
g
ble
o-
m
de
e

d
n-

e
ng
e

po-
nts
h

nd
r-
ep

m
nge
ort
ng
ele-
ur

tion
xt.

e

Standards-Based Software Testing in a Net-Centric World

KC Morris
David Flater

Manufacturing Systems Integration Division
National Institute of Standards and Technology
Abstract

Automation for product development and manufacturing
is changing to take advantage of the recent expansion of
the Internet and the computing technologies supporting it.
These processes are becoming more software dependent,
and the software used is becoming more modularized, al-
lowing for the creation of customized systems consisting in
large part of pre-existing components distributed across a
network. This combination of factors leads to considerable
flexibility for manufacturing systems, but not without a
cost. The reliability of those systems is uncertain given the
lack of experience in how to test such systems. To address
this need, the National Institute of Standards and Technol-
ogy’s Manufacturing Systems Integration Division has un-
dertaken a study of how to test “interaction-driven
manufacturing systems.” This paper presents the results of
a study of the problems involved in testing these new sys-
tems, reports on factors which influence the testability of
the systems, and outlines approaches to testing.

1. Introduction

Software systems are built differently today than they
were a decade ago. The approach of testing traditional sys-
tems using the sequence of unit, integration, and system
testing[1] is well-established; however, what we once
called “systems” are now single components in larger, in-
tegrated, net-centric systems, and our testing techniques
are in need of revision. The best of practice techniques
(e.g., [2][3]) have become dated, and the best minds in the
business are scrambling to come to grips with the reality of
systems that, using traditional terminology, would have to
be called “large and complex distributed systems of
systems.”[4]
Systems of the past were designed to optimize through-

put, but today’s systems are being designed for flexibility

while not compromising throughput. Instead of buildin
systems from scratch, practitioners are seeking to be a
to integrate off-the-shelf software components into a c
herent system with minimum expense on custo
programming. To do this, they need to be able to upgra
or replace individual components without breaking th
system. Manufacturers are increasingly looking toopen
systemsand standards[5][6] as a possible solution, an
this, in turn, has led to focused projects at the National I
stitute of Standards and Technology (NIST).
NIST recently began investigating test methods for th

new breed of integrated systems. We, in the Manufacturi
Systems Integration Division (MSID), are focusing mor
specifically on thetesting of interaction-driven manufac-
turing systems(TIMS). Interaction-driven manufacturing
systems are those composed of multiple software com
nents in which the interactions between those compone
are automated. Automation is typically achieved throug
the definition of program interfaces, both standard a
proprietary, which allow the components to directly inte
act without the need for human intervention at every st
along the way.
The variety of infrastructures, applications, and syste

architectures exhibited by these systems poses a challe
to the development of common test methods. To supp
the effort we have studied specifications for manufacturi
systems integration and approaches to testing that are r
vant to those specifications.[7] This paper describes o
conclusions based on the study and provides a descrip
of the issues surrounding testing of systems in this conte

2. Testing

The specifications considered in our study fall into thre
categories:
• infrastructures used to connect the system,
• applications used in the system, and
• the operation of the system itself.
1

es,
ch

n-

ca-
r.
d
s,
pro-
er

we
-
pe
fic
c-
ng
he
ric
cifi-
as
of

st-
to
the
er-
w

-

el-

n.
g
a-
nd
ally
ly,
n
y.

nti-
not
of
or
ur-

s a
)

ra-
Each category presents unique difficulties. A wide variety
of different infrastructures is available to connect systems.
Requirements for components in these integrated systems
are often not well specified since the components are de-
signed as stand-alone units. The systems themselves are
subject to instability due to nondeterministic interactions
in the systems. In the following pages we discuss testing
considerations for system components, both infrastructural
and specialized applications, and for a system itself.

2.1 Considerations for testing components

The first step in testing an interaction-driven manufactur-
ing system is to identify the components of the system.
These should be clear from the system architecture. The
components in a typical manufacturing system will in-
clude several commercial off-the-shelf (COTS) products
which may support open or proprietary interfaces. Compo-
nents may be infrastructural or specialized and range from
machine control devices through scheduling, inventory,
and planning systems. Other components in the system
will be custom built applications that interface with and
bridge the gaps between these vendor-supplied products.
Simple component diagrams are often used to illustrate

the system architecture. More formal Architecture De-
scription Languages (ADL)[8][9][10] are emerging. More
detailed and formalized system models can also be con-
structed using aspects of the Unified Modeling Language
(UML).[11]
Traditional software architectures use a tight integration

