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ABSTRACT

This manual describes how to use the NIST Network Common Memory
System (CMS), version 7.  The CMS provides a common memory that may be
shared among processes distributed across a local area network.  Unlike other
shared memory systems, CMS accesses variables by name rather than by address.
These and other features make the system more comparable to a primitive distrib-
uted database than a shared memory system.

CMS currently runs on Berkeley UNIX systems but can be supported on any
POSIX-like system which provides a stream protocol at the transport layer.  Inter-
faces exist for usage from C and Franz Lisp.

Keywords: common memory, shared memory, distributed common memo-
ry, distributed shared memory, POSIX, UNIX.

Introduction

This manual describes how to use the NIST Network Common Memory System (CMS), version
7.  The system provides a primitive distributed data system, but is called “common memory” be-
cause of its efficiency and secondly due to historical reasons.  (This system is loosely based on the
Hierarchical Control System Emulator (HCSE) built at Bolt Beranek and Newman Inc. (BBN)
[Johnson 82], which provided a shared memory as one of its facilities.)
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The reader is referred to [Libes 85] for a higher-level paper on the CMS.  The only thing lower-
level than this manual is the source code itself.  For more information, see "How to get the soft-
ware - FTP" on page 17.

The CMS provides a variety of interesting features for such a simple and easy to use service:

• rudimentary access permissions

• control over synchronization problems

• users can be distributed across a local area network.

• server is robust in face of experimental clients

• value updates may be queued if desired for slow consumers

• alternative synchronization styles

• hierarchical control features

• value serial numbers

This current implementation runs on Sun workstations (SunOS 1.0 through 4.0) on 68000 and
80386-based processors.  It has also been ported to the Silicon Graphics Iris.  It requires very little
in the way of system support beyond a stream transport-level protocol [Libes 89] and some simi-
larity to POSIX.

Overview of how it works

Each client keeps a local copy of a portion of common memory.  This common memory is parti-
tioned into common memory variables (called “cm_variables”), uniquely identified in the CMS
by name.   Each cm_variable holds a value (called a “cm_value”) which the client may read or
write.  Such accesses are performed locally.
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In order to update clients’ common memories, they must be brought into sync with a master com-
mon memory (see figure 1) maintained by the common memory manager (CMM).  This is done
synchronously at the convenience of the client (see "Synchronization" on page 8).

Synchronization is implemented by sending messages (usually containing updated cm_values)
from the client to the server and back.  Updating common memories (by sending a message and
waiting for a response) is expensive, but the CMS has several techniques to make synchronization
extremely efficient.  For example, the CMM can be told ahead of time which cm_variables are of
interest to a client.  Thus, when a client synchronizes common memories, it will find that the
CMM has already sent it any new common memory values.  Messages are still sent, but the client
no longer has to wait for responses.

For more information on the theory of the CMS, read [Libes 85].

Let us get right to the usage details.

Client initialization and exit

Prior to executing any CMS calls, the CMM must be started.  This is described in "Compiling/in-
terpreting/running CMS programs" on page 11.

Before any other CMS calls, the client process should identify itself to the system.

int rc = cm_init(“HWS”,“cmm_host”,0);/* C */

(cm_init “HWS” “cmm_host” 0) ; Lisp

In each of these examples, we will give the first form in C.  Following that, we will repeat it in
Lisp.  In case you find this confusing, just remember that the Lisp forms all begin with a left pa-
renthesis.

common
memory
manager

Figure 1: Common memory is implemented in the client-server paradigm.
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In this example we have declared ourselves as “HWS”.  This name need not be distinct.  However,
different names are helpful when watching the commands sent to the CMM.  Any C-style string
may be used for a name.  The only limitation is in length (see "Limits of the CMS" on page 14).

The second parameter to cm_init is the host on which the common memory manager is running
which you wish to use.  Note that there may be a CMM running on the local machine, while you
use one on a remote machine.  The local machine may be designated by a zero character pointer
or empty string.

The third parameter to cm_init is an integer which indicates the debugging level.  Debugging
levels cause an associated level of internal information to output.  For example, level 0 indicates
no debugging.  Larger values request more debugging info.  Level 2 will give you information
about messages sent and received.  Level 5 will generate information about individual common
memory values being manipulated.  With level 9, you will get a veritable flood of garbage (that
you almost certainly don’t want) including things like memory allocation, variable copying, etc.
Level 10 forces every byte in every incoming and outgoing message to be displayed.

