
1

An Object-Oriented Tcl/Tk Binding
for Interpreted Control

of the NIST EXPRESS Toolkit
in the NIST STEP Application Protocol

Development Environment

Don Libes
Stephen N. Clark

Manufacturing Systems Integration Division
National Institute of Standards and Technology

Gaithersburg, MD 20899

Abstract
The National Institute of Standards and Technology (NIST) has built numerous software
toolkits and applications for manipulating STEP and EXPRESS data. These toolkits are
traditionally used as compiled libraries which are linked to other compiled modules.

This paper describes a binding allowing the toolkit interfaces to be called from interpreted
scripts. This significantly reduces the time required to construct and compile new
applications. An X11 extension allows the construction of graphic elements, providing easy
creation and integration of existing applications into X graphic user interfaces. We describe
how the combination of bindings has been used to construct a STEP Application Protocol
Development Environment.

Keywords: Tcl; Tk; EXPRESS; Object Oriented; National PDES Testbed; PDES; STEP;
APDE; Development Environment

Reprinted from Proceedings of the EXPRESS User Group Workshop (EUG ‘95), Grenoble,
France, October 21-22, 1995.

An Object-Oriented Tcl/Tk Binding for Interpreted Control of the NIST EXPRESS Toolkit in the NIST STEP

2

Background
The PDES (Product Data Exchange using STEP) activity is the United States’ effort in
support of the Standard for the Exchange of Product Model Data (STEP). STEP is an
evolving international standard for the interchange of product data between various vendors’
CAD/CAM systems and other manufacturing-related software [1][2][3]. The National PDES
Testbed has been established at the National Institute of Standards and Technology (NIST) to
provide testing and validation facilities for the developing standard. The Testbed is funded by
the Computer-aided Acquisition and Logistic Support (CALS) program of the Office of the
Secretary of Defense.

As part of the testing effort, NIST is charged with providing software for manipulating STEP
data. Provided in the form of tools and toolkits for building new tools, the software is
research-oriented and evolving. This document is one of a set of reports ([4] - [14]) which
describe various aspects of the software.

Typography and other Conventions
In this document, shell commands and output are set in Courier bold. EXPRESS source is
set in Times Roman as is the rest of the text. Words or phrases being defined and placeholders
that must be replaced by actual data are set in Times Roman italic. Optional elements are
surrounded by brackets, [such as this phrase]. Occasionally fragments are quoted when they
are very small or contain punctuation characters that might otherwise cause them to be
confused with the surrounding text.

Introduction
The National Institute of Standards and Technology (NIST) has built numerous software
toolkits and applications for manipulating STEP and EXPRESS data. The toolkits come as
software libraries that may be compiled and linked into applications.

Traditionally, these applications have not had control languages. This means that an
application concentrates on doing one thing. For example, the fedex application checks
EXPRESS data for syntactic and semantic correctness. The shtolo application converts
EXPRESS short forms to long forms. Other applications are similarly constrained.

Each of these applications generally does one thing well. While an application may also do
other things, these ancillary functions are not its focus. Applying applications to other tasks
may be difficult or impossible. Commonly, when an application is needed that does
something slightly different from an already existing application, one of the following actions
is taken:

• a new flag is added to the old program so that it can do both old and new tasks
depending on the flag, or

• the old program is copied and customized to address the new application.

Both of these solutions require modification of the original source code, followed by
recompilation, testing, and debugging. This is a drawback for development of new

An Object-Oriented Tcl/Tk Binding for Interpreted Control of the NIST EXPRESS Toolkit in the NIST STEP

3

applications. In particular, developers should be able to reuse old applications much more
easily.

To enable reuse, we have embedded the NIST EXPRESS Toolkit (hereafter called simply the
“EXPRESS Toolkit”) in an interpreted control language (Tcl). Using this we have begun
development of tools written using the new extended language. This paper focuses on one
such tool – an AP (Application Protocol) Development Environment (APDE) [15].

The APDE is a graphical integrated environment where a variety of tools must work together.
Many tools required by the APDE are similar to existing ones. Yet the APDE has slightly
different requirements. To maximize reuse and minimize effort we are exploring the high-
level interpretive approach using our Tcl binding to the toolkit. In addition, the APDE
requires a graphical front-end. Tk provides a mechanism for graphics that is well integrated
with Tcl. The remainder of the paper describes the various components of our requirements
and our approach.

