U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 4411

Nationd PDES Testbed
Report Saries —

—

TheNIST STEP
ClassLibrary

(STEP Into The Future)

NATIONAL

£

TESTBED

NIST

U.S. DEPARTMENT OF COMMERCE

National Institute of Standards and Technology

NISTIR 4411

Nationd PDES Testbed

Report Series

\
NATIONAL

&

TESTBED

U.S. DEPARTMENT OF

COMMERCE

Robert A. Mosbacher,

Secretary of Commerce

National Institute of

TheNIST STEP
ClassLibrary

(STEP Into TheFuture)

Michad J. McLay
KatherineC. Morris

Standards and Technology

John W. Lyons, Director

August 1990

@e‘{\' OF ¢, O@

A

£

g 2

g m

[<<

S S
£ &

> &

S74 TES OF v

The NIST STEP Class Library?!
(STEP Into The Future)

Michael J. McLay (mclay@cme.nist.gov)
Katherine C. Morris (kc@cme.nist.gov)
Factory Automation System Division
National Institute of Standards and Technology

“ Any meaningful exchange of utterances depends upon the prior existence of an
agreed set of semantic and syntactic rules. The recipients of the utterances shall use
only thoserulesto interpret the received utterancesif it isto mean the same as that
which was meant by the utterer.”

--Helsinki Principle

Key Words

STEP, PDES, CALS, C++, data exchange standards, National PDES Testbed,
CAD, CAM, CAPP, IGES, STEP Class Library, Express Language

Abstract

This paper describes a C++ class library that implements the STandard for the
Exchange of Product Model Data (STEP). The STEP Class Library (SCL) isunder
development at the National Institute of Standards and Technology as part of the
National PDES Testbed. It provides a core set of classes for tools used to validate
the STEP conceptual data models and for STEP based application prototypes. The
library is also intended to facilitate the development of STEP compliant
applications. Thecurrent version of thelibrary providesafile exchange mechanism
based on a protocol defined by STEP. Consequently, users of the classlibrary will
not have to create an input/output mechanism for STEP.

The paper provides an introduction to STEP and the conceptua schema language,
Express, in which STEP models are defined. The supporting classes that provide
the STEP compliant input/output mechanism and the mapping between the Express
specification and the C++ classes are described. The paper concludes with
descriptions of some applicationsthat usethe classlibrary and adiscussion of future
directionsfor the library.

1. The library and its source code, are under development by the Nationa Institute of Standards and
Technology (NIST), a U.S. government agency. As with all software developed by the government, the
library is not subject to copyright restrictions.

Reprinted from the C++ at Work ‘90 conference proceedings with permission granted by The C++ Report.
(No approval or endorsement of any commercia product by the National Institute of Standards and Technology
isintended or implied.)

1.0 I ntroduction

This paper describes the STandard for the Exchange of Product Model Datal
(STEP) [NCGA90] [Smith89] and the STEP Class Library(SCL). STEPisa
conceptual specification that formsabasis for communicating product information
(e.0., shape, materials, electrical functions, part numbers, etc.). SCL provides C++
classesthat can be used to implement applications such as el ectrical and mechanical
CAD/CAM tools, Computer Aided Process Planning (CAPP) tools, manufacturing
systems, product configuration control systems, and engineering analysistools.

The STEP Class Library (SCL) defines classes and member functions to represent
the product information defined by STEP. Thelibrary isto be used as abasisfor
the development of toolsfor testing the validity of the STEP conceptual datamodels
and as a basis for a prototype implementation of the STEP Data Access Interface
Soecification (SDAIS) [Briggs90]. These applications are able to use SCL classes
directly or as alink between a proprietary system and the STEP exchange
mechanism. For a system that providesits own STEP interface, SCL can be used
as areference standard for conformance testing.

Following a brief discussion of STEP, the paper provides a short introduction to
Express, the conceptual modeling language used for STEP. Next the components
of SCL are described along with examples of Express product information
definitionstrandated into C++ classes. Finally, examplesof projectsusing SCL are
described, and the paper concludes with adiscussion of SCL development to date
and thoughts on future directions.

2.0 The Impact of STEP

Although computer technology has expedited many business transactions, sharing
product information within and between organizations has been problematic. In

1979 the National Institute of Standards and Technology (NIST)2, in cooperation
with representatives from industry, began investigating solutions to this problem
[Bloom89]. The original effort resulted in the Initial Graphic Exchange

Soecification (IGES) 3[NCGA90] [Smith89], which is suitable for exchanging
information among CAD systems. STEP is an outgrowth of IGES and is intended
to provide abasis for sharing product information at all levels and stagesin a
product’slife cycle. The key differences between IGES and STEP are the breadth

1. STEP is a project of the International Organization for Standardization (1SO) Technical Committee on
Industrial Automation Systems (TC 184) Subcommittee on Manufacturing Data and Languages
(SC4).[NCGA90] [Smith89]

2. The Omnibus Trade Act of 1988 changed the mission of the National Bureau of Standards (NBS) toinclude
promotion of technology transfer between government labs and private industry. This redirection prompted
the name change to the National Institute of Standards and Technology (NIST). With the changein mission,
NIST isnow pursuing an even more active role in promoting commerce in the U.S.