Note that debugging is only enabled when the common memory system itself has been compiled
with DEBUG defined.  See the Makefile for more information.

cm_init also performs some necessary initialization of CMS client data structures. cm_init
returns 0 if successful. Anything else is an error.  A common error is that the common memory
manager is not running.

Before exiting the CMS, a process should call cm_exit.  At cm_exit various data structures
are cleaned up, both in the server and the client.  It is particularly important that one call
cm_exit before calling cm_init again.  For example:

cm_exit();

(cm_exit)

Declaring and undeclaring cm_variables

In order to communicate information to the common memory, it must be stored in an object called
a cm_variable.  The name of a common memory variable uniquely identifies it throughout the
CMS.  The name space is not predefined in any way, except by a length restriction (see "Limits of
the CMS" on page 14).  Any C-style string may be used.

All variables must be declared before use. cm_declare is used to declare common memory
variables.

cm_variable *date;
date = cm_declare(“date”,CM_ROLE_XWRITER);

(setq date (cm_declare “date” CM_ROLE_WRITER))
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cm_declare returns an object that can be used when referring to this variable in the future.
This object can be stored into a variable declared as type cm_variable.  If cm_declare returns
NULL, the declaration has failed and an error message will be printed out explaining why.  Decla-
rations can fail for a variety of reasons (e.g., bad or conflicting arguments, no space left to store
values).

Once cm_declare() has returned an object, this object should be used whenever referring to the
variable.  In the case of cm_declare, the first argument is a string, while in all other functions
the variable identifier is almost always a cm_variable.

The second argument of cm_declare specifies access rights.   The available access rights are:

may also be written as

CM_ROLE_NONEXCLUSIVE_WRITER CM_ROLE_NONXWRITER
CM_ROLE_EXCLUSIVE_WRITER CM_ROLE_XWRITER
CM_ROLE_READER
CM_ROLE_WAKEUP

CM_ROLE_NONEXCLUSIVE_WRITER tells the CMS that you would like to be able write a
variable, but not block other clients from writing the same variable.
CM_ROLE_EXCLUSIVE_WRITER requires that no other clients is a non-exclusive writer.
CM_ROLE_READER is used if you wish to read a variable.  CM_ROLE_WAKEUP  causes the
CMM to automatically send a client new cm_values as soon as they are received by other clients.

These access rights can be combined by logical  ORing.  For example, the wakeup right is always
combined with at least one of the others.  Conflicting or nonsense combinations should be avoid-
ed.  For example, it makes no sense to declare a role as both exclusive and nonexclusive writer.
Here is an example of declaring a cm_variable that you want to receive new cm_values for auto-
matically.

cm_variable *date;
date = cm_declare(“date”,CM_ROLE_READER | CM_ROLE_WAKEUP);

(setq cmv (cm_declare “date”
(boole 7 CM_ROLE_READER CM_ROLE_WAKEUP)

Processes may call cm_declare on the same variable but with a different role.  The new role
completely replaces the old role.  When a variable is undeclared, the roles are implicitly forsaken.
For example, suppose a process has declared itself as the exclusive writer of a variable.  If the pro-
cess undeclares the variable (or dies or calls cm_exit), another process may then declare itself
as a writer of the variable.

Cm_variables may also be undeclared.  From a client’s point of view, undeclaring a variable caus-
es the CMS to delete any information about that variable.  For example, a client will no longer au-
tomatically receive new cm_values from the CMM, even if another CMS client continues to write
them.  The cm_variable is completely removed from the CMS only when every client that de-
clared the variable, has also undeclared it (or exited).  Here is an example of undeclaring a
cm_variable.
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cm_variable *cmv = cm_declare(“foo”,CM_ROLE_READER);
cm_undeclare(cmv);

(cm_undeclare (cm_declare “foo” CM_ROLE_READER))

Common memory values

Common memory variables may hold one cm_value (for “common memory value”) at a time.
Common memory values are structured in the following way.

typedef struct { /* common memory value */
char *data;
unsigned short msize; /* size of malloc’d space */
unsigned short size; /* size of used space */
char mallocable; /* 1 if space is malloc’d */

/* 0 if space is static */
} cm_value;

The first field, data, points to an arbitrary user-supplied area of memory.  This memory area is
not interpreted in any way by the CMS.  While it is typed as a “pointer to char”, you should read
this is “pointer to anything”.  In practice, you should cast your object to an array of chars and then
assign the pointer to data.

