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ABRSTRACT

Adaptive control is usually required in
situations where conditions are widely
varying and/or unpredictable. Adaptive
controllers have been dimplemented using
Artificial 1Intelligence (Al) technigues.
Knowledge acquisition, in the classical Al
approach, consists
knowledge-base encoded in the form of
rules, frames, or object-oriented «ata
structures. Bowever, except for the most
trivial of problems, the time and resources
required to accumulate enough knowledge is
intractably high. Collective Learning
Systems (CLS) is a paradigm for the ac-
quisition and application of knowledge
through learning. In the CLS approach,
Collective learning Automata acquire
knowledge through a learning process
consisting of trial-and-error interactions
with the environment. This paper inves-
tigates how CLS theory may be used to model
and implement adaptive control systems.
The pole-balancing problem is posed as the
experimental systexm paradigm.

4.0 _Intreduction

Researchers in control theory bhave known
for some time the power, and possibly the
necessity, of using adaptive control in
situations where conditions are widely
varying and/or generally unpredictable. 1In
broad terms, an adaptive controller is one
which adjusts its actions in accordance to
changing conditions {1]. This paper deals
with the branch of adaptive control theory
called Learning Control which is "a process
of forcing the system to have a particular
response to a specific input signal by
ZTepeating the input signals and then
torrecting the system externally™ [2}. A
distinction is sometimes made in that a
learning controller bases its decisions on
experience (memory) gained from inter-
actions with the environment.

Control theorists are not the only ones
interested in issues relating to automatic
control. For instance, Morbert Weiner made
contributions to control theory and, as the
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founder of Cybernetics, inspired the study
of Artificial Intelligence (AI). Baving
begun with the common goal of designing
machines capable of satisfactory perfor-
mance in uncertain conditions, today,
control theorists and Al rxresearchers have
diverged into interests with seemingly
disparate goals. Recently, the desire for
greater versatility has greunited the two
fields in an attempt to achieve robust
®*intelligent® ocontrol t(behavior).

Knowledge acquisition, in the classical AI
approach, consists of programming a
knowledge~base, the content of which is
usually encoded in the form of rules,
frames, or object-oriented data structures
{31. This form of AI has been used for a
variety of well-defined specific tasks such
as medical diagnosis, computer system
configuration, and experiment design.
However, except for the most trivial of
problems, the time and resources required
to accumulate enough knowledge is exces-
sively high.

Collective learning Systems (CLS) theory is
a paradigm for the acquisition and applica-
tion of knowledge through learning {4].
CLS theory is derived mainly from work on
Stochastic Automata performed by Tsetlin in
the 1960's [5). Learning in CLS theory
involves an informal method of induction in
which the transformation from the current
state to the next state is determined by
successive approximation.

A Collective Learning System is a group of
Automata participating in the accomplish-
ment of a specific task [6]. The Automate,
which in CLS terminology are called Collec-
tive Learning Automata (CLA), are intercon-
nected in a beterarchical and hierarchical
fashion. Zach level of the hierarchy
constitutes a decomposition (sub-goal) of
the task objective. In the CLS approach,
the 4individual CLA acquire knowledge
through & learning process consisting of
trial-and-error interdctions with their
environment.

Research on the mse of learning sutomata in
oontrol applications was very apparent in




the 1960's and early 70's with researchers
such @s Gibson, Tsypkin, Thathachar,
Harendra, Fu, and Shapiro [7). BHowever, by
the aid-70's, the research all but wanish-

od, giving ground to the field of paramet-

zic adaptive control.

Onlike CLS theory, in these sarly  experi-
®aents the environment did mot collect the
Tespoases; instead, the environment eval-
sated the performance of the automaton
;fter each response. This, of course,
quickly leads to a combinatorial explosion
©f the search-space which is the reason
generally credited for the loss of interest
4n learning automata.

CLS attempt to oconguer this problem by
evaluating a series of responses, aggregat-
ing the stimulus domain, and distributing
the information through the use of paral-
lelism and goal decaomposition. <CLS theory
has been applied to complex problems,
exhibiting robust learning and dynamic
adaptivity. The objective of this paper is
to investigate how CLS theory may be used
to model adaptive control systems.

2.0 _Frohlsa Statssant

The intelligence manifested by a state-of-
the-art robot is almost exclusively imple-
mented using programmed Artificial Intel-
ligence techniques such as rule-based
systems or state-tables. This approach
requires that the strategies be devised a
priori and programmed into the computer's
knowledge-base. Furthermore, the nature of
these techniques is that the information
processing is heuristic by design.