of subsystems based on shared libraries which are linked
into run-time execution modules. In these systems the
common infrastructure is the programming language. Dy-
namic linking (linking at run-time) is one step towards
creating more flexibility in component-based systems.
Even so, connections between components traditionally
are reduced to file exchanges rather than direct
interactions.
Today’s net-centric world is not compatible with this tra-

ditional architectural style. In the net-centric world
components not only run in separate execution modules
but can also be on separate processors using different file
systems. This distribution is forcing advances in system
engineering and software standards to support more flexi-
ble integration of systems capable of direct interactions
without tight coupling.
Infrastructural specifications address the coupling be-

tween specialized components and provide a protocol (in
the general sense) for the connections. Aspects of the con-
nections can be tested for consistency and completeness in
much the same way that a compiler tests a program for
consistent use of a programming language. Traditional in-

frastructural standards include programming languag
scripting languages, protocols for shared file systems su
as NFS/RPC,1[12][13] messaging languages such as Ma
ufacturing Message Specification,[14][15] UNIX-style
pipes, and sockets. These infrastructures allow appli
tions to interface in a controlled, deterministic manne
Net-centric infrastructures, such as CORBA/IDL[16] an
Java’s Remote Method Invocation[17] and JavaBean2

enable invocation of remote processes and access to
grams to be run locally, thereby supporting a loos
coupling of systems.

Layering of components. In our study of interfaces for
specialized components in manufacturing systems
found that they relied on a variety of infrastructural com
ponents. The more traditional and the most common ty
of interface was specified as a software library in a speci
programming language. However, the trend is for interfa
es to be defined in tiers, where a binding to a programmi
language is the bottom layer and middle layers provide t
location independence that helps in building net-cent
systems. The number of tiers tends to increase as spe
cations are bound to already tiered infrastructures, such
is the case with the ISO Standard for the Exchange
Product Model Data3 (a.k.a. STEP, see below.)
This layered approach is both good and bad news for te

ing. The good news is that the rigorous methods used
define and describe the interfaces can be leveraged in
development of test suites. The bad news is that the int
nal complexity of the interface is increased with each ne
tier. This complexity makes it difficult
• to pinpoint what is actually relevant for testing pur

poses,
• to develop tests that isolate aspects of the interface r

ative to the technologies used in each layer, and
• to verify the executable tests against the specificatio
Testing of infrastructural components differs from testin

of specialized components in that, for the most part, infr
structural components are not manufacturing specific a
can be exercised by generic types of test suites. Gener
speaking, infrastructures are most vigorously, thorough
and quickly tested for conformance to a specificatio
through use rather than by any formal testing activit

1. Network File System/Remote Procedure Call.
2. Certain commercial equipment, instruments, or materials are ide

fied in this paper to foster understanding. Such identification does
imply recommendation or endorsement by the National Institute
Standards and Technology, nor does it imply that the materials
equipment identified are necessarily the best available for the p
pose.

3. The Standard for The Exchange of Product Model Data (STEP) i
project of the International Organization for Standardization (ISO
Technical Committee on Industrial Automation Systems and Integ
tion (TC184) Subcommittee on Industrial Data (SC4).
2

e of
s,

ate
a
a-
g

her

L.
to

a
a-
e

im-
,
le-
e
of

s. In
n is

le-
ne
a
can

el-
ts.
s

nd

by
gs
ili-
do

em
re-
ny
lly
o,
ha-
f
ll

in
ca-

-
a

he
When there is a formal testing activity it generally comes
after the fact and is designed to differentiate multiple ven-
dor products supporting the same specification and
highlight those areas of inconsistent support so that they
may be addressed.
On the other hand, infrastructural components are inte-

gral to the testing of specialized component interfaces
since the specialized components are based on the infra-
structures. Many testing tools, and hence techniques,
revolve around the use of a particular infrastructure. Addi-
tionally, the emerging layered infrastructures can be tested
by harnessing with testing tools based on one of the under-
lying infrastructures. Indeed, test methods based on
infrastructures are essential to managing the layers.

