
expect: Scripts for Controlling Interactive Processes

Don Libes National Institute of Standards and Technology
libes@cme.nist.gov

ABSTRACT: Contemporary shells provide minimal control (starting, stopping,
etc) over programs, leaving interaction up to users. This means that you cannot run
some programs non-interactively, such as passwd. Some programs can be run non-
interactively but only with a loss of flexibility, such as fsck. This is where the tool-
building philosophy of UNIX begins to break down. expect crosses this line, solv-
ing a number of long-standing problems in the UNIX environment.

expect uses Tcl as a language core. In addition, expect can use any UNIX program
whether or not it is interactive. The result is a classic example of a little language
synergistically generating large power when combined with the rest of the UNIX
workbench.

Previous papers have described the implementation of expect and compared it to
other tools. This paper concentrates on the language, primarily by presenting a vari-
ety of scripts. Several scripts demonstrate brand-new features of expect.

Keywords: expect; interaction; POSIX; programmed dialogue; shell; Tcl; UNIX

Reprint of Computing Systems , Vol. 4, No. 2, University of California Press, Ber-
keley, CA, November 1991.

2 Don Libes

1. Introduction

fsck, the UNIX file system check program, can be run from a shell script only with the –y or –n
options. The manual [1] defines the –y option as follows:

“Assume a yes response to all questions asked by fsck; this should be used with
extreme caution, as it is a free license to continue, even after severe problems
are encountered.”

The –n option is safer, but almost uselessly so. This kind of interface is inexcusably bad, yet
many programs have the same style. ftp, a file transfer program, has an option that disables inter-
active prompting so that it can be run from a script. But it provides no way to take alternative ac-
tion should an error occur.

expect is a tool for controlling interactive programs. It solves the fsck problem, providing all the
interactive functionality non-interactively. expect is not specifically designed for fsck, and can
handle ftp’s errors as well.

The problems with fsck and ftp illustrate a major limitation in the user interface offered by shells
such as sh, csh, and others (which will generically be referred to as the shell in the rest of the pa-
per). The shell does not provide a way of reading output and writing input from a program. This
means the shell can run fsck but only by missing out on some of its useful features. Some pro-
grams cannot be run at all. For example, passwd cannot be run without a user interactively sup-
plying the input. Similar programs that cannot be automated in a shell script are telnet, crypt, su,
rlogin, etc. A large number of application programs are written with the same fault of demanding
user input.

expect was designed specifically to interact with interactive programs. An expect programmer
can write a script describing the dialogue. Then the expect program can run the “interactive” pro-
gram non-interactively. Writing scripts for interactive programs is as simple as writing scripts for
non-interactive programs. expect can also be used to automate parts of a dialogue, since control
can be passed from the script to the keyboard and vice versa.

2. A brief overview of expect

The implementation and philosophy of expect is described at length by Libes [2]. Briefly, scripts
are written in an interpreted language. (A library is available for C and C++ programmers but it
will not be further discussed in this paper.) Commands are provided to create interactive process-
es and to read and write their output and input. expect1 is named after the specific command
which waits for output from a program.

The language of expect is based on Tcl. Tcl is actually a subroutine library, which becomes em-
bedded into an application and provides language services. The resulting language looks very
much like a typical shell language. There are commands to set variables (set), control flow (if, for,

1. For readability, times roman bold is used for display of file or program names, helvetica for keyword or other language ele-
ments, and courier for literal strings or code fragments.

expect: Scripts for Controlling Interactive Processes 3

continue, etc), and perform the usual math and string operations. Of course, UNIX programs can
be called (exec). All of these facilities are available to any Tcl application. Tcl is completely de-
scribed by Ousterhout [3][4].

expect is built on top of Tcl and provides additional commands. The spawn command invokes a
UNIX program for interactive use. send sends strings to a process. expect waits for strings from
a process. expect supports regular expressions and can wait for multiple strings at the same time,
executing a different action for each string. expect also understands exceptional conditions such
as timeout and end-of-file.