In general, however, a controller must
operate in an environment with wunnknown
characteristics, thus making the program—
ming task extremely difficult. WMoreover,
the coordination of sensory feedback with
motor control actions cannot, in general,
be solved analytically. What is required
is a method of associating the sensory
feedback with the control actions so that
in time the appropriate control law is
obtained. As will be demonstrated, this
can be achieved using CLS theory where the
sensory feedback is the stimulus and the
control sction is the response.

A simple, yet clearly representative,
example of & dynamical system requiring
rudimentary ocontrol is the pole~balancing
problea. This system has been used in a
similar experiment (8]). The systen,
iYlustrated in Figure 1, consists of a cart
fitted with a pole attached to a .hinge.
The cart is allowed to move laterally in
one dimension in order to keep the pole
balanced. The acceleration of the cart

imposes a force at the base of the pole
such that the mcaent created has the effect
of balancing the pole. -

" the 4nput stimuli.
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Pigure 1:

The Cart-Pole System

The objective of the controller is to move
the cart back and forth, by applying a
horizontal force et the cart's center of
gravity, such that the pole remains wver-
tical. “The sensory Teedback consists of
the angular position, angular welocity, and
angular acceleration of the pole. The
learning process establishes a relationship
(function) between the input feedback and
output control action.

3.0 PRroposed Aclution

The behavior of any dynamical system can be
described by an n-th order differential

. equation. - This type -of notation -is exact

in representation but is difficult to deter-
mine and manipulate analytically. To
facilitate derivations, a motation called
the state-variable form was developed {9].

In state-variable form, the system is
represented by n first—order differential
equation, each describing one system
wvariable. The n egquations can be repre-
sented in metrix form. As a result, an n-
th order multiple input-multiple output
system has the following form:

X{t+l) = A(t) * X(t) ¢ B(t) * U{t) (1)
Y (t) =C (t) *= X (t) (2)

where X(t) 4£s the state of the systenm,
X(t+l) 48 the next state, U(t) is the
input, Y(t) 4is the output, and A(t), B(t),
and C(t) are the control parameters.

Bquation (1) is the general form of a state-
transition function more cosmonly encoun-
tered in Automata Theory ([10). A state-
transition function defines the next state
of the systea given the current state and
& state-transition
function has the following form:

X(t+1) = B 1X(t), U(t)) (3)
where E is the state~transition function.
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If ‘Z{t) -and O(t) in equation {(3) are com-
dined to form a ®"total” system state, then
a system can be represented by:

S(t+l) = T(t) * S(t) ALY

where B(t) 48 the current total state of
the systea, $(t+l) is the next state, and
®(t) is the state-transition transform.

Equation (4) can be recognized as the
general Automaton equation. The state-
transition transform is equivalent to the
state-transition function of equation (3)
in matrix form. Consequently, any control
system can be represented as an automaton
deacribable by equation (4).

4.1 learning Automata

The vast majority of research and develop-
ment in Al has emphasized the deductive
acquisition of knowledge ({11]. This
approach involves specifying the state-
transition transform and successively
applying it until the goal-state is reach-
ed. Programming languages such as PROLOG,
1ISP, or expert systems have been used
because they provide mechanisms for sym-
bolic representation and manipulation.

As stated above, it is generally very
difficult, 4if not 4impossible, to pre-
determine the correct transform to apply.
Furthermore, the transform cannot be easily
modified or checked for consistency. For
these and other reasons, doubts remain
concerning the usefulness of this approach
for complex problems and in particular for
automatic control.

In the event that the transform cannot be
determined, induction can be used to find
it. To do s0, however, both the current
state and the next state must be known.
This poses a problem since knowledge of the
next state is impossible. The only re-
course is to choose a feasible transform,
utilize it, evaluate the quality of the
response, and adjust the transform appropri-
ately. A machine using this procedure is
called a Learning Automaton (LA) ([12]). 1If
the state-transitions are probabilistic,
the LA is called & Learning Stochastic
Automaton (LSA) [13]. This latter type of
automaton forms the basis for the control-
der inwestigated in this paper.

The state-transition transform comprises
the memory of an LA. The LA's memory
consists of a set of stimulants which is
discretized into N stimulus states. Each
stismulus state has an associated respondent
wector each of which contains one or more
response components. An example, of an
LSA's memory is shown in Figure 2. ®ach
response represents a state-transition for
which a state-transition probability is
assigned,.

