile,
angularity, perpendicularity, parallelism,
concentricity, circular-runout, total-runout, position} ;

enum DimensionalInd (r, sr, &a, sdia};

enum ModifierType {material-cond, proj-tol-zone, dimensionalind};

#define matcond
#define projtolzone
#define dimind

data.mc
datxptz
data.di

struct modifier (
enum ModifierType type;
union (

enum Materialcondition mc;
float ptz;
enum DimensionalInd di;

} data;
1;
typedef struct modifier Modifier;

struct controlledfeature {
struct l ist
S t r U C t l i s t

*featureIdLp;
*modifierLp;

struct tolerancedesc {
struct list *drfIdLp;
enum Characteristics tchars;
float limits[2];

struct tolerance (
struct controlledfeature contfeat;
struct tolerancedesc toldesc;

1;
typedef struct tolerance Tolerance;

?age 19

/"
* Amrf Topology and Geometry Flat File Format Display routines
* Sandy Ressler 4/86
* DT (Dictionary Traversal) Functions
*/

/* The following subroutines traverse the data structures which were created
* by the part model parser. The purpose of the type of traversal done
* here is to display a wire frame view of the part which was parsed.
*
* The routine Buildsurf does the actual drawing and is not listed
* here. Buildsurf is called with a variety of arguments and builds up information
* in static data until i t has enough information to display the image.
"t

#include cusercore.h>
#include "math.h"

#include <stdio.h>
#include "parse.d" l

#include "p:u.se.x" 4

Contains structure definition required by parser.
Contains external definitions set in parser.

DTPart (partp) List

Topology *tp;
printf("DTing a l l shells for part: %sh " ,

partp->headerentryLp ->id);

Part
I...........................y

->..!9.Po!o.a!; tP
tp =partp->topologyLp ->topologyL;

DTAllShells(tp);

.............................1-1;

.............................
i.......................... .:

.............................

Topologyp i 3 i- l

Pnge 20

Appendix €3:Example Data Structure Usage
/* Traverse through the a l l the shells in the topology */
DTAllShells(topo)
Topology *topo;

I

List *fa;
List Wd, *sh;
List surf;
List *sp;
sh = topo->shellLp;
do (/* for each shell */

fId = sh-xhellL ->faceIdLp; /* faceId l i s t */
do { /* for each faceid in the shell */

fa = FindId(ffd,topo -BfaceLp);
if (fa != NULL) { /* found id */

surf = fa->faceL ->surfTag;
eprintf(4, "surfaceid: %s\n",surf.id);
sp = FindId(&surf, SurfaceHLp);
if (sp !=NULL) (

eprintf(4, "surface found id: %s\n",sp->id);
/* we now know what kind of surface +/
BuildSurf(sp);

I
/* fa i s pointer to face list*/

DTFace(fa);
1
if (fld->nextLp =NULL) break;

} while (ffd = fId->nextLp);
if (sh->nextLp ==NULL) break,

} while (sh = sh-BnextLp);
/*printf('ln ");*/

\
List-,

Topology
shell

...........................
,.......................... 1 1

I ,..........................

shellforineachlist i=li".........................

for each
faceId in the shell -

...........................

Look in Topblogy for a face 1
Get surface id from tag list -
Look in surface l is for
a particular surface (surf)
Build a surface if everybody-
i s found

........................... :

/* Traverse through the l is t of faces. */
/* Primarily to get to the loops, so we can traverse down these loops (DTLoop) */
DTFace(fl)
List *fl;
{

List ;%loopId;
List *loops;
L i s t *lp;
/* get the loop l ist */
IoopId = fl->faceL-AoopIdLp;
if (loopId !=NULL) (/* a null loop list i s valid, but only

* for spheres
*/

do (/* for each loopid */
lp = FindId(loopId, LoopHLp);
if (lp !=NULL) { /* found a loopid in loop l is t */

/*printf("found: %sh",lp->id);*/
/* look for edgetag in edge list */
DTLoop (Ip);

I
if (IoopId->nextLp == NULL) break;

) while (IoopId = IoopId->nextLp);

/* Traverse through a loop l is t looking for the edges. */

DTLoop(l1)
L is t *ll;
I

List *ep;
List *et;
ep = ll->loopL->edgeTagLp;
do {

et =FindId(ep,EdgeHLp);
if (et !=NULL) { /* found edgetag in edge list*/

/*printf("found edge: %s\n",et->id);*/
DTEdge(et);

1
/* could polygon here, if we assume that a loop
* i s equivalent to a polygon
*/

if(ep->nextLp ==NULL) break;
} while (ep = ep->nextLp);

Page 22

/* Traverse through an edge l is t looking for vertices*/
DTEdge(e1)
List *el;

L i s t *vid, *vp;
List crv;
List *cp;
CN= el->edgeL->curveTagD; /* get the c w e id */
cp = FindId(&crv, CurveHLp); /* look for curve id in crv through the Curve l is t */
if (cp !=NULL) {

/* we now know what kind of curve to draw*/
BuildSurf(cp);

vid = el->edgeL -xertexIdLp;
if ((vid == NULL) && (cp -xurveL -xype == circle)) {

printf("EDGE (circle) with no vertexh ");
Buildsurf(cp);

1

I

I
else {

do (P look for vertexid in vertex l is t :k/

vp = FindId(vid,VertexHLp);
if (vp != NULL) (/* found a vertex*/

/* printf("found vertex: %sb",vp->id);*/
DTVertex(vp);

1
if (vid->nextLp == NULL) break;

] while (vid = vid->nextLp);

/* Traverse through a vertex list looking for points */
DTVertex(v1)
List *vl;
{

List *pp;
List vertex;
/* need the strcpy copy because pointIdD i s not a list */
strcpy(vertex.id,vl ->vertexL ->pointIdD.id);
pp = FindId(&vertex,PointHLp);
if (pp != NULL) (

1
BuildSurf(pp);

.