Tcl – Adding Flexibility to Applications
Developed at the University of California at Berkeley, Tcl (Tool Command Language) is an
embeddable language library which can be linked to other applications. Unlike EXPRESS,
Tcl is specifically designed for the direct construction and implementation of software. Tcl
provides a fairly generic but reasonably high-level language.

The language is interpreted and resembles the UNIX shell in many ways. Elements are also
derived from C and LISP. Despite its mixed heritage, much of the excess baggage from these
other languages has been omitted leaving a modest but capable language. Tcl is described in
detail by Ousterhout [16][17]. This section will only give a brief overview of the language
and enough details to describe the sample scripts in the remainder of the paper.

The Tcl core consists of control flow statements such as if, while, and case. Tcl supports
procedure definition, recursion, scoping, and other features typical of a high-level language.
UNIX programs may be called and files manipulated. Expression evaluation is provided by a
small set of primitives that manipulate strings. Conversion to and from other types is per-
formed automatically.

The following Tcl fragment (from [16]) swaps the values of variables a and b, if a is less than
b.

if {$a < $b} {

set tmp $a

set a $b

set b $tmp

}

Here is a command to define a recursive factorial procedure:

proc fac x {

if {$x == 1} {return 1}

return [expr {$x * [fac [expr $x-1]]}]

An Object-Oriented Tcl/Tk Binding for Interpreted Control of the NIST EXPRESS Toolkit in the NIST STEP

4

}

The syntax and semantics are sufficiently close to C and the shell that the meaning of these ex-
amples should be intuitively obvious. For lack of space, we will not describe Tcl further. For
that matter, it is not particularly germane to EXPRESS or to the EXPRESS Toolkit. Indeed,
Ousterhout makes the point that the “syntax of the Tcl language is unimportant: any program-
ming language” could provide similar features. The salient features of Tcl are that it is:

• programmable – Tcl applications are general-purpose and are not known in
advance.

• efficiently interpreted – Tcl must be able to execute commands quickly
enough that user interaction is not noticeably impeded.

• internally interfaceable to C – Tcl must allow one to bind existing C code
to new Tcl commands that work synergistically with existing Tcl com-
mands.

As the last bullet says, Tcl is designed to allow the addition of new commands. Our work
adds several new commands to the Tcl language. The next section will describe these new
commands.

Tcl Binding for the NIST EXPRESS Toolkit
This section describes a Tcl binding for the EXPRESS Toolkit. Note that:

• The binding is not meant to be complete. The binding currently exploits only a small
fraction of the Toolkit’s capability – primarily in the area of queries. It would be
easy to extend the binding; however for now we have focused only on what we
needed for the APDE.

• The binding is not meant to be definitive. Other bindings are possible for the same
functions. We have not spent much time studying alternative bindings and do not
claim that ours is better or worse than any others.

Schema – Loading new schemas
Using Tcl, we made new commands (bindings) for functions in the EXPRESS Toolkit. The
primary command is “schema”. The schema command loads EXPRESS files into the process
so that they can be further manipulated.

The system is object-oriented in the sense that all of the objects in an EXPRESS schema
become Tcl commands. Objects are named in a hierarchical way with “=” being used as a
separator. For example, the schema s1 is called “=s1” and the attribute a3 in entity e7 in
schema 1 is named “=s1=e7=a3”. This hierarchical notation is similar to the “.” separator
used by other extensions of Tcl such as Tk widgets or the “/” separator used by the UNIX file
system. The “=” has nothing to do with assignment or equality. It was chosen merely as a
symbol that would not conflict with usages elsewhere in EXPRESS or in the Toolkit.

An Object-Oriented Tcl/Tk Binding for Interpreted Control of the NIST EXPRESS Toolkit in the NIST STEP

5

Basic Object Queries
All objects in a schema can be queried for the same information:

• Type

• File

• Line number

For example, given the entity $e, its line number can be retrieved with the following
command:

$e -line

This could be used in a more complicated command such as the following:

puts “$e is defined on line [$e -line]”

Basic Scope Queries
Most EXPRESS objects have a scope which can contain other objects. For example, a
schema can contain a number of entities and types. The objects immediately enclosed by
another object may be listed with the -ls flag. This listing of objects may be further
constrained with the additional flags -type or -glob.

The -type flag constrains the query so that only objects matching the given types are
returned. For example, the following query returns all entities and types within the entity
named by $e.

$e -ls -type “et”

The -glob flag is a simple constraint that does string matching based on the given glob-style
pattern. For example, the following query returns all objects in $e which have names
beginning with the letter “b”.