An earlier release (version 6) of this system supported user-defined types, but experience with
other common memory systems have convinced us that this is “a bad thing”.  Indeed, there is no
reason why the common memory should know the type of the data that it is storing.  To provide
user-defined structured values, use ASN.1 or some other suitable Presentation Layer protocol
which provides for structured types that are machine independent.

size should be set to the length of the object in data.  If mallocable is 1, CMS will allocate
space using malloc whenever the CMS passes a value to the user.  Further, if msize is ever
smaller than the incoming value, the pointer will be realloc’d and msize increased appropri-
ately.

If you are not prepared to handle objects larger than a given size, set msize yourself, and set
mallocable to 0.  Lisp is an example where this must be done, as otherwise the common mem-
ory may attempt to free a Lisp object, which would be a serious mistake since Lisp does not use
malloc to handle its internal storage.

The address of such a structure may be passed to cm_set_value and similar functions.

A cm_value is declared in Lisp (via c-declare) along with corresponding access functions.
For example, to declare and set the various elements of the structure foo:

(setq foo (make-cm_value)) ; cm_value foo;
(setq data (new-vectori-byte 1000)) ; char data[1000];
(setf (cm_value->data foo) (ptr data)); foo.data = data;
(setf (cm_value->size foo) 1000) ; foo.size = 1000;
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(setf (cm_value->msize foo) 1000) ; foo.msize = 1000;
(setf (cm_value->mallocable foo) 0) ; foo.mallocable = FALSE;

Reading and writing cm_variables

Cm_variables may be read and written with the following calls.  (Note that the effects are local to
the process until the common memory is synchronized (see "Synchronization" on page 8).

cm_value value = {NULL,0,0,1};
cm_get_value(variable,&value);
cm_set_value(variable,&value);

(setq value (make-cm_value))
(setf (value->data) 0)
(setf (value->msize) 0)
(setf (value->size) 0)
(setf (value->mallocable) 1)
(cm_get_value variable value)
(cm_set_value variable value)

cm_get_value retrieves the value of variable and stores it in value.  Similarly,
cm_set_value updates the value of variable with value.

cm_get_new_value is similar to cm_get_value.  Its syntax is:

boolean cm_get_new_value(variable,&value);

(cm_get_new_value variable value)

If variable has not been read since it was last set, value will be updated by the value of vari-
able and TRUE is returned.  If variable has been read since it was last set value is not updat-
ed and FALSE is returned.

cm_new_value_pending returns the same value that cm_get_new_value does but with-
out any side effects.  In otherwords, cm_new_value_pending returns TRUE if a new value
has been written to the variable without it having been read, otherwise it returns FALSE.  It is
called as follows:

boolean cm_new_value_pending(variable);

(cm_new_value_pending variable)

Several additional functions exist for handling handshaking between superior and subordinate
processes in a control relationship such as the AMRF hierarchy [Nanzetta 84].  Specifically, vari-
ables can be used for command or status.  Status variables are identified by the system with the
command value that they are associated with.  See [Libes 84] for more information.

Variables which are command variables should be read and written with the following routines:
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cm_set_new_command_value(variable,&value);
cm_get_new_command_value(variable,&value);

(cm_set_new_command_value variable value)
(cm_get_new_command_value variable value)

 One utility routine is available for determining whether a new command has been received.
cm_new_command_pending returns TRUE or FALSE depending on whether a new command
has been received.

maybe = cm_new_command_pending(command_variable);

(setq maybe (cm_new_command_pending command_variable))

When a new command has been received, cm_new_command_pending will return TRUE un-
til cm_get_new_command_value has been called, after which it will return FALSE.
cm_get_new_command_value also returns TRUE or FALSE, depending upon whether it has
detected a new command.  (Lisp users can expect t/nil instead of TRUE/FALSE.)

 Status variables must be written with the routine, cm_set_status_value.

cm_set_status_value(command,variable,&value);

(cm_set_status_value command variable value)

Status (and any other) variables may be read with the routine cm_get_value.