.. State Id - Respondents

s 0.16}0.29]0.28 0.27

*E 1 0.00}0.00§12.00}0.00

g 2 0.25§0.25 Jo.25 Jo.25

S
N -1]lo0.11}0.23]0.12 }0.54

Figure 2: An Example of an LSA's Memory

As mentioned above, an LA acquires know-
ledge through a learning process, illustra-
ted in Figure 3, consisting of trial-and-
error interactions with the environment.
The environment submits an dinitial
stimulus to the LA. Based on the stimulus
and the LA's memory the LA selects a
response and issues it to the environment.
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Figure 3: An LA's lLearning Process
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The environment evaluates the response
with respect to the effectiveness of the re-
sponse in achieving the 1LA's objective.
The LA can compensate the evaluation
based on an inherent or learned knowledge
of the "quality"™ of the appraisal. The
environment is considered to be consistent,
infallible, and truthful which in learning
systems theory is said to be stationary,
deterministic, and correct. Lastly, the
learning automaton updates its memory
resulting in the acquisition of knowledge.
In time, the LA will consistently correlate
the most appropriate response for a given
stimulus and thus demonstrate learning.

3.2 Collective Learning

If the LA is given an evaluation for each
response, the process described above is
nothing more than an exhaustive search of
the state-space until the correct response



15 found. - In general, this - procedure is

dnfeasible Dbecause for most real-life .

probleas -it -is mot possidble to esvaluate
sach response in real-time. ‘PFurthermore,

the computational requirements for such a

Rl

process are prohibitively high.

The learning process ‘Giscussed above <Tan be
modified such that the avtomaton receives mn
evalustion only after a msumber 6f responses
‘Bhave been issuved. An automaton undergoing
such a process is called a Collective
“Ssarning Actomaton (CLA). The theory of
€he interaction of the CLA with its environ-
ment is called Collective Learning Systems
(CLS) Theory.

4.0 ZTechnical Approach

The architecture of the control system used
in the simulation experiments is illustra-
ted in Pigure 4. In the nmext section, .the
individual components of the CLA and
environment are discussed in detail.

CLA
{Controller)

Stimulus
asuodsey

Cart-Pole 4
System 3

Figure 4: The Control System Architecture

4.1, CLS pefinition

Btimulus: The stimulus issued by the
environment to the CLA consisted of the
state of the pole (plant) S, = {6, 6.9).
For this experiment, in determining the
control function, the state of the cart was
ignored. Each state-variable was parti-
tioned into 32 divisions, resulting in a
stimulus domain having 32768 states. The
partition's class marks were nonlinearly
distributed, with a greater aumber posi-
tioned around the vertical pole position
and gzero wvelocity and acceleration.

: The response range for
sach stimulus state was =-1.0 to 1.0
representing the fraction of the maxisum
force to be applied to the cart's center of
gravity. The response range was parti-
tioned into 11 divisions. %o permit fine-

tuned control, the response range cClass
marks were distributed with more classes
around zero gain,
response, and

Given a stimulus, the
therefore the force to

. @d (vertical) as long :as possible.

T T T——

- apply, was chosen using maximal thresholded

determipnistic selection with random
arbitration. The probability threshold was
set to one percent.
" Evaluation:” The objective policy of
the controller was to keep the pole balanc-
This
policy can be restatéd as an objective
function requiring the minimization of the

average angle @ between the pole position B

and T1/2 (See Yigure 1). Therefore, the

evaluvation, which 4in this experiment was
issued every 10 CLA responses, is given by:

§ - (Qprovions = Ccurrent) 4/ &lora (5)

where QO.grrent i8 the value of @ at the time
of the evaluation, Gpreviess 18 the value of
O at the time of the previous evaluation,

and AQ.,ca; is running sum of the absolute
walue of the difference between the current
and previous values of &.

Compansation: PFor this experiment,
the CLA did not modify the evaluation.

Hpdata: The update procedure used in
this experiment to wmodify the state-
transition probabilities is the following:

1., TUpdate the probability of the
selected response.