The expect command is styled after Tcl’s case command which matches a string against a num-
ber of other strings. (Whenever possible, new commands were modeled after existing Tcl com-
mands so that the language remained a coherent set of tools.) The following definition of expect
is paraphrased from the manual page [5]:

expect patlist1 action1 patlist2 action2 . . .

waits until one of the patterns matches the output of the current process, a specified time period
has passed, or an end-of-file is found. If the final action is null, it may be omitted.

Each patlist consists of a single pattern or list of patterns. If a pattern is matched, the corre-
sponding action is executed. The result of the action is returned from expect. The exact string
matched (or read but unmatched, if a timeout occurred) is stored in the variable expect_match.
If patlist is eof or timeout, the corresponding action is executed upon end-of-file or timeout, re-
spectively. The default timeout period is 10 seconds but may, for example, be set to 30 by the
command set timeout 30.

The following fragment is from a script that involves a login. abort is a procedure defined else-
where in the script, while the other actions use Tcl primitives similar to their C namesakes.

expect "*welcome*" break \
"*busy*" {print busy; continue} \
"*failed*" abort \
timeout abort

Patterns are the usual C-shell-style regular expressions. Patterns must match the entire output
of the current process since the previous expect or interact (hence the reason most are sur-
rounded by the * wildcard). However, more than 2000 bytes of output can force earlier bytes to
be “forgotten”. This may be changed by setting the variable match_max.

expect actually demonstrates the best and worst of expect. In particular, its flexibility comes at
the price of an occasionally confusing syntax. The pattern-lists can contain multiple patterns ex-
cept for keyword patterns (e.g., eof, timeout) which must appear by themselves. This provides a
guaranteed way of distinguishing them. However, breaking up the lists requires a second scan,
which can interpret \r and \n as whitespace if not correctly quoted. This is exacerbated by Tcl
providing two forms of string quoting: braces and double quotes. (If unambiguous, Tcl does not
require strings to be quoted at all.) There is a separate section in the expect manual page to ex-
plain this complexity. Fortunately, a healthy set of examples seems to have held back complaints.
Nonetheless, this aspect will be probably be revisited in a future release. For readability in this
paper, scripts are presented as if double quotes sufficed.

4 Don Libes

Characters can be individually quoted with a backslash. Backslashes are also used to continue
statements, which otherwise are terminated at the end of a line. This is inherent to Tcl. Tcl also
continues scanning when there is an open brace or double-quote. In addition, semicolons can be
used to separate multiple statements on a single line. This sounds confusing, but is typical of in-
terpreters (e.g., /bin/sh). Nonetheless, it is one of the less elegant aspects of Tcl.

3. callback

It is surprising how little scripting is necessary to produce something useful. Below is a script
that dials a phone. It is used to reverse the charges so that long-distance phone calls are charged
to the computer. It is invoked as expect callback.exp 12016442332 where the script
is named callback.exp and +1 (201) 644-2332 is the phone number to be dialed.

first give the user some time to logout
exec sleep 4
spawn tip modem
expect "*connected*"
send "ATD[index $argv 1]\r"
modem takes a while to connect
set timeout 60
expect "*CONNECT*"

The first line is a comment. The second illustrates how a UNIX command with no interaction can
be called. sleep 4 will cause the program to block for four seconds, giving the user a chance to
logout since the modem will presumably call back to the same phone number that the user is al-
ready using.

The next line starts tip using spawn so that tip’s output can be read by expect and its input written
by send. Once tip says it is connected, the modem is told to dial the number. (The modem is as-
sumed to be Hayes compatible, but it is easy to expand the script to handle others.) No matter
what happens, expect terminates. If the call fails, it is possible for expect to retry, but that is not
the point here. If the call succeeds, getty will detect DTR on the line after expect exits, and
prompt the user with login:. (Actual scripts usually do more error checking.)

This script illustrates the use of command-line parameters, made available to the script as a list
named argv (in the same style as the C language). In this case, element 1 is the phone number.
The brackets cause the enclosed text to be evaluated as a command, and the result is substituted
for the original text. This is similar to the way backquotes work in csh.

This script replaced a 60K program (written in C) that did the same thing.