3. Versions 1.0, 3.0 and 4.0 of I GES have been adopted by the American National Standards Institute (ANSI)
asANSI Y 14.26M-1981, ASME/ANSI Y 14.26M-1987 and ASME/ANSI Y 14.26M-1989, respectively.

The NIST STEP Class Library Page 2

21

of the information covered and the switch in focus from merely exchanging datato
sharing information.

One of the lessons of the IGES effort is that transmitting datais not the same as
transmitting the information necessary to fully describe a product. The Helsinki
Principle, quoted at the opening of this paper, points out what is missing. Without
the “agreed set of semantics and syntactic rules’, exchanging datais meaningless.
STEP expanded on | GES by specifying a consistent use of the semantics of product
datain addition to the specification of the data.

Initially, the STEP devel opment effort focused on building conceptual datamodels.
The requirement to support the models of existing CAD and CAM systems made
this task difficult because the models overlapped and conflicted. For example, a
curve through space can be represented as a b-spline, asalist of curve segments, or
as anon-uniform-rational b-spline (NURB). The STEP modelers undertook the
very difficult job of defining mappings between the different representations of the
same information. STEP currently consists of a group of clearly and formally
defined conceptual data models and a physical exchange protocol based on these
models[Alte88b]. Ultimately, the conceptual modelswill beintegrated intoasingle
model, and the exchange protocol will take other forms such as a standard interface
to a shared database and/or common memory.

STEP is an ambitious standardization effort that involves several hundred
individuals in twenty-six countries. The initial draft of STEP [Smith88], totaling
over 6000 pages, was submitted to 1SO in December 1988. The draft specification
isdivided into twenty-eight application areas, providing comprehensive coverage
of product-related datafrom geometry and structural tolerancesto electrical design
and configuration management. When tranglated into C++, the draft STEP model
producesover 1300 class definitionsthat interweave to ensure consi stent use of data
and semantics in describing a product.

The National PDES! Testbed? was established at NIST in 1988 asaneutral testing
siteto provide national leadership in the STEP devel opment and testing effort. The
facility is used to test the quality of the evolving conceptual datamodels[Mitch90]
and to investigate the suitability of new technologies to the application areas
covered by STEP [Fowler90].

Motivation for the NIST STEP ClassLibrary

The principal objectivesfor creating the STEP Class Library (SCL) are to support
the development of conceptual datamodel testing tools, prototype applications, and
eventually, conformance testing. A secondary objective of developing thislibrary
is to reduce the economic barrier of introducing STEP into the work place and,

1. Product Data Exchange using STEP (PDES) refersto the United States development activity in support of
STEP. NIST serves as the Secretariat of the IGES/PDES Organization, which coordinates the United States

2. Funding for the Testbed has been provided by the Department of Defense’'s Computer-Aided Acquisition
and Logistic Support (CALS) Office.

The NIST STEP Class Library Page 3

3.0

31

311

consequently, to accelerate the rate of growth of STEP-compliant applications. To
facilitate application devel opment, the STEP data exchange mechanismisbuilt into
member functionsin the classlibrary, thus eliminating the need to rewrite this code
for each application.

In addition, the use of astandard classlibrary can also reduce ambiguitiesthat could
potentially beread into the specification. With over 6000 pagesin the specification,
itislikely that some misinterpretation could occur. Thevalue of areferencelibrary
in simplifying implementation and ensuring conformance was proven with the X
Window System Project [Scheifler88]. The rapid acceptance and almost universal
conformity to the X Window System protocol can be attributed largely to the fact
that the protocol was completely covered by alayer of C library calls. For the X
Window System, the reference implementation also provided a convenient
mechanism for thetesting of protocol implementationsin other languages. SCL has
been developed with the hope that it will have asimilar impact on STEP
implementation and acceptance.

The Approach to I mplementing STEP

The STEP conceptual model is specified in the language Express [Schenck90].
Expressis aconceptual modeling language that defines how data are interrel ated.
While Express resembles many computer languages and has an LRN(1) syntax, it
isnot an executable language. Several parsersfor the language are available to
check the syntax of conceptual datamodelswritten in Express and to serve asfront
ends for tranglators between Express and other languages. At NIST an Express
parser is used to translate some of the constructs of Express into SQL (Structured
Query Language) [ANSI86], Smalltalk [Goldberg85], and C++ [Ellis& Strou90].
Eventually the standard will provide common memory and shared database
implementation rules, but for now the definition is limited to a single exchange
format -- that of an exchangefile.

The Express Language as a Conceptual M odeling L anguage

The components of the Express language addressed in this version of SCL are
schemas, types, entities, and constraints. The following sections describe each of

these components in more detail 1 The examples used in the balance of the paper
are derived from schemas in the draft specification [Smith88].

Schema

A schemaisacollection of the information needed to describe amodel in the terms
of agiven discipline. A schema consists of types, entities, and constraints. They
may be nested and/or include other schemas. A collection of schemasis needed to
represent the information required for a complete product model.