Two predicates are available that are of use to the superior process in determining which com-
mand a subordinate process’ status is in response to.

maybe = cm_status_equal(cmd_var,stat_var,&s_value);
maybe = cm_status_synchronized(cmd_var,stat_var);

(setq maybe (cm_status_equal cmd_var stat_var s_value))
(setq maybe (cm_status_synchronized cmd_var stat_var))

cm_status_equal returns TRUE or FALSE, depending on whether or not the status variable,
stat_var, has the value, s_value, and is in response to the command specified by cmd_var.

cm_status_synchronized returns TRUE or FALSE, depending on whether or not the status
variable, stat_var, is in response to the command specified by cmd_var.  This is very helpful
to the superior process in finding out whether the subordinate process is responding the command
or a different one entirely.

Synchronization

All of the cm_get_* and cm_set_* functions read or write cm_variables local to the process
itself.  (Refer back to discussion in "Overview of how it works" on page 2.)  In order to “synchro-
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nize” the local common memory against the master common memory of the CMM, the client
must call cm_sync:

cm_sync(behavior);

(cm_sync behavior)

cm_sync takes one argument that allows several different styles of synchronization.  There are
three sets of orthogonal options to control synchronization style.  In all cases, cm_variables that
have been changed are sent to the CMM.

1. CM_WAIT or CM_NO_WAIT

If CM_WAIT is specified, cm_sync will not return until a set of variable updates is received
from the CMM.  If at least one is already waiting to be received, cm_sync will return.
CM_WAIT is the default.  Note that at least one variable must be declared CM_ROLE_WAKEUP
in order for the CMM to automatically send any variable updates.

If CM_NO_WAIT is specified, cm_sync checks for any pending updates waiting to be re-
ceived before returning.

2. CM_WAIT_FOR_ALL or CM_WAIT_AT_MOST_ONCE

If CM_WAIT_FOR_ALL is specified, cm_sync will read all pending updates that have been
sent from the CMM. CM_WAIT_FOR_ALL is the default.  This behavior is particularly useful
when a reader is much slower than a writer and is only interested in the latest values of a vari-
able.  By using CM_WAIT_FOR_ALL it does not have to process data only to find out that it is
out of date.

If CM_WAIT_AT_MOST_ONCE is specified, cm_sync will read at most one pending update
that has been sent from the CMM, even if more have been sent.  This behavior is useful when,
for example, a server is receiving requests in a single command variable common to all of its
clients.

3.CM_WAIT_READ

If CM_WAIT_READ is specified, the CMM will immediately respond with the latest values of
all variables that have been changed since the CMM last sent any updates to the client.  This is
a desirable behavior if you expect to poll intermittently for a variable that is being regularly set.

If the CMS has already sent variable updates to you, CM_WAIT_READ will get whichever ones
are appropriate depending upon the other options you have supplied in cm_sync.  For exam-
ple, specifying both CM_WAIT_READ and CM_WAIT_FOR_ALL gives an exact simulation of
a true common memory.  Note that using CM_WAIT_READ may be slower than other forms of
cm_sync since you may have to wait for a reply message from the common memory.

It is important to realize that the CMM will only send automatic updates if one of the variables
you have declared as CM_ROLE_WAKEUP has been changed.  At that time, all variables that have
been changed (whether or not they have been declared for wakeup) are sent also.

To combine options, bitwise-OR them together.  For example, to poll for at most one new set of
variable values:

cm_sync(CM_NO_WAIT|CM_WAIT_AT_MOST_ONCE);



- 10 -

October 17, 1991

(cm_sync (boole 7 CM_NO_WAIT CM_WAIT_AT_MOST_ONCE))

However, it is expected that most clients will simply want to use:

cm_sync(CM_WAIT);

(cm_sync CM_WAIT)

cm_sync returns either 0 (normal completion) or negative numbers denoting an error (see the
file cm.h for a complete listing).

Waiting for common memory and other I/O at the same time

Using cm_sync alone, it is possible to wait or poll for common memory activity.  However,
cm_sync will not wait for other sources of I/O activity.  If you need to do this, you can call select
(or another function that does so) yourself, as long as you pass to it the dedicated common memo-
ry socket (called cm_server_socket).