4. passwd & conformance testing

Earlier, passwd was mentioned as a program that cannot be run without user interaction. passwd
ignores I/O redirection and cannot be embedded in a pipeline so that input comes from another
program or file. It insists on performing all I/O directly with a real user. passwd was designed

expect: Scripts for Controlling Interactive Processes 5

this way for security reasons, but the result is that there is no way to test passwd non-interac-
tively. It is ironic that a program so critical to system security has no way of being reliably tested.

passwd takes a username as an argument, and interactively prompts for a password. The follow-
ing expect script takes a username and password as arguments, and can be run non-interactively:

spawn passwd [index $argv 1]
set password [index $argv 2]
expect "*password:"
send "$password\r"
expect "*password:"
send "$password\r"
expect eof

The first line starts the passwd program, with the username passed as an argument. The next line
saves the password in a variable for convenience. Like the shell, variables do not have to be
declared in advance.

In the third line, expect looks for the pattern password:. The asterisk allows it to match other
data in the input, and is a useful shortcut to avoid specifying everything in detail. There is no
action specified, so expect just waits until the pattern is found before continuing.

After receiving the prompt, the next line sends a password to the current process. The \r indi-
cates a carriage-return. (All the “usual” C conventions are supported.) There are two expect-
send sequences because passwd asks the password to be typed twice as a spelling verification.
There is no point to this in a non-interactive passwd, but the script has to do this because passwd
assumes it is interacting with a human that does not type consistently.

Lastly, the line expect eof searches for the end-of-file in the output of passwd and demon-
strates the use of keyword patterns. Another such pattern is timeout, used to denote the failure of
any pattern to match in a given amount of time. Here, eof is necessary only because passwd is
carefully written to check that all of its I/O succeeds, including the final newline produced after
the password has been entered a second time.

This script is sufficient to show the basic interaction of the passwd command. A more complete
script would verify other behaviors. For example, the following script checks several other
aspects of the passwd program. Complete prompts are checked. Correct handling of garbage
input is checked. Process death, unusually slow response, or any other unexpected behavior is
also trapped.

spawn passwd [index $argv 1]
expect eof {exit 1} \

timeout {exit 2} \
"*No such user.*" {exit 3} \
"*New password:"

send "[index $argv 2]\r"
expect eof {exit 4} \

timeout {exit 2} \
"*Password too long*" {exit 5} \
"*Password too short*" {exit 5} \

6 Don Libes

"*Retype new password:"
send "[index $argv 3]\r"
expect timeout {exit 2} \

"*Mismatch*" {exit 6} \
"*Password unchanged*}" {exit 7} \
"\r\n"

expect timeout {exit 2} \
"*" {exit 6} \
eof

This script exits with a numeric indication of what happened. 0 indicates passwd ran normally, 1
that it died unexpectedly, 2 that it locked up, and so on. Numbers are used for simplicity – expect
could just as easily pass back strings, including any messages from the spawned program itself.
Indeed, it is typical to save the entire interaction to a file, deleting it only if the command under
test behaves as expected. Otherwise the log is available for further examination.

This passwd testing script is designed to be driven by another script. This second script reads a
file of arguments and expected results. For each set, it calls the first script and then compares the
results to the expected results. (Since this task is non-interactive, a plain old shell can be used to
interpret this second script.) For example, a data file for passwd could look like this:

passwd.exp 3 bogus - -
passwd.exp 0 fred abledabl abledabl
passwd.exp 5 fred abcdefghijklm -
passwd.exp 5 fred abc -
passwd.exp 6 fred foobar bar
passwd.exp 4 fred ^C -

The first field names the regression script to be run. The second field is the exit value that should
match the result of the script. The third field is the username. The fourth and fifth fields are the
passwords to be entered when prompted. The hyphen is just a placeholder for values that will
never be read. In the first test, bogus is a username that is invalid, to which passwd will respond
No such user. expect will exit the script with a value of 3, which also appears as the second
element in the first line of the regression suite data file. In the last test, a control-C is actually sent
to the program to verify that it aborts gracefully.