A case study: Product Data Management.The ISO
standard known as STEP specifies an interface to special-
ized components based on the older architectural style.
Specifically, it provides a file format for the exchange of
data between systems. This valuable standard is rich in
specification of the application-specific semantics of man-
ufacturing interfaces; researchers are struggling to define
mechanisms to bring it into a net-centric world. The first
resulting specification is a data access interface (a.k.a.
SDAI)[18] that defines a layered infrastructure for a series
of interfaces to interaction-driven manufacturing systems.
The SDAI approach is based on a rigorous methodology
which has not yet been fully exercised. To date, test tech-
niques for specialized component interfaces have only
been applied on individual components and we have found
no activities to systematically reuse the methods on a vari-
ety of interfaces as would be possible by combining SDAI
with STEP’s semantic definitions from a number of differ-
ent application areas.
For example, STEP contains definitions for product data

management. When these definitions are mapped into
SDAI which is then mapped into the Interface Definition
Language (IDL)[16] (another infrastructural component),
the result is an interactive interface to a Product Data Man-
agement (PDM) system suitable for use across a network
but originally designed for more traditional styles of
interaction.
The Object Management Group (OMG)[19] produced a

similar, yet different, interface, known as the PDM En-
ablers.[20] The PDM Enablers uses one of the same
infrastructures, namely IDL, but defines a different style of
interaction with the underlying system. More specifically,
the PDM Enablers are used to initiate operations support-
ed by PDM systems whereas the SDAI/PDM interface
defines low level data access functions.
These two specifications provide a good example of two

different styles of interfaces to the same functional compo-
nent, in this case a Product Data Management system. The

ISO standard provides a mechanism to change the stat
a PDM system by changing the data on which it operate
whereas the OMG standard provides an interface to st
changing operations which will in turn modify the dat
contained in the system. Other differences in the specific
tions include the infrastructures used. Applications usin
the ISO standard would access PDM systems using eit
C, C++, Java, directly or through IDL. Applications using
the OMG standard would only have access through ID
The TIMS project is currently investigating approaches
testing these systems in an integrated fashion.

Approaches to testing.Conformance and interoperabili-
ty testing are two different approaches to validating
component’s usefulness with respect to a specific
tion.[21] The basic difference between the two is that th
traditional conformance testing approach compares an
plementation to the intention of a written specification
whereas the interoperability approach compares an imp
mentation with other implementations. Conformanc
testing typically is approached as a systematic coverage
a specification while interoperability testing typically
takes a scenario-based approached to choosing the test
both cases the differences discovered by the compariso
the result of the test.
An advantage to conformance testing is that each imp

mentation is compared to the same thing and to only o
thing. Also, the breadth of coverage of a specification by
conformance test can be measured and redundant tests
be minimized. Finally, conformance tests can be dev
oped independently from implementations of those tes
However, a criticism of this approach is that it can mis
tests that are important in real world implementations a
it can catch things that are irrelevant in the real world.
The advantage of the interoperability approach is that

its nature the tests are targeted to reveal the very thin
that would cause problems in common use. Interoperab
ty testing also has disadvantages. When differences
arise between implementations, the source of the probl
is indeterminate. For interoperability testing to be most
liable an implementation should be compared with ma
other implementations, not just one, thereby dramatica
increasing the effort required to perform the tests. Als
when a new implementation emerges, there is no mec
nism in place to test it independently. Another round o
interoperability tests would need to be conducted with a
existing implementations. Finally, while interoperability
testing is more certain to address problems which occur
common use, the less commonly used parts of a specifi
tion may not be exercised.
In light of the complexity of interfaces defined for a net

centric world and the variability in approaches to testing,
practical approach must be taken. The complexity of t
3

ur
e-
and
or
le
to

l-

to
an

ible
ti-

e-
es
c-

ng
or
ld
or

ut
em

he
ei-

and
the
a

interfaces makes the idea of a comprehensive conformance
test suite daunting, yet the rate of change for software
products and the expense of conducting interoperability
tests gives the results of those tests a short lifespan. Fur-
thermore, components in manufacturing systems are often
very complex pieces of software in themselves, so defining
the tests and expected results can be a non-trivial problem.
Often the best way to determine the expected results is by
computing them. The result is a reference implementation
of the specification. When testing using a reference imple-
mentation, results from an implementation under test are
compared with the results obtained from the reference im-
plementation under the same conditions.