For example, the following code fragment assumes that bit_mask already contains other I/O
descriptors of interest, and that we wish to wait for common memory activity as well.

extern int cm_server_socket;
main() {

FD_SET(cm_server_socket,&bit_mask);
select(...,&bit_mask,...);

}

When select indicates there is something to be read from cm_server_socket, we call then
call cm_sync which is guaranteed not to block.  (This is actually used in example 3 - see"Longer
examples" on page 10.)

Longer examples

The CMS source directory contains many sample programs.  Each program is usually paired with
one or more other samples.  For example, client2 should be run with server2.  A complete
listing of sample programs is as follows:

client1a, client1b, server1y, server1z - illustrate the behavior of different cm_sync options

client2, server2 - demonstrate passing C types in a machine-dependent way

client3, server3 - demonstrate CMS integrated in Sun windows (via cm_server_socket).

client4, server4 - demonstrate cm_declare, cm_undeclare, cm_init and cm_exit

client6, server6 - demonstrate AMRF-style mailboxes in C and Lisp
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client8, server8a, server8b - demonstrate handling of SIGPIPE

Compiling/interpreting/running CMS programs

Two libraries are necessary for using common memory in the Berkeley UNIX environment.
libcm.a is the common memory client code.  This uses a lower-level communications library,
libstream.a, which provides connection and packet service on top of TCP [Libes 89].  Both
libraries normally live in /usr/local/lib (or /depot/sundry/arch/lib if you are us-
ing our “depot” structure).

Thus, to link common memory programs:

cc foo.c -lcm -lstream

#include files live in /usr/local/include/cm (or /depot/sundry/include/cm).
Normally, it is necessary only to include /usr/local/include/cm/cm.h as follows:

#include <cm/cm.h>

Some compilers might need to be told explicitly to look in this directory.

.lisp files are stored in the same directory.  There is one file provided to initialize common
memory from lisp, cm.lisp.  Thus to use common memory, you should execute the following:

(load ‘cm/cm_user.lisp)

The common memory manager itself, cmm, lives in /usr/local/bin (or /depot/sundry/
arch/bin).

The CMM should be started before any client processes call cm_init.  Any user can run the
CMM.  It does not require root permissions, nor does it need to be started from the same user-id as
any of the client processes.  Just type:

/usr/local/bin/cmm

Normally, nothing else is required, however the CMM can take some arguments to modify the de-
fault behavior.  These follow the usual UNIX (using getopt) conventions.

-d [0-9]

This -d flag will cause the CMM to print out debugging information.  For more information on
debugging levels see "Client initialization and exit" on page 3.

-t seconds

The -t flag will cause the CMM to block waiting for up to this time period when the kernel queue
is full while the CMM is trying to send a message to a client.  After the timeout expires, the CMM
goes on and will retry later.  The default timeout period is 5 seconds.
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Such a situation, usually indicates the client is hung.  It can also be caused if the client is consum-
ing updates from the CMM too slowly.  This situation can be remedied by disabling wakeup ser-
vice and using CM_WAIT_READ.

-p port_number

The -p flag specifies that the initial connection port for the CMM to use.  The default is 1525.
(Choose values in consultation with your system manager, so as not to interfere with other Inter-
net servers.)  This is useful if you want to have multiple separate common memories on a single
computer.

The CMM does not require a controlling terminal to run.  Note, that if the CMM is killed, all the
processes using it will terminate if they are writing at the moment that the CMM is killed.  This is
due to a SIGPIPE being sent to each of the clients.  If you do not want this behavior, you should
surround calls to cm_sync with a setjmp/longjmp alarm, just the way one normally does
with blocking writes.  (The common memory manager does this internally to protect itself from
the clients dying.  You can look at it in man.c.)  In typical use, however, people do not do this
since the common memory never dies of its own accord.

Additional Lisp notes

In Lisp, all functions are identical to their C counterparts. Common sense dictates usage differ-
ences.  A small Rosetta stone will be presented:

date = cm_declare(......);
foo = cm_declare(.....,CM_ROLE_READER);
cm_sync(WAIT);
cm_set_value(date,”12 Dec...”);
cm_get_value(foo,foolist);

(setq date (cm_declare ‘date CM_ROLE_XWRITER))
(setq foo (cm_declare ‘foo CM_ROLE_READER))
(cm_sync WAIT)
(cm_set_value date “12 Dec...”)
(setq foo (cm_get_value foolist))

 Note that uppercase values denote constants that should be evaluated before use (i.e.  unquoted).
For example, to check if cm_declare() returns without failure the code would look like:

(cond ((eq CM_BAD_OBJECT (cm_declare ....)) nil)
(t t))

Porting code over to the VAX (HCSE)

The following section is only appropriate to people using BBN’s HCSE code on the VAX running
VMS.  BBN’s HCSE (see "Introduction" on page 1) was a simulation package that contained a
common memory system as part of it.  The HCSE became very popular if only because people
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used the common memory subsystem.  Unfortunately, the HCSE common memory is quite primi-
tive in some respects to the CMS.  Nonetheless, one of our desires was to be able to write code
that is portable to both systems.  This has not been completely acheived, but it is possible to run
the same code on the Sun (Sun CM) and the VAX (BBN HCSE) if certain steps are taken.

An interface library is supported that effectively replaces the Sun CM user calls with calls into the
HCSE library.  This library is currently available in amrf.cme.nist.gov:~libes/cm/
src.7v.

Code using the the UNIX CMS library with HCSE should add the following parameters to the
link command (in a .opt file)

user1:[libes.cm.src$5n7v]suncmlib/lib,
cm_library:cmlib/lib,
psect=cm_shrmem,page

Versions of the code compiled for debugging are available by specifying:

user1:[libes.cm.src$5n7v]suncmlib_debug/lib,
cm_library:cmlib_debug/lib,
psect=cm_shrmem,page

There are three restrictions upon use of the HCSE with CMS code.

1. Types

The type systems in both the CMS and the HCSE system are quite different.  The HCSE types
are based on Praxis.  Primarily this means that they have user-definable types.  Secondly, the
HCSE has no arbitrarily-sized data objects.

Two extra parameters on the cm_declare statement exist in the HCSE version of  CMS to
get around this.

The first is a maximum size.  The second is a pointer to a type structure.  If the type structure
pointer is zero, the size is used to automatically select a type structure.  For more information
about creating type structures, see [Johnson 82].

A typical call that would be portable to both the CMS and HCSE looks like the following:

if (!(date = cm_declare(“data”,CM_ROLE_XWRITER
#ifdef VAX11C

,1000,0
#endif

))) {
printf(“declare of var failed\n”);
exit(-1);

}

When compiled by the DEC C compiler, the additional two parameters will be included.
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2.  The second difference in the CMS system and the HCSE is that the HCSE does not support
queuing of variable updates (see "Synchronization" on page 8).  This means that if one process
goes to sleep while a second process writes a variable several times, if the first process then
wakes up, it will see only the last values written by the second process, not all the intermediate
ones.

A different explanation of this phenomenon is that there is no difference between specifying
CM_WAIT_AT_MOST_ONCE and CM_WAIT_FOR_ALL in cm_sync.  There is no way to get
around this.

3.  The third difference is that the HCSE does not store command associations with variables in
the CMM itself.  (In fact, they are just dropped on the floor).  Therefore, routines like
cm_status_equal don’t work.

If you need command associations or their effect, you must do what other HCSE users do.
Namely, stuff a number in front of every variable indicating who many times this variable has
been written.  Then create a new variable, that holds the old value of the number which you can
use to compare it against.

For more information on this, read [McLean 85-1] and [McLean 85-2].

A package that implements this along with current mailbox types in use in the AMRF lives in
goon.cme.nist.gov:~network/mailbox.  An example using these functions is in the
cm source directory in vws.c. vws.lisp is a lisp version of the same thing.

Limits of the CMS

Certain limitations exist in the CMM.  It is possible to change most of these and recompile.
Changeable limitations (and their defaults as the system is distributed are):

CM_MSGSIZE 100000 /* Max size of any single set of
variable updates between the cmm and a user */

CM_SLOTSIZE 20000 /* Max size of any one value */
CM_PROCESSNAMELENGTH   20/* Max length of process name */
CM_VARIABLENAMELENGTH  20/* Max length of any var name */
CM_MAXPROCESSES        256/* Max processes that can talk to

cmm simultaneously. Absolute max of 32 (or number
of user file descriptors) under older versions of
4.2BSD. */

Errors

Most types of errors are reported to the user program.  Some messages cannot be reported back to
the user, and are reported at the CMM itself.  Some errors are serious enough that they are report-
ed at both the user and CMM.
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User errors

Most user errors are due to programmer error and can be fixed when identified.  For example,
writing into a variable declared to be read-only would be a user error.  In such case, the CMS usu-
ally prints out a message indicating the problem.  It also returns an error code if possible.  It is
sometimes not possible to do this.  For instance, the above example would not be detected until af-
ter cm_set_value returned.