1. Functions and procedures will be mapped into C++ in afuture release of SCL.

The NIST STEP Class Library Page 4

312 Type

In Express the concept of type is similar to that of a datatype in a programming
language. Express contains alimited set of built-in types from which other types
can be defined. For example, the following statement declares inspection_process
to be of type STRING.

TYPE inspection_process = STRING;
END_TYPE;

Express also provides enumerated typesin aform similar to C and C++. The
position in alist of enumerated items determines the value associated with the
items. Thevalue of thefirst item isless than the second; the second is less than the
third, etc.. The example below isan enumerated type in Express.

TYPE coordinate_system_type = ENUMERATION OF
(rh_rectangular, rh_cylindrical, rh_spherical,
Ih_rectangular, Ih_cylindrical, In_spherical);

END_TYPE;

Several other constructs for type definitions are available for Express but will not
be discussed in this paper.

3.1.3 Entity

An entity represents a data structure similar to atable in arelational database, a
struct in a C program, or aclassin a C++ program. Entities are organized
hierarchically; an entity can have zero or more subtypes and/or supertypes. Three
types of attributes are the components of entities. explicit, inherited, and derived.
Explicit and inherited attributes indicate the set of data needed to represent an
instance of an entity. Explicit attributes are specified inside of an entity declaration
just asamember isdeclared inside of aC++ classdefinition. Aninherited attribute
isspecified in asupertypeentity in Expressjust asamember isinherited from abase
into aderived classin C++. Finally, aderived attribute is calculated from other
attributes by using an algorithm defined in the conceptual datamodel. InC++a
member function is the closest construct to a derived attribute. In the example
shown in Figure 1, the explicit attribute local _coordinate system would be an
inherited attribute in the entity cartesian_point.

The NIST STEP Class Library Page 5

ENTITY geometry

SUPERTYPE OF (point XOR

vector XOR

curve XOR

surface XOR

coordinate_system XOR

transformation XOR

axis_placement);
local_coordinate_system : OPTIONAL coordinate_system;
axis : OPTIONAL transformation;

END_ENTITY;

ENTITY curve

SUPERTYPE OF (line XOR
conic XOR
bounded_curve XOR
offset_curve)

SUBTYPE OF (geometry);

WHERE

arcwise_connected(curve);

arc_length_extent(curve) > 0;

END_ENTITY;

ENTITY line

SUBTYPE OF (curve);
pnt :cartesian_point;
dir :direction;
WHERE
coordinate_space(pnt) = coordinate_space(dir);
coordinate_space(line) = coordinate_space(pnt);
arc_length_extent(line) > O;
END_ENTITY;

ENTITY point

SUPERTYPE OF (cartesian_point XOR
point_on_curve (* XOR
point_on_surface
point_on_surface *))

SUBTYPE OF (geometry);

END_ENTITY;

ENTITY cartesian_point

SUBTYPE OF (point);

x_coordinate : REAL;

y_coordinate : REAL;

z_coordinate : OPTIONAL REAL;

DERIVE

space : INTEGER := coordinate_space(z_coordinate);
END_ENTITY;

Figurel. Example of Express entity definitions from the Geometry model.

3.14 Constraint

Constraints both internal to an entity and between entities can be represented in an
Express conceptual datamodel. Internally, an entity may have its attributes

The NIST STEP Class Library Page 6

3.2

constrained in terms of uniqueness and existence through the use of key wordsin
the entity definition. For example, the entity product_assembly _definitionin Figure
2 uses the key word UNIQUE to constrain the attributes document_number and
schematic_reference. A where clause can be used to further constrain the domain
of an attribute’ svalue. Inthe example, the entity isconstrained by thewhere clause
that requires that the entity not be in the component_list.

ENTITY product_assembly_definition;
document_number : STRING;
schematic_reference : schematic;
component_list : LIST [1:#] OF component_select;

UNIQUE
document_number;
schematic_reference;

WHERE
NOT (product_assembly_definition IN component_list);

END_ENTITY;

Figure 2. Example of constraintson an entity from the PSCM M odel

In addition to these constraints, which are applicable within an entity, there are
constraints specified through rules. Rules are used to describe the relationships
among the instances of entities. Figure 3 includes arule named

product_item and_version that illustrates the nature of such constraints. Thisrule
ensuresthat aproduct_itemisonly associated with asingle product_item version.
The product_item and _version ruleis simple but carries important semantics
about the relationship between the entities product_itemand product_item version.

RULE product_item_and_version FOR (product_item, product_item_version);
IF (instantiation(product_item_version, product_item) <> 1) THEN VIOLATION;
(* A PRODUCT_ITEM_VERSION is associated with one PRODUCT_ITEM *)
END_IF;
END_RULE;
Figure 3. Example of arulefrom the PSCM M odel

C++ asan Implementation Language

C++ was chosen as the language of implementation for the STEP Class Library for
several reasons. First, alanguage that supports the object paradigm
[Cox87][Kim89][Meyer88] was desired. The STEP conceptual models are
hierarchical, and the concept of inheritance is fundamental to their organization.
Also, alanguage that would be able to handle large and complex data files or
databases without paying alarge performance penalty was needed. Another
consideration was the need for an implementation language that was compatible
with awide variety of software packages (compilers, databases, debugging tools,

The NIST STEP Class Library Page 7

compatible graphics packages, etc.). Finaly, it was desirable to use a standardized

language or at least alanguage that had the promise of becoming a standard soont.
Portability and modularity are necessities when trying to implement a standard for
data exchange.