2.2 Considerations for system testing

While many specifications concentrate on individual soft-
ware interfaces within a manufacturing system, the
concern of end users of manufacturing software is whether
the final integrated system performs as required. From
both practical and formal perspectives, verifying correct
behavior of the entire system is quite different from verify-
ing the behavior of individual components. As Brooks
observed, the system test is “unexpectedly hard,” and is of-
ten made harder by a lack of conceptual integrity between
independently specified and/or developed compo-
nents.[22] The risk and cost of system level problems only
becomes greater as industry moves away from monolithic,
proprietary solutions and instead assembles systems from
open standard software components bought from com-
pletely different sources. The individual “components”
that we are integrating today would have been considered
“systems” at one time, so “integration testing” and “sys-
tem testing” need to be understood in this new, larger
context.
Net-centric systems pose a special challenge because dy-

namic interaction between disparate components is much
more sensitive to errors than is static file exchange. If two
components disagree on a syntax issue for file exchange,
we might be lucky enough to lose only a small part of the
input; but if they disagree about a network interaction, it is
almost certain to stop the show. Integration and system
testing are therefore crucial to the reliability of net-centric
systems.
A publication from Rational Software Corporation[23]

defines integration and system testing in such a way that
problems like deadlocks and race conditions are expected
to have been found during integration testing (much as
functional faults are expected to have been found during
unit testing), leaving only relatively “soft” problems to be
found during system testing. This is consistent with a great
deal of our own precedent which steadfastly separates in-

tegration testing from system testing.[24] However, for o
larger distributed systems, the only real differences b
tween these tasks are the invasiveness of the testing
the types of faults that we hope to find in each stage. F
the purposes of this discussion, then, we will not strugg
to keep them separated, but assume that Brooks’ advice
“Add one component at a time” will nonetheless be fo
lowed in the software development process.

Interactivity. Just as data flow diagrams can be used
identify data sources and sinks, a new kind of diagram c
be used to identify sources and sinks foractivity. Interac-
tivity is represented byflows of activity; it is the activity of
interacting, or the business of interaction.Interaction is
more than justreaction; hence, interactivity is more than
just the sending of messages. It represents a poss
source of non-determinism in the system, which is a cri
cal factor in the system’s testability.
Flows of activity are used to show the sources of non-d

terminism and the ways that this non-determinism rippl
through the system. By drawing an arrow representing a
tivity flow in one of the following diagrams, we are saying
that the component at the start of the arrow is perturbi
the component at the end of the arrow in a partially
completely non-deterministic way. The specific way cou
be a data flow, a control flow, a message, an event,
something else — it does not matter. Theseactivity flow
diagrams therefore differ from data flow diagrams and
similar diagrams because they contain information abo
the sources of non-determinism and the parts of the syst
that are affected by it.

Figure 1. Simple interactivity diagram

In a classic client-server architecture such as that of t
web-based system modeled above, all components are
thersourcesor sinksof activity. Because they do not have
complex dependencies on other components, sources
sinks can be tested as stand-alone systems by replacing
components on the other side of the interactions with
simple test harness.

Browser
(source)

Browser
(source)

Browser
(source)

Web server
(sink)
4

ve
at
x-
ace
d.
et-
n

-
ly
r

s.

se
lly
ffi-
nd
ell

po-
t in
The non-determinism in this system is that the arrival
times of requests from browsers and the contents of those
requests are random as far as the web server is concerned.
Because web servers themselves are designed to be state-
less, this would seem to be an insignificant observation.
However, if we instead have a manufacturing system
where orders for products and machine control commands
are being entered through web interfaces, the activity com-
ing from the web browsers may easily be sufficient to
trigger timing-related failures in the system.

Figure 2. Hierarchical interactivity diagram

Components that act as both client and server create more
difficulty for testing the system as a whole. However, some
multi-tier systems are designed so that they can be decom-
posed and tested as independent subsystems. The open
loop control hierarchy shown above is an example of such
a system. The activity is acyclic, flowing downwards from
the Guardian (a user interface component like a web
browser), so the behavior of each subsystem is determined
by the layer above. The test methods can therefore remain
typical of those used by the software industry for large
software projects.

Figure 3. Cyclic interactivity diagram

In Figure 3, the shop and workcell controllers each ha
their own thread of control and may initiate interactions
any time. When activity becomes cyclic as it has in this e
ample, a new category of problems such as deadlocks, r
conditions, and inconsistent world views is introduce
These problems have been explored extensively in n
work testing, but not so extensively for interaction-drive
systems in general.
Systems having cyclic activity are inherently more diffi

cult to test than those with acyclic activity because mere
controlling the top-level sources of activity is no longe
sufficient to remove non-determinism from the system —
there may still be uncontrolled interactions at lower level

Figure 4. Chaotic interactivity diagram

Finally, there exist non-traditional architectures that u
large numbers of competing agents interacting chaotica
to produce an emergent behavior.[25] These are very di
cult to test because they are highly non-deterministic a
the permissible state spaces of the systems are not w
defined.