$e -ls -glob “b*”

Object names returned by “-ls” are local names, without the = prefix. There is no need for
the = prefix since that is precisely the name of the command used to make the query in the first
place. However, queries can be made using the = prefixes just by using built-in Tcl
commands. Because all objects have associated commands, Tcl’s “info command”
command may be used to return matching information. For example, the following command
returns all of the Tcl objects whose name begins with the prefix =a:

info command =a*

More Queries
Complex objects have a nonobvious printable representation. For example, an entity may
contain a list of subtypes, supertypes, types, other entities, etc.

This collection of information can be accessed piece by piece by using specific queries such as
those shown elsewhere. Alternatively, objects can be queried for their whole printable
representation. This is done using the -print flag.

$obj -print

An Object-Oriented Tcl/Tk Binding for Interpreted Control of the NIST EXPRESS Toolkit in the NIST STEP

6

The original printable representation is not explicitly saved. Rather, a printable representation
is reconstructed from the internal representation.

Miscellaneous Commands
A number of miscellaneous commands exists. They are as follows:

Initialization

express_init

express_init initializes the system so that other EXPRESS Toolkit commands can be
issued. Tcl, Tk, and other commands can be used before express_init. For example, the
EXPRESS_PATH environment variable must be defined before the toolkit is initialized. This
might be done as follows:

set env(EXPRESS_PATH) “public/APIB ~/myschemas”

express_init

Enabling Diagnostics

Certain toolkit operations cause processing that is not intuitive. For example, loading of a
schema requires a complete parse and semantic analysis. It is possible to get some idea of
what the toolkit is doing by having it print a brief description of each object and how it is
being manipulated. This is done using the print_objects command.

The print_objects command is similar to the -P flag used by fedex. Objects are named
by type. For example, the following commands cause the names of entities and types to be
printed as they are processed:

print_objects e

print_objects t

Disabling Warnings

The toolkit generates warnings in certain instances. For example, certain EXPRESS
constructions are not forbidden by the specification but are nonetheless unusual enough that
they are likely wrong. These and others can generate warnings.

Warnings are disabled using the ignore_warning command. The command is called with
the name of the specific warning as its argument. The following example disables the
“downcast” warning:

ignore_warning downcast

Tk – Extensions to Perform X11 Graphics
Tk is an extension to Tcl. Written by John Ousterhout at Berkeley, Tk provides commands to
manipulate X11 graphics. These commands are similar in style to those provided by the
EXPRESS Toolkit binding.

We have incorporated the Tk extensions into our work so that we can create graphic displays
with little effort and time.

An Object-Oriented Tcl/Tk Binding for Interpreted Control of the NIST EXPRESS Toolkit in the NIST STEP

7

As an example, the following script fragment creates a graphic image of a list of types in the
current schema.

create the listbox

listbox $listbox

for each type, add it to the listbox

foreach type [$schema -ls -type “t”] {

$listbox insert end $type

}

APDE – The NIST STEP AP Development Environment
The goal of the APDE is to provide an automated environment to facilitate the development of
STEP Application Protocols and to improve their quality. An Application Protocol (AP) is
the specification of product data structure in a particular application area. An AP is typically
large (several hundred pages of documentation) and consists of various components including
textual descriptions of data and data models. The APDE will provide a tightly integrated
collection of NIST-developed and commercially-available software to allow AP developers to
interactively create components of an AP and to store and retrieve APs, Integrated Resources,
and other STEP-related documents and data models. The integrated tools will enable reuse of
Integrated Resources and allow users to perform the various functions of AP development in a
single, cohesive environment.

The following images are snapshots of different parts of the APDE.

The APDE opening screen shows a number of boxes that represent the primary activities in
the AP development process. The menu bar has options or selections common to all
activities. In the snapshot, the user has selected a particular AP (203) to work on and an
activity (Application Interpreted Model Development) simply by clicking in the appropriate
places.