4.0 The STEP Class Library Architecture

SCL isacollection of several component libraries. The STEP Schema Class
Library holds container classes that are directly mapped from the STEP models.
The STEP Core Class Library provides the context-independent data access
mechanisms for the STEP data and the mechanisms for capturing semantic
information in the STEP schemas. The STEP Data Probe Class Library supports
the context-independent browsing and transport control to the STEP Schema Class
Library. Thesethreelow level libraries form the foundation for the future STEP
Data Access Interface Specification (SDAIS) library. SDAIS[Briggso0] will
provide a uniform interface for applications to create, retrieve, and manipulate
STEP data. The STEP Data Probe Class Library and the SDAIS are in the design
stage and are not covered in this paper.

4.1 STEP Schema ClassLibrary: Trandation of the Conceptual Model

The STEP Schema Class Library isthe set of filesthat result from the transl ation of
a STEP schema. Thesefiles are generated automatically using the Fed-X Toolkit
[Clark90] for trandating Express and are producible from an Express schema. The
program fedex_plus, which is a backend to Fed-X, takes a conceptual data model
writtenin Expressasinput and generatesthree C++ filesfor each schema. The C++
code in these files provides the class definitions and member functions for STEP
entities needed by an application program.

411 Schemas

When aSTEP Schema Class Library isgenerated from an input file of Expresstext,
each schema of the Express conceptual data model generatesthefollowingfiles: a
header file of class definitions, alibrary file of classfunctions, and aninitialization
file. The classes defined in the header file correspond to the entities and types
defined in that schema. Presumably, any application using any one of these entities
will need to use several of the entitiesin the schema; therefore, they are al placed
in the samefile. If the schemaincludes any other schemas, the header filesfor the
other schemas are included, using a #include statement, in the owning schema’'s
header file. Theinitialization file containsafunctionthat must be calledtoinitiaize
aprogram to use the particular schema. The files are named after the schema that
they represent.

1. The ANSI X3J16 committee on “ C++ Programming Language” was formed in December 1989. Aninitia
draft based onthe AT& T C++ Reference Manual is currently under review by the committee.

The NIST STEP Class Library Page 8

4.1.2

Express schemas are not completely self-contained. Figure 4 shows the schemas
defined inthe original draft of STEP. In order to create aglobal schema, references
to entities from external schemas must be resolved. To implement thisin C++ the
header files that represent the external schemas containing the referenced entities
areincluded in the schema sheader file. An application based on SCL includesthe
header filesfor the schemas needed by an application and link in the corresponding
archivefiles. The SCL file structure ensures that the references to the schema are
resolved.

resources life_cycle
applications geometry
topology shape
design_shape nominal_shape
solids shape_interface
features tolerances
material presentation
product_manifestation drafting
mechanical_product pscm

aec aec_core
ship_structure electrical
electrical_functional electricaltic_schema
lep analysis

fem data_transfer

Figure 4. Schemasfrom STEP draft

Entities

Every entity defined in an Expressfileismapped into acorresponding classin C++.
The supertype/subtype rel ationship of Expressalso mapsinto the base class/derived
classrelationship of C++. Express entity names are not case sensitive. To ensure
that the names are consistently translated into C++ classes, the following rules are
applied in the trandation.

1. All charactersin aname are translated to lower case.

2. Then thefirst letter in the name and any letter immediately following an
underscore character “_” are made upper case.

The assumption is made that the Express schemas are logically divided so that no
naming conflicts between schemas will arise in application software devel oped
using theselibraries. Figure5 showsthe header file of C++ classdefinitionsthat is
created when fedex_plus uses the Express code from Figure 1 as input.

The NIST STEP Class Library Page 9

#include "definedtypes.h"
#include "STEPentity.h"

class Geometry : public STEPentity {
protected:
STEPentity * _local_coordinate_system ; // OPTIONAL
STEPentity * _axis; // OPTIONAL
public:
Geometry ();
~Geometry ();
char *Name () { return "Geometry"; }
int opcode () {return1;}
class Coordinate_System* local_coordinate_system()
{ return (class Coordinate_System*) _local_coordinate_system; }
void local_coordinate_system (class Coordinate_System* x)
{ _local_coordinate_system = (STEPentity *)x; }
class Transformation* axis() { return (class Transformation*) _axis; }
void axis (class Transformation* x) { _axis = (STEPentity *)x; }

b

class Curve : public Geometry {
protected:
public:
Curve ();
~Curve ();
char *Name () { return "Curve"; }
int opcode () {return4;}

b

class Line : public Curve {
protected:
STEPentity * _pnt;
STEPentity * _dir ;
public:
Line ();
~Line ();
char *Name () { return "Line"; }
int opcode () {return 24 ;}
class Cartesian_Point* pnt() { return (class Cartesian_Point*) _pnt; }
void pnt (class Cartesian_Point* x) {_pnt = (STEPentity *)x; }
class Direction* dir() { return (class Direction*) _dir; }
void dir (class Direction* x) { _dir = (STEPentity *)x; }
h

class Cartesian_Point : public Point {
protected:
real _x_coordinate ;
real _y coordinate ;
real _z_coordinate ; // OPTIONAL

public:

Cartesian_Point ();
~Cartesian_Point ();
char *Name () { return "Cartesian_Point"; }
int opcode () {return 10;}
real x_coordinate() {return (real) _x_coordinate; }
void x_coordinate (real x) {_x_coordinate = x; }
real y_coordinate() {return (real) _y_coordinate; }
void y_coordinate (real x) {_y_coordinate = x; }
real z_coordinate() {return (real) _z_coordinate; }
void z_coordinate (real x) {_z_coordinate = x; }

h

Figure5. Example of entities from Geometry schematranslated into C++

The NIST STEP Class Library Page 10

4.1.3

Attributes

All Express attributes are implemented as C++ classes regardless of the datatype
of the attribute. Built-in Express datatypes are represented directly in the
corresponding entity class; otherwisethe attributeisimplemented asapointer to the
appropriate C++ class.

Explicit Attributes

For each explicit attribute in an Express model there is a corresponding data
member in the protected section of the C++ class definition. In addition, there are
apair of access functions for each data member: one for assignment and the other
for retrieval of thedata. In an attempt to isolate applications from changes to the
conceptual model adata member isassigned or retrieved through access functions
rather than being assigned or retrieved directly. This eliminates the maintenance
problem that occurs when an application’ s software assigns or retrieves an attribute
directly. Using an access function eliminates the need to update every reference to
the data member in the software when the implementation details of the data
member are altered. This approach increases schema independence and facilitates
modularity of the software. From the example in Figure 5, the access functions

real x_coordinate() { return (real) _x_coordinate; }
and
void x_coordinate (real x) {_x_coordinate = x; }

are defined for the x_coordinate attribute of the Cartesian_Point entity. Similar
functions are defined for they_coordinate and z_coordinate attributes.

Inherited Attributes

Inheritance of attributes in Express resembles the inheritance supported by C++.
For the time being it is sufficient to represent inherited attributes through the
standard C++ mechanisms; however, trangating the other types of inheritance
defined by Expressinto C++ isalso being investigated. Thisissueisaddressed later
in this paper. In Figure 5 the access functions

class Transformation* axis() { return (class Transformation*) _axis; }
and

void axis (class Transformation* x) { _axis = (STEPentity *)x; }
are inherited down into the Cartesian_Point class as inherited attributes.
Derived Attributes

Derived attributes are implemented as member functions.

The NIST STEP Class Library Page 11

4.2

4.2.1

STEP CoreClassLibrary: Context Independent Classes

The STEP Core Class Library (SCCL) isacaollection of context independent class
definitions used by the schema dependant classes that are found in the STEP
SchemaClassLibrary. Classesfoundinthe SCCL include acommon base classfor
all STEP entity class definitions and classes to maintain metainformation from the
schemas. After abrief description of some problems solved by the SCCL, this
section will conclude with definitions of the major classesin thislibrary.

A problem with any translation of a conceptual model into an implementation
language isin the trandation of the semantics conveyed by the conceptual model.
The symbolic names used in amodel store some of the meaning intended by the
modelers. Consider the following type definition.

TYPE inches = INTEGER;
END_TYPE;

To ahuman reading a conceptual model, the term inches conveys moreinformation
than theterm integer. At first glance, it may seem asif inches can ssmply be
translated to an integer and all would be well; however, this approach loses the
semantics captured by the term inches. Furthermore, many of the tools that are
being devel oped explicitly require that the symbolic information be available.

To capture the symbolic information several classes have been created. The
STEPentity class captures information pertaining to the entities of the conceptual
model; the STEPattribute class handles the descriptions of the entity’s attributes.
The STEPenumeration class currently stores the symbolic name of enumerated
values. A classto retain the definitions types specified in the conceptual data
models is the subject of future work.

The STEPentity Class

Metainformation for every Express entity is stored in the base class STEPentity.
This classisthe root of each tree of classes corresponding to the entitiesin the
Express conceptual data model. The data members and member functions for the
class STEPentity are:

Data Members Description
instance_id aglobal identifier represented as an integer assigned to
each instance of an entity
STEPfile id an identifier assigned to an instance in the input STEP
exchangefile
reference_count an integer referring to the number of referencesto a

particular instance
application_marker an integer reserved for use specific to an application

attributes the list of pointersto the standard data members
specified in the STEP conceptual data model

The NIST STEP Class Library Page 12

Member Functions Description

Name the virtual function that returns the entity name for an
instance of aclass.

opcode the virtual function that returns an integer assigned to
represent a STEP entity

STEPwrite prints out an entity using the STEP exchange protocol.

beginSTEPwrite prints out any unprinted entities referenced by the entity
being printed.