General technique for locating faults. In system testing,
a piece of bad data may propagate through several com
nents before a problem ever appears. Locating the faul

Guardian

ControllerController Controller

Machine MachineMachine

Guardian
(source)

Database
(sink)

Shop
control

Workcell
control

Agent

Agent

Agent Agent

Agent

Agent

Shop
control
5

re
ion
u-

ce
s-
s

at
nts
e
n

sts
he
of

ac-

re-
ote
/or

t
es
tic
ts
m-

on
not
n-

lso
m-

p
y

ibe
m,
p-
t

to
em
-
g

th
such cases can be difficult. A good strategy to narrow the
possibilities is to replace one or more of the components
with dummy components[26] to see whether the problem
goes away. A dummy component anywhere on the path of
the bad data will break the chain and cause correct opera-
tion, so the fault is eventually located by walking
backwards to the source.
Along the way, swapping dummy components for real

components may detect hidden deviations from the speci-
fication, where a system is working only because all off
the components using a given interface use the same incor-
rect interpretation, and are hence “bug-compatible” by
accident. Incorrect but functional usage of an interface can
propagate through a software project like a virus because
developers will copy or re-use working code. Once this
problem is detected, the code can be changed to match the
specification— or vice-versa, as is more often done in
practice.

Network monitoring and capture/replay techniques. If
some semblance of all of the necessary components for a
networked distributed system already exists, a capture/re-
play tool can be used to examine system behavior and to
emulate components. These commercially available tools
begin by recording all network traffic during an actual run
of the system. This record can be examined manually to
insure that the messages exchanged between components
are what was specified. The replay tool can then replay
segments of the network traffic to emulate a component.
With the use of “parameterization,” the replay tool can
change key fields of generated messages in order to act out
various testing scenarios.
Capture/replay tools are popular due to their simplicity,

flexibility, and robustness. Because their interaction with
the system is on an entirely syntactic level, they will work
to some degree with any networked system, and there is
little or no application-specific scaffolding to build. Even
opaque, COTS components with no publicly available
specifications can be emulated without trouble. However,
the purely syntactic treatment of system interactions is
also their greatest disadvantage. The tester is obliged to
operate at the level of raw data and machine code to con-
struct meaningful tests using snippets of captured traffic,
which must be reverse-engineered to map the raw data
fields to their counterparts in high-level languages. There
is no way to “get inside” of the emulated component to
add test scaffolding and assertions. There is also no easy
way to emulate components for which a reasonable fac-
simile does not already exist, and integration with formal
methods is unlikely to happen in the near future.

Scenario based testing.While rigorously specifying the
behavior of a distributed system in general is very difficult,

specifying this behavior for a specific scenario is mo
tractable, as is demonstrated by the Component Interact
Specification (CIS) based method supported by the Man
facturer’s CORBA Interface Testing Toolkit (MCITT),[27]
UML Sequence Diagrams,[28] and Message Sequen
Charts.[29] CIS has the advantage of being directly tran
latable into test scaffolding for CORBA systems, but it ha
disadvantages that will be discussed below.
CIS is a derivative of the integration testing method th

was being used by industrial partners to test compone
of the APC Framework.[30] This method, in turn, mad
use of ideas that are also used in UML Collaboratio
Diagrams.[31]
A CIS interaction scenario consists of a tree of reque

having specified inputs, outputs, and/or return values. T
tree is rooted at a test client that initiates the entire chain
events. In order to capture the tree structure of the inter
tions in a flat ASCII script, an outline numbering
convention similar to that of UML Collaboration Dia-
grams is used:
 1 ... first request by testing client on server A ...
 2 ... second request by testing client on server A ...
 2.1 ... request by server A on server B ...
 2.2 ... request by server A on server C ...
 3 ... third request by testing client ...
In an actual CIS, the text comments shown above are

placed by machine-readable syntax specifying the rem
operations that are invoked and the inputs, outputs, and
return values that are expected.
Although the full extent of possible functionality is no

supported by MCITT at this time, this approach enabl
code generation for dummy components and automa
generation of run-time assertions to verify that the inpu
and returns for each interaction are as specified. The du
my components are useful in system and integrati
testing when some components are not available or
trusted, and in conformance testing to provide a more co
trolled testing environment for subsystems. One may a
use dummy components to stress test a system; for exa
ple, if a shop controller is theoretically able to control u
to N workcells, one may test the system with that man
emulations.
Although the CIS syntax is expressive enough to descr