P,=p, +&* (1-P,), >0 (62)
’.-P.‘.'g.?.'g<-o (6b)

2. Sum the respondent wsector's
probabilities.

3. Aadjust each probability propor-
tional to the sum.

Py =Py / Poum ()

4.2, Bxperimental Procedures

The learning control of the cart-pole
system was tested using a discrete-time
simulation. The system's equations of
motion were derived using the forces and
masses shown in Figure 1. A fourth-order
Runge-Kutta numerical method was used to ap-
proximate the system's differential equa-
tions. A time interval of 1 millisecond was
used. The CLA controller sampled and
responded every 10 time fntervals (1
centisecond). As mentioned above, the
environment evaluated the CLA's performance
every 10 responses (1 @ecisecond).

-
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The learning period -consisted of 50,000
zuns. The system variables were initializ~-
ed at the start of each run. The pole
position was randomly set between 60 and
120 degrees and its wvelocity and accelera-
tion were set to 0. The cart's position,
welocity, and acceleration were also set to
0. A run lasted for 10,000 time intervals
{10 seconds) or mntil the pole fell outside

the range o, mj.

5.0 fimulation Resunlts

Pigure 5 illustrates the percentage of runs
over the length of the learning period
which lasted for at least 10,000 time
intervals. .As can be seen, after 1000 runs
the CLA controller was already able to keep
the pole balanced in 663 of the runs.
Naturally, because the initial pole posi-
tion was set randomly, many of the runs
started with an angle close to vertical
leading to many of these sarly successes.
Most of the failures resulted from initial

angles farther away froa I1/2. The runs

starting close to wertical bhad the effect
of habituating the CLA to keeping the pole
upright once balance was achieved.

Figure $: Percentage of runs lasting
at least 10 seconds.

Bxcept for a small perturbation in the
learning at around 15,000 runs, the level
of learning (as measured by the number of
successful runs) can be observed to be
gradually and steadily increasing through-
out the learning period. The CLA was
continuing to learn even at the end of the
Jearning period even though the rate of
learning had decreased noticeably. The
progress of a CLA's learning is a function
©of the size of the CLA's memory, the
environment's evaluation policy, the CLA's
selection, compensation, and update func-

tions, the response collection length, and
the system's dynamic characteristics.

Pigure 6 shows the change in pole position

during two runs for which the initial pole
position was set to 60 degrees. The
figures demonstrate the controller's
performance at two stages of the learning
period. As can be cbserved, the control
function is critically damped. The CLA
learned that to minimize negative evalua-
tions <punishments) i1t had to prevent
overshooting.
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Figure €6: Performance of the CLA (a)
after 10,000, (b) after
$0,000 runs




The nature of the evaluation policy uod in a

this experiment is such that the CLA would
attempt to achieve balance in the shortest
amount of time possible. This behavior is
in conflict with the previously mentioned
performance requirement in that this would
lead to overshoot. -To meet both re-
—guirements,
maximum force to get the pole upright and
.then, as the pole approached the wertical
_position, to apply the maximum force in
-~the opposite direction to decrease the
pole's wvelocity. Zhis behavior is demon-
—~gtrated by the jaggedness of the plots

-mfter the pole reached I1/2. A performance

requirement such as fuel conservation or
minimization of stress could be wused to
alleviate this phenomenon.

A.D_Conclusions

It wvas cdemonstrated that using wvery simple
evaluation, selection, and update functions
the CLA was able to learn satisfactory
contrel of the cart-pole systenm. The
success rate of £5% at the and of the
learning period was mainly a result of a
relatively lowv incidence on the states
corresponding to starting angles close to
60 and 120 degrees. The performance can be
improved by presenting the CLA with a
comprehensive range of operation con-
ditions.

The evaluation policy was purposefully
defined in terms of an objective function
in order to be able to generalize the
concept to a wide variety of problems. For
instance, if the cart position were of
importance, the objective function would
require the minimization of both the pole
inclination as well as .the difference
between the desired and actual cart posi-
tion. Notice that these two goals are
contradictory; the CLA would have to learn
to relax the constraints in order to
satisfy the abjective.

Further areas of investigation include
methods of testing the CLA's performance
given more realistic operation conditions.
It is impractical to assume that sensors
are free of errors and noise or that data
acquisition is instantaneous. The sensors
may aot even accurately describe the
process under control (the identification
problem) or worse, provide erroneous
information. Similarly, a controller's ac-
tuators are in general inefficient and have
inmertia. The €CLA would have to receive
feedback describing the 1evel of force
being effected. Lastly, the controlled

@ysten's dynamics are usually nonlinear
gesulting in a more difficult control
problem.

the CLA -learned ¢o -apply
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