STEPread reads an input stream of datain the STEP exchange
format and assignsthe values to the data members of the
classinstance.

The exchange protocol implemented by STEPwrite and STEPread in the current
version of SCL isdefined in an SO document [Alte88a]. The ISO TC184/SC4/
WGL1 working group, which isinvestigating mechanisms for sharing data between
applications, developed the protocol. Eventually, the standard will provide
implementation rules for common memory and shared databases, but for now the
definition is limited to this single exchange format.

A key design goal for SCL was to isolate the implementation of the exchange
protocol from the class definitions in the STEP Schema Class Library. By doing
S0, it is possible to change the exchange protocol without disturbing code that uses
the STEP Schema Class Library. This also hides the details of the protocol from
the application developers. The following details of the current protocol should
never be seen directly by the developers. It has been included for reference
purposes only.

The exchangefile has a syntactic format based on an Express schema. The
fileisaseries of setsof datavalues. Theformat of the data sets is based directly on
the entity definitions of the corresponding conceptual datamodel. Figure 6 shows
an example of the file exchange format. The numbers preceded by the symbol @
are instance identifiers, which are assigned to the data member STEPfile id by the

member function STEPread.
STEP;
HEADER;
FILE_IDENTIFICATION(IBMPRTZ2',1990 01 24 18 30 17’,(L.MCKEE'),(COMPANY 3),'1’,’1’PDES’);
FILE_DESCRIPTION('SIMPLE PART);
IMP_LEVEL(USER DEFINED ENTITIES ONLY’);
ENDSEC;
DATA;

@19=DIRECTION(,,0.7071067845031212,0.7071067845031212,0.);
@20=DIRECTION(, -0.7071067845031212,0.7071067845031212,0.);
@21=DIRECTION(,,0.,0.,1.0000000308363815);
@22=CARTESIAN_POINT(,,0.0625,21.3794994354248047,11.5299997329711914);
@23=TRANSFORMATION(, #19,#20,#21 #22,);
@24=COORDINATE_SYSTEM(,,#23);

Figure6'. Excer pt from a STEP exchange file based on the Geometry model

The NIST STEP Class Library Page 13

4.2.2

423

An issue of concern in thisimplementation was whether to make the STEPentity
classavirtual or base parent of the schemaclasses. Currently the STEPentity class
isimplemented as aroot node of each entity hierarchy. However, aschemais not
required to be atrue hierarchy; therefore, it would be more general toimplement the
classasavirtual parent of each STEP class. There are several reasons why this
implementation was not chosen. Firgt, it isless generic in the sense that the ability
to cast a pointer to avirtual parent to a pointer to the appropriate classis not built
into C++. Second, virtual classes were first supported in C++ version 2.0 which
supportsmultipleinheritance. Version 1.2 of C++ doesnot support this, and several
of the database systems being considered for incorporation into the software
currently run only with Version 1.2. The problem of a non-hierarchical entity
structure has not been a concern with the models used to date.

STEPattribute

The data member attributes of the class STEPentity isalist of pointersto data
members that are STEP attributes. These pointers are represented by the class
STEPattribute. A STEPattribute object contains the following data members:

Data Members Description
shared aBoolean value indicating whether the attribute is also
usable by another instance of a STEPentity
nullable aBoolean value indicating whether the attribute needsto
be populated for the instance to be avalid STEP instance
type an enumerated value that indicates the data type of the
attribute
name the name of the attribute as specified in the STEP
conceptual data model
ptr the pointer to the data member representing the attribute
type_name name of atype as defined in the Express conceptual data
model
Member Functions Description
aread reads in an attribute from an istream in the format
specified by the STEP exchangefile
screen_read reads in an attribute' s value from standard input
aprint prints out an attribute in STEP exchange format

STEPattributelList

The STEPattributelist classis the key to providing common functionality for
members of the STEPentity class. A STEPattributeList isalist of STEPattributes.
Thelist can be used to traverse the STEP data members of any entity instance. For
example, STEPwrite can traverse the STEPattrrtibutelist for any STEPentity and
print the value of each element in the list in the format of the STEP exchangefile.

The NIST STEP Class Library Page 14

4.2.4

5.0

5.1

5.2

The STEPwrite functionisonly defined in one place rather than being redefined for
each entity. The STEPattributeList could also be used to print the names of the
attributes.

STEPenumer ation

Enumerated data types are handled by the base class STEPenumeration. Thisclass
maintains alist of the symbolic values that an enumeration is able to assume. An
enumeration hastwo constructors. one accepts an integer value and the other takes
acharacter string, which is the enumeration’s symbolic value. The constructors
check to make surethat the given valueisin the specified domain. It may seem that
an enumerated typein the conceptual datamodel should be directly translated to an
enumerated type in C++; however, this translation loses the semantics of the
enumerated type. The symbolic values of the enumeration are both necessary and
desirable. These values are needed to interpret a STEP exchange file in which
enumerated values are represented by their symbolic names. When building
interactive data editors that prompt the user for values, it is desirable to have such
information available.