an entire tree of interactions through a distributed syste
it is limited by that tree structure and the related assum
tion that all activity originates at the testing client. While i
is trivial to extend the CIS syntax tospecifycyclic or cha-
otic activity, it is much more difficult toemulateor verify
that behavior because we now require the capability
monitor and control the sequencing of events at the syst
level. For hierarchical activity, the ordering of events is in
herently deterministic, and it suffices to embed monitorin
and control into the components of the system. But wi
6

nd

s:

al
on
n

ct
ld

ts
rld
nt
be
he

er
t-

a-
e
se
in
-

r
e
ro-

e
go
to

h a
in-
es

e

)

y

g

nt
s

cyclic or chaotic activity, an emulated component must
somehow manage to generate requests in the order that is
specified without the benefit of inherent determinism, and
a total ordering of system events cannot be derived without
the aid of accurate synchronized clocks or a separate net-
work level monitoring tool.
In any case, the total ordering of events imposed by the

CIS approach is often not what we want in systems having
cyclic or (especially) chaotic activity. UML Sequence Dia-
grams and Message Sequence Charts are more powerful in
being able to model cyclic activity and are extensively
used for simulation, but they have not to our knowledge
been adapted for concrete system implementation testing
and run-time verification of message contents as CIS has
been. This may be due to the problem of monitoring and
controlling global state, of specifying message contents
with sufficient rigor to be able to interoperate with actual
live components, or both.

3. Conclusions and future work

For manufacturingcomponents, adapting and applying
existing black box / infrastructure testing techniques in the
new context of the interaction-driven system should be a
workable solution. However, standards are being produced
at increasingly high levels of abstraction and are intended
to be used in combination with other specifications. This is
resulting in the problem of a combinatorial explosion of
interfaces with no existing methods developed to system-
atically handle testing of such interfaces.
The growth of manufacturingsystemsinto what are effec-

tively “systems of systems” has out-paced the availability
of methods for specifying and testing them. While estab-
lished rigorous techniques can be used in the context of a
single coherent design and development effort (i.e., a sin-
gle system), the testing of systems that are constructed by
“gluing together” generic COTS software, specialized ma-
chine control software, and legacy systems is still an
evolving art. For these manufacturing systems, we do not
anticipate finding a complete solution very soon, but there
is promising new work to investigate:
• Approaches to component-based software may make

manufacturing system architectures more intuitive to
specify and more tractable to test.

• New specification languages may help to avoid certain
system-level problems and assist with simulation and
testing of the systems.

• Formal methods for testing of components and proto-
cols suggest the possibility of a system-level method to
decide what combinations of components should be

tested together, how they should be exercised, a
when to stop testing.

In addition, we make the following general observation
• Testability of many systems is hindered by the low

quality or lack of specifications for them. This problem
has existed for many years. There are now some form
specification techniques that are attracting attenti
from industry, possibly because they have found a
acceptable compromise between rigor and usability.

• Just as Design-For-Manufacture considerations affe
product design, Design-For-Test considerations shou
influence system design.

• The problems caused by integrating componen
whose specifications do not share a common wo
view are not easily revealed or diagnosed by curre
methods. Therefore, the testability of a system can
enhanced by choosing a common ontology before t
system is integrated.

• Existing tools for monitoring the communication
between components in a distributed system eith
operate at a very low syntactic level, which makes tes
ing by inspection a thankless chore, or rely on applic
tion-specific test scaffolding. We should look into th
possibility of defining a standardized, general-purpo
inspection interface that components can support
order to permit a test driver to monitor their interac
tions at a higher semantic level, but still generically.

By attacking the problem at both ends, building up ou
testing capability while simultaneously working to mak
systems more testable, we hope to find the best comp
mise for improving the reliability of systems. Neither th
testing nor the development of systems should need to
to extremes if complementary improvements are made
each. This more moderate approach may then meet wit
higher level of acceptance and adoption than extremely
vasive testing or extremely formal development process
have achieved.

References

[1] NBS Special Publication 500-98, Planning for Softwar
Validation, Verification, and Testing, November 1982.

[2] Boris Beizer,Software Testing Techniques (second edition.
Van Nostrand Reinhold, 1990.

[3] Boris Beizer, Software System Testing and Qualit
Assurance. Van Nostrand Reinhold, 1984.

[4] Genevieve Houston-Ludlam, in “Call for Papers, Testin
Computer Software Conference ‘99,”
<URL:news:comp.software.testing>, September 1, 1998.