The actual message would be printed from cm_sync when it is processing incoming messages
from the CMM.  Most types of errors are detected by cm_sync.

System errors

System errors are caused by limitations in the CMS itself, the environment it is running in, and the
user demands upon the system. Often, these cannot be avoided.  For example, if the user attempts
to send too much data to the common memory at once, the maximum message size can be exceed-
ed.

Listing and explanation of error messages

cm_init:

return(E_CM_INIT_FAILED)
initport(client): Connection refused

Problem: CMM is not running.

cm_sync:

failed to send msg to cmm.  cmm disappeared?
Problem: cmm died.  Detected while writing to it.

cm library (version #) is older/newer than cmm (version #)
Problem: cmm is a different version than the libraries your code is compiled
with.  This can also be caused by a corrupted message.  This is usually identifi-
able by wildly different version #s.

bad slot encountered...aborting msg
user_decode_slot: unknown slot type (#)...msg aborted

Problem: corrupted message or internal error in CMS.

CMM: error processing variable <name> - error message
Problem: CMM detected error “error message” in processing “name”.  See be-
low.

get_slot_read_response: <name> unknown (sent from cmm)
Problem: corrupted message or internal error in CMS

too much data for msg!!
output msg size = #  slotsize = #

Problem: User value is too large for CMS configuration.  Either user error, or
message size limit should be increased.
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cm_sd_free() called on nonmallocable object?
Problem: internal error in CMS

*:

error: bcopy src/dest is null ptr
Problem: internal error or user error.  If user error, check elements of cm_value
structures to see that they are consistent.

cmm:

bind() failed
initport(server): Address already in use
failed to initialize connection socket

Problem: another cmm is running, or a process already has the CMM connec-
tion socket open.

get_variables(name) failed
Problem: too many variables in CMM.

process <name> is being antisocial on fd #
Problem: process has requested wakeup service but is not listening to CMM up-
dates.

slot bad
Problem: corrupted message or internal error in CMS

slot error in <name>  type # - error message
Problem: corrupted message or internal error in CMS or user error.  See error
message.  This message is sent back to the user.  See below.

Error messages generated by the CMM and sent back to the user:

version
Problem: version mismatch.  See above.

bad slot type
Problem: corrupted message or internal CMS error.

not enough common memory to declare variable
Problem: too many variables stored at cmm.

cannot get nonexclusive write access
Problem: a process has already received exclusive write access to this variable.

undeclare of undeclared variable
Problem: a nonexistent variable is being undeclared.

variable has not been declared
Problem: attempt to read/write variable not yet declared.

not declared as writer
Problem: attempt to write variable declared as read-only.

get_slot_write: cm_flat_to_sd() failed!  no space?
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Problem: cmm ran out of memory trying to read user message.  Indicates lack
of system resources or user sent value that was too large.

not declared as reader:
Problem: attempt to read variable declared as write-only.

There are several places in the CMS where memory is dynamically allocated.  These may fail
with an error such as:

func: failed malloc(object,size)

or

resized failed! - out of space

where func is the CMS function calling malloc, object is the object being malloc’d and
size is the size of the object.  These errors typically indicate that either:

1. the user is storing or receiving incredibly lengthy values (probably by mistake, but see "Limits
of the CMS" on page 14), or

2. the system is running out of internal space.

How to get the software - FTP

This software may be retrieved by ftp to the Internet site durer.cme.nist.gov using the ac-
count name: anonymous.  The software is called pub/cm and is stored as a directory of com-
pressed shar files.

Retrieve all the files. uncompress and unshar them.  Edit the Makefile so that the destina-
tion directories are appropriate for your installation.  Then type: make install.  If you want to
play around with the examples, you may do so before installation by typing: make <sample pro-
gram names>.  Several other alternatives should be evident by examining the Makefile.

Comments or problems with the software may sent electronically to libes@cme.nist.gov or
cme-durer!uunet!libes or mailed to:

Don Libes
National Institute of Standards and Technology
Bldg 220, Rm A-127
Gaithersburg, MD  20899
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