An Object-Oriented Tcl/Tk Binding for Interpreted Control of the NIST EXPRESS Toolkit in the NIST STEP

8

The select procedure creates and handles the AP selection browser. It is shown below. The
select procedure does not do any queries against the toolkit. It merely gets the information
from a prespecified list stored in the global variable ap_list. However, it suffices to show
the basic techniques for building a small window of various components and doing simple
interactions.

proc select {} {

global ap_list ap_selection

Create a new window for the selection browser.

toplevel .ap

Tell the window manager how to label it.

wm geometry .ap +300+300

wm title .ap “AP Selection”

wm iconname .ap “AP Selection”

Tell the user how to use the browser.

label .ap.text -text “Double click to select an AP”

Add a cancel button.

button .ap.cancel -text Cancel -command {destroy .ap}

Create a place to display the list of APs

Pretty it up with a scrollbar and 3D effects.

frame .ap.f -relief raised -bd 2

listbox .ap.f.list -yscroll “.ap.f.scrollbar set” -font \

10x20 -setgrid 1

scrollbar .ap.f.scrollbar -command “.ap.f.list yview” \

-relief raised

Add the actual AP names

foreach ap $ap_list {

.ap.f.list insert end $ap

}

Make a double click select an AP and remove the browser.

bind .ap.f.list <Double-Button-1> {

set ap_selection [selection get]

destroy .ap

}

Place all the objects on the screen appropriately.

pack .ap.text -side top

An Object-Oriented Tcl/Tk Binding for Interpreted Control of the NIST EXPRESS Toolkit in the NIST STEP

9

pack .ap.f.scrollbar -side left -fill y

pack .ap.f.list -side left -fill both -expand 1

pack .ap.f -side top -fill both -expand 1

pack .ap.cancel -side bottom -fill x -padx 2 -pady 2

Once everything is set up, wait for the user

to select an AP.

tkwait variable ap_selection

Tell the APDE what AP the user has selected and return.

config $ap_selection

}

During the Application Integration Model Development activity, it is useful to be able to
browse through EXPRESS objects in an Integrated Resource (IR). This is provided through
an IR Query interface. The interface displays objects in the currently selected IRs which
match according to various constraints such as types or patterns in the name.

The following snapshot shows the user querying for all the objects that end with the string
“unit”.

The code that creates the IR Query interaction is too large to show in this paper, however a
small excerpt will give the flavor of some actual queries against the EXPRESS Toolkit.
Searching for a pattern will be described.

In order to search, the user must enter a pattern. The follow commands create the appropriate
label, entry, and button:

label .query.patt.label -text “Pattern: “ -relief flat

entry .query.patt.val -textvar itf(pattern) -relief sunken \

-width 32

button .query.search -text Search -command {

ir_query “$itf(pattern)”

}

Various elements of the user’s query are stored in the itf array. For instance, the user’s entry
is stored in itf(pattern). When the Search button is pressed, the pattern is passed to the
procedure ir_query which does the actual searching.

An Object-Oriented Tcl/Tk Binding for Interpreted Control of the NIST EXPRESS Toolkit in the NIST STEP

10

proc ir_query {pattern} {

 global itf

 clear_result

 # figure out what kind(s) of symbols we’re looking for

 set type ““

 if $itf(entity) {append type e}

 if $itf(type) {append type t}

 set found 0

 foreach schema [schema -ls] {

if schema is not currently selected, skip it

if {!$itf(schema,$schema)} continue

add each matching object to the result

foreach object [=$schema -ls -type $type -glob $pattern]
{

 add_result $object $schema

 set found 1

}

 }

 if {!$found} {

big_message “No matching definitions found”

 }

}

Unlike the select procedure shown earlier, the ir_query procedure avoids making direct
Tk calls since the Tk objects are used by other procedures. Therefore, these uses are localized
to procedures such as add_result (which adds a line to the display) and big_message
(which pops up a window with an error in it).

The IR Query window offers a variety of other interactions. For instance, it is possible to see
an object in its original context by clicking on its name and pressing the Browse button. This
pops up an editor with the cursor on the specified object. This is initiated by the following
button definition:

button .query.browse -text Browse -relief raised \

-command browse_ir

The browse_ir procedure invokes view_ir on each selected object.

proc browse_ir {} {

 global short result apib sgml

 foreach sel [.query.list curselection] {

set name [lindex [split [.query.list get $sel] “ “] 1]

An Object-Oriented Tcl/Tk Binding for Interpreted Control of the NIST EXPRESS Toolkit in the NIST STEP

11

view_ir $result($name) $name [

string index [=$result($name)=$name -type] 0

]

 }

}

The view_ir procedure invokes an IR browser. Our implementation of view_ir has
changed frequently over time, first starting with a simple text editor and then trying a variety
of SGML editors from different vendors. This is a good example of how Tcl provides ease in
adapting the APDE.