[5] Richard Kuhn, William Majurski, Wayne McCoy, Fritz
Schulz, “Open Systems Software Standards in Concurre
Engineering,”Advances in Control and Dynamic System,
vol. 62, Academic Press, Inc., 1994.
7

/
/

0
/

,

er
[6] Jeanine Katzel, “Moving Down the Path to Open Systems,”
Plant Engineering Online, September 1997, <URL:http://
www.manufacturing.net/magazine/planteng/>.

[7] KC Morris, David Flater, Don Libes, Al Jones,Testing of
Interaction-Driven Manufacturing Systems, NISTIR 6260,
December 1998.

[8] The Rapide™ Language, Stanford University, <URL:http://
pavg.stanford.edu/rapide/>.

[9] The Acme Architecture Description Language, Carnegie
Mellon University, <URL:http://www.cs.cmu.edu/~acme/>.

[10] SADL: A Structural Architecture Description Language,
SRI Computer Science Laboratory, <URL:http://
www.csl.sri.com/dsa/sadl-main.html>.

[11] OMG Unified Modeling Language Specification (draft),
version 1.3 alpha R2,<URL:http://www.omg.org/arch2/ad/
99-02-01.pdf>, January 1999.

[12] B. Callaghan, B. Pawlowski, P. Staubach,NFS Version 3
Protocol Specification, Request for Comments: 1813, Sun
Microsystems, Inc., <URL:http://www.cis.ohio-state.edu/
htbin/rfc/rfc1813.html>, June 1995.

[13] The NFS Distributed File Service, NFS White Paper —
March 1995, <URL:http://www.sun.com/software/white-
papers/wp-nfs/>.

[14] ISO/IEC 9506-1 Industrial automation systems —
Manufacturing Message Specification, Part 1: Service
definition, International Standard, International
Organization for Standardization, 1990.

[15] ISO/IEC 9506-2 Industrial automation systems —
Manufacturing Message Specification, Part 2: Protocol
specification, International Standard, International
Organization for Standardization, 1990.

[16] OMG, The Common Object Request Broker: Architecture
and Specification. (CORBA) Includes a definition for the
Interface Description Language (IDL). <URL:http://
www.omg.org/corba/c2indx.htm>.

[17] Java Technology Home Page, <URL:http://java.sun.com/>.
[18] ISO 10303 Industrial automation systems and integration—

Product data representation and exchange—Part 22:
Implementation methods: Standard data access interface,
International Organization for Standardization, Draft
International Standard, 1998.

[19] Object Management Group Home Page. <URL:http://
www.omg.org/>.

[20] Revised Submission (including errata changes) — PDM
Enablers — Joint Proposal to the OMG in Response to
OMG Manufacturing Domain Task Force RFP 1.
<URL:http://www.omg.org/arch2/mfg/98-02-02.pdf>,
1998.

[21] James Kindrick, John Sauter, Robert Matthews, “Improving
Conformance and Interoperability Testing,”StandardView,
May 1996.

[22] Frederick P. Brooks, Jr.,The Mythical Man-Month, 1995
edition. Addison-Wesley.

[23] Laura Lee Rose,Getting the Most Out of an Automated Test
Tool. Rational Software Corporation, <URL:http://
www.rational.com/sitewide/support/whitepapers/
dynamic.jtmpl?doc_key=303>, 1998.

[24] NBS Special Publication 500-98,Planning for Software
Validation, Verification, and Testing, November 1982.

[25] Albert D. Baker, “A Survey of Factory Control Algorithms
That Can Be Implemented in a Multi-Agent Heterarchy:
Dispatching, Scheduling, and Pull,” Journal of
Manufacturing Systems, vol. 17, n. 4, 1998.

[26] Frederick P. Brooks, Jr.,The Mythical Man-Month, 1995
edition, p. 148. Addison-Wesley.

[27] MCITT home page. <URL:http://www.mel.nist.gov/
msidstaff/flater/mcitt/>, 1998.

[28] UML Notation Guide, Version 1.1, “Section 7: Sequence
Diagrams.” Rational Software Corporation, <URL:http:/
www.rational.com/uml/resources/documentation/notation
notation7.jtmpl>, September 1997.

[29] ITU-TS Recommendation Z.120, “Message Sequence
Charts (MSC).” ITU-TS, Geneva, 1996.

[30] Advanced Process Control (APC) Framework Initiative 1.
Specifications, 1997. <URL:http://www.sematech.org
public/docubase/abstract/3300aeng.htm>.