In this way, expect can be used for testing and debugging interactive software, such as required
by IEEE POSIX 1003.2 (Shells and Tools) conformance testing. This is described in more detail
by Libes [6].

5. rogue & pseudo-terminals

UNIX users are familiar with processes connected to other processes by pipes (e.g. a shell pipe-
line). expect uses ptys (pseudo-terminals) to connect spawned processes. Ptys provide terminal
semantics so that programs think they are performing I/O with a real terminal.

expect: Scripts for Controlling Interactive Processes 7

As an example, the BSD adventure game rogue runs in raw mode, and assumes a character-
addressable terminal exists at the other end of the connection. expect can actually be pro-
grammed to play rogue using the human interface that comes with it.

rogue is an adventure game which presents you with a player that has various physical attributes
such as a strength rating. Most of the time, the strength is 16, but every so often – maybe one out
of 20 games – you get an unusually good strength of 18. A lot of rogue players know this, but no
one in their right mind restarts the game 20 times to find those really good configurations. The
following script does it for you.

for {} {1} {} {
spawn rogue
expect"*Str: 18*" break \

"*Str: 16*"
close
wait

}
interact

The first line is a for loop, with the same control arguments as in C. rogue is started, and then the
strength checked to see if it is 18 or 16. If it is 16, the dialogue is terminated via close and wait
(which respectively closes the connection to the pty and waits for the process to exit). rogue
reads an end-of-file and goes away, after which the loop is restarted, creating a new game of
rogue to test.

When a strength of 18 is found, control breaks out of the loop and drops down to the last line of
the script. interact passes control to the user so that they can play this particular game.

Imagine running this script. What you will actually see is 20 or 30 initial configurations fly across
your screen in less than a second, finally stopping with a great game for you to play. The only
way to play rogue better is under the debugger!

It is important to realize that rogue is a graphics program which uses Curses. expect program-
mers must understand that Curses does not necessarily create screens in an intuitive manner. For-
tunately, it is not a problem in this example. A future enhancement to expect may include a built-
in terminal emulator in order to support the understanding of character graphics regions.

6. ftp

The first script actually written with expect did not print out hello world. Instead, it did
something much more useful. It ran ftp without user interaction. ftp is a program which per-
forms file transfer over TCP/IP networks such as the Internet. The ubiquitous implementation re-
quires the user to provide input for all but the most simple uses.

The script below retrieves a file from a host using anonymous ftp. The hostname is the first argu-
ment to the script. The filename is the second argument.

spawn ftp [index $argv 1]
expect "*Name*"

8 Don Libes

send "anonymous\r"
expect "*Password:*"
send [exec whoami]
expect "*ok*ftp>*"
send "get [index $argv 2]\r"
expect "*ftp>*"

Dedicated programs have been written to perform background ftp. While they use the same un-
derlying mechanism as expect, their programmability leaves much to be desired. Since expect
provides a high-level language, you can customize it to your needs. For example, you can add:

• persistence – if the connection or transfer fails, you can retry every minute,
hour, or even aperiodic intervals that depend on other factors such as user load.

• notification – you can be notified upon transmission via mail, write or any oth-
er mechanism of your choice. You can even be notified of failure.

• initialization – each user can have their own initialization file (e.g., .ftprc) in a
high-level language for further customization, much like csh uses .cshrc.

expect could do many more sophisticated things. For example, it could use McGill University’s
Archie system. Archie is an anonymous telnet service that provides access to a database describ-
ing the contents of the entire Internet’s anonymous ftp repositories. Using this, a script could ask
Archie where a file is, and then download it to your system. This requires only a few more lines at
the beginning of the ftp script above.

No known background-ftp programs provide even one of the features mentioned above, no less
all of them. In expect, the implementation is trivial. Persistence requires a loop in the expect
script. Notification is an exec of mail or write. An initialization file can be read with one com-
mand (source .ftprc does just the right thing) and can use any expect command.

Although these features can be added by hooks into existing programs, there is still no guarantee
that everyone’s needs will have been met. The only way to have such confidence is to provide a
general-purpose language. A good solution would be to integrate Tcl, itself, directly into ftp and
other applications. Indeed, that was the original intent of Tcl’s design. Until this is done, expect
provides much of the benefit of Tcl to many applications without any rewriting at all.