The following definition is no longer used but shows a typically flexible approach. The
procedure prefers to use an SGML editor but this is only possible if the IR can be found in our
local SGML database which is not always the case. As a fallback, the user’s text editor is
invoked.

proc view_ir {schema name} {

 global env

 # if there’s an appropriate sgml file, view it

 if [file exists [set try [sgml_for $schema]]] {

author_editor $try $name $class

return

 } else {

fallback to a plain old text editor

$env(EDITOR) [express_for $schema] [=$schema=$name -line]

 }

}

Benefits of This Approach
We have constructed a binding so that the EXPRESS Toolkit can be controlled via the Tcl
language. We have purposely designed the binding so that it is object-oriented and generally
behaves consistently. Thus, there is very little to learn in order to use the binding.

Because Tcl is scripted, it is possible to create new Tcl code or modify old Tcl very rapidly.
No time-consuming compile step is needed and the completed scripts are small. This is an
extremely significant consideration. When using large libraries such as the Toolkit and the X
Window system, even the smallest compiled programs are multiple megabytes in size and can
take minutes to compile or just to relink. By comparison, our scripts are on the order of 1K to
2K and are not compiled or relinked.

Another benefit of the Tcl approach is reduced debugging effort. There is less code to look at
so naturally, there is less to debug. More importantly, Tcl acts as a sort of firewall by
separating the scripting from the C code. In the traditional approach, any piece of buggy C (or
C++) code could corrupt any other piece of code, even a debugged piece. So a user
application error could cause the toolkit internals themselves to misbehave. This makes for
very difficult debugging. In comparison, the Tcl-controlled system does not permit user bugs

An Object-Oriented Tcl/Tk Binding for Interpreted Control of the NIST EXPRESS Toolkit in the NIST STEP

12

to corrupt the Toolkit internals. Indeed, the user is prevented from corrupting any of the
toolkits including Tcl or Tk.

Finally, all of the binding is high-level. The user does not have to worry about pointers. For
example, objects are named mnemonically rather than with an opaque handle. With an
opaque handle, the user could mistakenly pass an arbitrary pointer and the system would use it
and fail. In contrast, if the Tcl user passes a meaningless name, it will be immediately
rejected.

In general, all of the Tcl interfaces have similar benefits over their C counterparts. However,
Tcl goes much further. Because of the design of Tcl, the user does not have to be concerned
with memory allocation, hash tables, and many other low-level programming worries. Tk is
particularly helpful in that it provides a convenient interface to the X Window System that is
much simpler than direct calls into any of the existing widget libraries.

Summary and Conclusions
We have constructed a Tcl binding for the NIST EXPRESS Toolkit. This binding has enabled
the rapid development of new tools including the APDE. The APDE environment was
written very quickly, by gluing together a set of already existing tools with a small number of
commands. In addition, we have taken advantage of other Tcl extensions such as Tk for
controlling the X Window System.

We are happy with the end result. We can now write new applications and leverage existing
applications much more quickly than before. The amount of time we spent writing the
binding has easily been paid back in the time we have saved by working with it.

For More Information
Contact the Manufacturing Information Systems Division – National PDES Testbed (1-301-
975-3386 or npt-info@cme.nist.gov) for more information about the software in
general, or other NIST projects at the National PDES Testbed.

This software is a research prototype and is not presently packaged for distribution. When it
becomes available, it will be obtainable through the automated source distribution server at
the National PDES Testbed project. The server may be accessed via e-mail to
nptserver@cme.nist.gov. If you are unfamiliar with the server, send the message
“help” and you will receive an explanation of how to use it.

Acknowledgments
Design and construction of the software described in this paper is a part of the Application
Protocol Development Environment (APDE) project which is funded jointly by the
Computer-aided Acquisition and Logistic Support (CALS) program of the Office of the
Secretary of Defense and by ARPA.

Thanks to Steve Ray and Josh Lubell for reviewing this paper.

The authors gratefully acknowledge Mary Mitchell, Lisa Phillips, Josh Lubell, Allison
Barnard Feeney, and Jim Fowler for their contributions to the APDE.

An Object-Oriented Tcl/Tk Binding for Interpreted Control of the NIST EXPRESS Toolkit in the NIST STEP

13

Disclaimers
Trade names and company products are mentioned in the text in order to adequately specify
experimental procedures and equipment used. In no case does such identification imply
recommendation or endorsement by the National Institute of Standards and Technology, nor
does it imply that the products are necessarily the best available for the purpose.

Both the application software and the server software are experimental. No claims are made
for either. The software may change unexpectedly as we fix (or add) bugs. Esoteric behavior
(such as disk full crises) will probably not ever be handled gracefully.