[31] UML Notation Guide, Version 1.1, “Section 8:
Collaboration Diagrams.” Rational Software Corporation
<URL:http://www.rational.com/uml/resources/
documentation/notation/notation8a.jtmpl>, Septemb
1997.
8

	Abstract
	1. Introduction
	2. Testing
	2.1 Considerations for testing components
	Layering of components
	A case study: Product Data Management
	Approaches to testing

	2.2 Considerations for system testing
	Interactivity
	Figure 1.� Simple interactivity diagram
	Figure 2.� Hierarchical interactivity diagram
	Figure 3.� Cyclic interactivity diagram
	Figure 4.� Chaotic interactivity diagram

	General technique for locating faults
	Network monitoring and capture/replay techniques
	Scenario based testing

	3. Conclusions and future work
	References
	[1] NBS Special Publication 500-98, Planning for Software Validation, Verification, and Testing, ...
	[2] Boris Beizer, Software Testing Techniques (second edition). Van Nostrand Reinhold, 1990.
	[3] Boris Beizer, Software System Testing and Quality Assurance. Van Nostrand Reinhold, 1984.
	[4] Genevieve Houston-Ludlam, in “Call for Papers, Testing Computer Software Conference ‘99,” <UR...
	[5] Richard Kuhn, William Majurski, Wayne McCoy, Fritz Schulz, “Open Systems Software Standards i...
	[6] Jeanine Katzel, “Moving Down the Path to Open Systems,” Plant Engineering Online, September 1...
	[7] KC Morris, David Flater, Don Libes, Al Jones, Testing of Interaction-Driven Manufacturing Sys...
	[8] The Rapide™ Language, Stanford University, <URL:http:// pavg.stanford.edu/rapide/>.
	[9] The Acme Architecture Description Language, Carnegie Mellon University, <URL:http://www.cs.cm...
	[10] SADL: A Structural Architecture Description Language, SRI Computer Science Laboratory, <URL:...
	[11] OMG Unified Modeling Language Specification (draft), version 1.3 alpha R2, <URL:http://www.o...
	[12] B. Callaghan, B. Pawlowski, P. Staubach, NFS Version 3 Protocol Specification, Request for C...
	[13] The NFS Distributed File Service, NFS White Paper — March 1995, <URL:http://www.sun.com/soft...
	[14] ISO/IEC 9506-1 Industrial automation systems — Manufacturing Message Specification, Part 1: ...
	[15] ISO/IEC 9506-2 Industrial automation systems — Manufacturing Message Specification, Part 2: ...
	[16] OMG, The Common Object Request Broker: Architecture and Specification. (CORBA) Includes a de...
	[17] Java Technology Home Page, <URL:http://java.sun.com/>.
	[18] ISO 10303 Industrial automation systems and integration— Product data representation and exc...
	[19] Object Management Group Home Page. <URL:http:// www.omg.org/>.
	[20] Revised Submission (including errata changes) — PDM Enablers — Joint Proposal to the OMG in ...
	[21] James Kindrick, John Sauter, Robert Matthews, “Improving Conformance and Interoperability Te...
	[22] Frederick P. Brooks, Jr., The Mythical Man-Month, 1995 edition. Addison-Wesley.
	[23] Laura Lee Rose, Getting the Most Out of an Automated Test Tool. Rational Software Corporatio...
	[24] NBS Special Publication 500-98, Planning for Software Validation, Verification, and Testing,...
	[25] Albert D. Baker, “A Survey of Factory Control Algorithms That Can Be Implemented in a Multi-...
	[26] Frederick P. Brooks, Jr., The Mythical Man-Month, 1995 edition, p. 148. Addison-Wesley.
	[27] MCITT home page. <URL:http://www.mel.nist.gov/ msidstaff/flater/mcitt/>, 1998.
	[28] UML Notation Guide, Version 1.1, “Section 7: Sequence Diagrams.” Rational Software Corporati...
	[29] ITU-TS Recommendation Z.120, “Message Sequence Charts (MSC).” ITU-TS, Geneva, 1996.
	[30] Advanced Process Control (APC) Framework Initiative 1.0 Specifications, 1997. <URL:http://ww...
	[31] UML Notation Guide, Version 1.1, “Section 8: Collaboration Diagrams.” Rational Software Corp...

	Standards-Based Software Testing in a Net-Centric World
	KC Morris
	David Flater
	Manufacturing Systems Integration Division
	National Institute of Standards and Technology