Example Applications

Several prototype applications have been started using SCL and several others are
in the planning stage. The following sections describe afew of thesefirst attempts
at using the library to implement STEP.

STEP Data Probe

The STEP Data Probe is being developed in the National PDES Testbed to support
validation testing of the STEP model. Test datawill be created, viewed, changed,
and deleted using the STEP Data Probe. The probe can also be used to browse the
STEP schemas.

In some cases, using the probe directly will have limited practicality, such aswhen
trying to locate a specific point or edge in alarge mechanical structure. Inthese
circumstances the probe will be integrated into higher level viewing aids, such asa
solid model browser. Inthisconfiguration, the DataProbewill be given areference
from the graphic browser when an edge or acorner is selected. The probe will
present aview of the STEP data that corresponds to the item that was graphically
selected. In thisrole the probe will provide a practical and consistent mechanism
for viewing STEP data. To incorporate the STEP Data Probe functionality into an
application, the developer will link in the STEP Data Probe Class Library (see
Section 4.0).

|GESto STEP Trandator

Many existing CAD systems currently support IGES and not STEP; therefore, it
was useful to create atranslator between the two specifications. The resulting tool
provides a convenient mechanism for generating data for testing the STEP
conceptual data models.

The NIST STEP Class Library Page 15

The translator includes a parser for the IGES file format and classes that represent
IGES entities. When the IGESfileis parsed, the data are placed into alist of
instances of the IGES classes. Each IGES class has a member function called
makepdes that translates the IGES entity into the corresponding STEP entities.
Figure 7 showsthe definition of aclassrepresenting the |GES construct LineEntity.
Figure 8 showsthe definition of the makepdesvirtual member function that doesthe
tranglation into the corresponding STEP objects. The code that cycles through an
IGESfile and builds the STEP file uses alinked list class, astring class, fewer than
100 lines of additional code in parser routines. The function translate, shown in
Figure 9, uses the virtual function makepdes to cycle through the various |GES
objects and tranglate them into STEP objects.

class LineEntity : public DeNode {
public:

real x1;

rea y1;

real z1,

real x2;

rea y2;

real z2;

void popul ateparameters(String);
void makepdes();
} .

Figure7. Example of the C++ representation of an IGES entity

void LineEntity:: makepdes(){
PolyLine *line = new PolyLine();
Transformation *local_transformation;
if (this->transformation_matrix == 0) local_transformation = NULL;
else
local_transformation = ((TransformationM atrixEntity*)
mylist[this->transformation_matrix])->PdesTransformation;
line->axis = local_transformation;
CartesianPoint * point = new CartesianPoint();
point->x_coordinate = x1,
point->y_coordinate = y1;
point->z_coordinate = z1;
line->points.push(point);
pdeslist.push(point);
point = new CartesianPoint();
point->x_coordinate = x2;
point->y_coordinate = y2;
point->z_coordinate = z2;
line->points.push(point);
pdeslist.push(point);
pdeslist.push(line);
}

Figure 8. Example of makepdes member function for an | GES entity

The NIST STEP Class Library Page 16

5.3

54

void trandate(){
int index;
DeNode *entry = mylist.First();
while (mylist. AtEnd() '= 1) {

index = entry->sequence_number;
entry->makepdes();
if (index != entry->sequence_number) entry = mylist.Index(index);
entry = mylist.Next();

Figure 9. Function translate from the IGESto STEP trandator

Databases

STEP providesthe definition of product information, but it does not define how the
data are stored. Some applications will rely on exchange files, others may require
relational databases, and yet other STEP applications may use an object-oriented
database.

The implementation of a database is not the target of the standardization effort.
Within the Testbed, however, the conceptual data modeling and validation
activities need accessto adata storage and query capability. Consequently, storage
tools have beeninvestigated. At present, alimited SQL -based implementation of a
STEP database has been developed. The SQL statements to generate the database
tables were directly translated from Express using the Fed-X parser.

An object-oriented database implementation of STEP is being considered for the
Testbed, but this effort is currently limited by the lack of an object-oriented
equivalent of the SQL standard. Thereisinterest in STEP among object-oriented
database vendors, and several vendors are investigating approaches to
implementing STEP in their databases.

Process Planning T ool

The STEP model has incorporated many of the features of a process planning
language called ALPS (A Language for Process Specification) [Catron& Ray90],
which has been developed at NIST. An Express language based conceptual model
for ALPS has been trandated into C++ using fedex_plus and the resulting classes
arebeing used with SCL as part of a C++ implementation of ashop floor controller.
Future plansfor this project include extending the exchange mechanism of SCL to
store the process work plans in an object-oriented database.

The NIST STEP Class Library Page 17

6.0

7.0

Summary

The existing version of SCL only partially meets the needs of a classlibrary for
implementing or testing STEP. Severa of the significant tasks that will be
addressed in the future development of SCL are examined below.