In no event will NIST be liable for damages, including any lost profits, lost monies, or other
special, incidental or consequential damages arising out of the use or inability to use
(including but not limited to loss of data or data being rendered inaccurate or losses sustained
by third parties or a failure of the program to operate with programs not distributed by NIST)
the programs, even if you have been advised of the possibility of such damages, or for any
claim by any other party.

References
[1] Mason, H., ed., “Industrial Automation Systems – Product Data Representation and Ex-

change – Part 1: Overview and Fundamental Principles”, Version 9, ISO TC184/
SC4/WG PMAG Document N50, December 1991.

[2] Spiby, P., ed., “ISO 10303 Industrial Automation Systems – Product Data Representa-
tion and Exchange – Part 11: Description Methods: The EXPRESS Language Refer-
ence Manual”, ISO DIS 10303-11:1992(E), July 15, 1992.

[3] The NIST STEP Part 21 Exchange File Toolkit: An Update, National Institute of Stan-
dards and Technology, Gaithersburg MD, NISTIR 5187, May 1993.

[4] Libes, Don, “The NIST EXPRESS Toolkit – Introduction and Overview”, National Insti-
tute of Standards and Technology, Gaithersburg, MD, NISTIR 5242 (NTIS PB94-
120664/AS), October 25, 1993.

[5] Libes, Don, and Fowler, Jim, “The NIST EXPRESS Toolkit – Requirements”, NISTIR
5212, National Institute of Standards and Technology, Gaithersburg, MD, June 9,
1993.

[6] Libes, Don, “The NIST EXPRESS Toolkit – Design and Implementation”, Proceedings of
the Seventh Annual ASME Engineering Database Symposium, San Diego, CA, Au-
gust 9-11, 1993.

[7] Libes, Don, and Clark, Steve, “The NIST EXPRESS Toolkit – Lessons Learned”, Pro-
ceedings of the 1992 EXPRESS Users’ Group (EUG ‘92) Conference, Dallas, Tex-
as, October 17-18, 1992.

[8] Libes, Don, “The NIST EXPRESS Toolkit – Obtaining and Installing”, NISTIR 5204, Na-
tional Institute of Standards and Technology, Gaithersburg, MD, June 9, 1993.

[9] Libes, Don, “The NIST EXPRESS Toolkit – Using Applications”, NISTIR 5206, National
Institute of Standards and Technology, Gaithersburg, MD, June 9, 1993.

An Object-Oriented Tcl/Tk Binding for Interpreted Control of the NIST EXPRESS Toolkit in the NIST STEP

14

[10] Libes, Don, “The NIST EXPRESS Toolkit – Programmer’s Reference”, National Institute
of Standards and Technology, Gaithersburg, MD, to appear.

[11] Libes, Don, “The NIST EXPRESS Toolkit – Creating Applications”, National Institute of
Standards and Technology, Gaithersburg, MD, to appear.

[12] Libes, Don, “The NIST EXPRESS Toolkit – Updating Existing Applications”, NISTIR
5205, National Institute of Standards and Technology, Gaithersburg, MD, June 9,
1993.

[13] Clark, S.N., “The NIST Working Form for STEP”, NISTIR 4351, National Institute of
Standards and Technology, Gaithersburg, MD, November 1990

[14] Clark, S.N., “NIST STEP Working Form Programmer’s Reference”, NISTIR 4353, Na-
tional Institute of Standards and Technology, Gaithersburg, MD, November, 1990.

[15] Clark, S.N., Feeney, Allison Barnard and Fowler, James, “Specifications for an Appli-
cation Protocol Development Environment”, NISTIR 5248, National Institute of
Standards and Technology, Gaithersburg, MD, August, 1993.

[16] Ousterhout, John, “Tcl: An Embeddable Command Language”, Proceedings of the Win-
ter 1990 USENIX Conference, Washington, D.C., January 22-26, 1990.

[17] Osterhout, John, “tcl(3) – Overview of tool command language facilities”, unpublished
manual page, University of California at Berkeley, January 1990.

Author Biographies
Don Libes is a computer scientist at the National Institute of Standards and Technology in
Gaithersburg, Maryland, where he does research in manufacturing systems integration,
interaction automation, and information dissemination and collaboration. Don has written
over 75 computer science papers and articles including three books: Life With UNIX,
Obfuscated C and Other Mysteries, and Exploring Expect: A Tcl-Based Toolkit for
Automating Interactive Programs. Don has received numerous awards including the
International Communications Association Innovation Award and the Federal 100 for the
development of Expect, a tool for automating and testing interactive applications.

Steve Clark is a computer scientist at Century Computing.