SCL has not addressed enforcement of some of the constraints on STEP entities.
Without enforcement of these constraints, the semantics of STEP will not be fully
enforced by thelibrary. The most difficult challengein constraint checking will be
inimplementing therulesand where clauses. The current plansfor implementation
call for avirtual member function, named STEPvalidate, in the STEPentity class.
For each entity classin the STEP Schema Class Library a specialized version of
STEPvalidate would be generated to enforce the constraints of the entity.

The mapping of inclusive subtypes from Expressinto C++ must also be resolved.
While the C++ inheritance model is sufficient for representing generalization
relationships [Smith& Smith77] where the subtype declarations are all mutually
exclusive, it does not directly support the type of inheritance representation found
intheinclusive subtype construct. Another method must be devel oped for dealing
with this construct.

Functions and procedures from the Express language will be mapped into C++ina
future release of SCL.

The existing implementation of SCL only provides an exchange protocol for STEP
data. Future releases may incorporate a database system, an SDAIS class
implementation, and a shared memory implementation.

In the long term it would be helpful to further develop the STEP Schema Classes
themselves by adding functionality which, although useful and necessary to an
application, is not directly derivable from a specification written in Express. For
example, amove function could be added to the Geometry classto relocate it in
space. Thisfunction would be generally applicable to any object of thistype.

Conclusion

An aphaversion of the STEP Class Library has been used in several prototype
applications. This version meets many of the interface requirements of the draft
specification of STEP. The results of this proof-of-concept devel opment effort
demonstrates that C++ provides an effective implementation mechanism for STEP
and that the library mechanism devel oped for this project provides a manageable
development tool. The project will proceed with plansto use SCL asthe basisfor
toolsin the Testbed, application prototypes, and a reference implementation.

The NIST STEP Class Library Page 18

References

[Alte884d]
[Altes8b]
[ANSIS6]

[Bloom89]

[Briggs90]

[Catron& Ray90]

[Clark90]

[Cox87]
[Ellis& Stroug0]
[Fowler90]
[Goldberg8s]
[Kim89]
[Meyer8g]

[Mitchoo]

[NCGAQQ]

The NIST STEP Class Library

Altemueller, J., The STEP File Structure, 1SO TC184/SC4/WG1
Document N279, September, 1988.

Altemeuller, J., Mapping from Express to Physical File Structure,
SO TC184/SC4/WG1 Document N280, September, 1988.

American National Standards Institute, Database L anguage SOL,
Document ANSI X3.135-1986.

Bloom, H. The Role of the National Institute of Standards and
Technology asit Relates to Product Data Driven Engineering,
NISTIR 89-4097, National Institute of Standards and Technology,
Gaithersburg, MD, April 1989.

Briggs, D., et a., STEP Data Access Interface Specification, SO
TC184/SC4/WG1/SG3 Document N499, June, 1990.

Catron, B., and Ray, S., ALPS - A L anguage for Process
Specification, International Journal of Computer Integrated
Manufacturing, special issue on Process Planning and Design for
Manufacture, expected November 1990.

Clark, S.N., Fed-X: The NIST Express Trandator, NISTIR 90-4371,
National Institute of Standards and Technology, Gaithersburg, MD.
July 1990.

Cox, B. J., Object-oriented programming, Productivity Products
International, Addison-Wesley Publishing Company, 1987.

Ellis, M., and Stroustrup, B., The Annotated C++ Reference
Manual, Addison-Wesley Publishing Company, 1990.

Fowler, J., STEP Production Cell, NISTIR, National Institute of
Standards and Technology, Gaithersburg, MD, forthcoming.

Goldberg, A. and Robson, D., Smalltalk-80: The L anguage and its
mplementation, Addison-Wesley, Reading, MA, July, 1985.

Kim, W. and Lochovsky, F., eds., Object-Oriented Concepts,
Databases, and Applications, ACM Press, NY, 1989.

Meyer, B., Object-Oriented Software Construction, Prentice Hall,
Englewood Cliffs, NJ, 1988.

Mitchell, M., Validation Testing Systems, NISTIR, National
Institute of Standards and Technology, Gaithersburg, MD,
forthcoming.

National Computer Graphics Association, IGES/ PDES
Organization Reference Manual, July 1990.

Page 19

[Scheiflersg]

[Schenck90]

[Smith& Smit77]

[Smithss]

[Smiths]

The NIST STEP Class Library

Scheifler, R., Gettys, J., and Newman, R., X Window System: C
Library and Protocol Reference, Digital Press, Bedford, Mass, 1988.

Schenck, D., ed., Information Modeling L anquage Express:
Language Reference Manual, SO TC184/SC4/\WG1 Document
N466, March 1990.

Smith, JM., and Smith, C.P., Database abstractions. aggregation
and generalization, ACM Transactions on Database Systems, pp.
105-133, val. 2, no.2, 1977.

Smith, B., and Rinaudot, G., eds., Product Data Exchange
Specification First Working Draft, NISTIR 88-4004, National
Institute of Standards and Technology, Gaithersburg, MD,
December 1988.

Smith, B., Product Data Exchange: The PDES Project, Status and
Objectives,, NISTIR 89-41654, National Institute of Standards and
Technology, Gaithersburg, MD, September 1989.

Page 20