7. fsck

fsck is yet another example of a program with an inadequate user interface. fsck provides almost
no way of answering questions in advance. About all you can say is “answer everything yes” or
“answer everything no”.

The following fragment shows how a script can automatically answer some questions “yes”, and
the rest “no”. The script begins by spawning fsck, and then answering “yes” to two types of ques-
tions, and “no” to everything else.

for {} {1} {} {
expect \

eof break \

expect: Scripts for Controlling Interactive Processes 9

"*UNREF FILE*CLEAR?" {send "y\r"} \
"*BAD INODE*FIX?" {send "y\r"} \
"*? " {send "n\r"}

}

In the next version, the two questions are answered differently. Also, if the script sees something
it doesn’t understand, it executes the interact command which passes control back to the user.
The user keystrokes go directly to fsck. When done, the user can exit or return control to the
script, here triggered by pressing the plus key. If control is returned to the script, it continues au-
tomated processing where it left off.

for {} {1} {} {
expect \

eof break \
"*UNREF FILE*CLEAR?" {send "y\r"} \
"*BAD INODE*FIX?" {send "n\r"} \
"*? " {interact +}

}

Without expect, fsck can be run non-interactively only with very reduced functionality. It is bare-
ly programmable and yet it is the most critical of system administration tools. Many other tools
have similarly deficient user interfaces. In fact, the large number of these is precisely what in-
spired the original development of expect.

8. Controlling multiple processes: job control

expect’s concept of job control finesses some of the usual implementation difficulties. Two issues
are involved: The first is how expect handles classic job control, such as occurs when you press
^Z at the terminal. The second is how expect handles multiple processes.

The answer to the first issue is: Ignore it. expect doesn’t understand anything about classic job
control. For example, if you spawn a program and then send it a ^Z, it will stop (courtesy of the
pty driver) and expect will wait forever.

In practice, however, this is not a problem. There is no reason for an expect script to ever send a
^Z to a process. It doesn’t have to stop a process, per se. expect simply ignores a process, and
turns its attention elsewhere. This is expect’s idea of job control and it works quite well.

The user view of this is as follows: When a process is started by spawn, the variable spawn_id is
set to a descriptor referring to that process. The process described by spawn_id is considered the
current process. (This descriptor is exactly the pty file descriptor, although the user treats it as an
opaque object.) expect and send interact only with the current process. Thus, to switch jobs all
that is necessary is to assign the descriptor of another process to the variable spawn_id.

Here is an example showing how job control can be used to have two chess processes interact.
After spawning them, one process is told to move first. In a loop, a move is sent from one process
to the other, and vice versa. The read_move and send_move procedures are left as an exercise
for the reader. (They are actually very easy to write, but too long to include here.)

10 Don Libes

spawn chess ;# start player one
set id1 $spawn_id
expect "Chess\r\n"
send "first\r" ;# force it to go first
read_move

spawn chess ;# start player two
set id2 $spawn_id
expect "Chess\r\n"

for {} {1} {} {
send_move
read_move
set spawn_id $id1

send_move
read_move
set spawn_id $id2

}

Some applications are not like a chess game where players alternate moves in lock step. The fol-
lowing script implements a spoofer. It will control a terminal so that a user will be able to log in
and work normally. However, whenever the system prompts for either password or login,
expect begins recording keystrokes until the user presses return. This effectively collects just the
logins and passwords of a user without the usual spoofer problem of seeing Incorrect pass-
word – try again. Plus, if the user connects to another host, those additional logins will be
recorded also!2

spawn tip /dev/tty17 ;# open connection to
set tty $spawn_id ;# tty to be spoofed

spawn login ;# open connection to
set login $spawn_id ;# login process

log_user 0

for {} {1} {} {
set ready [select $tty $login]
case $login in $ready {

set spawn_id $login
expect {"*password*" "*login*"} {

send_user $expect_match
set log 1

} "*" ;# ignore everything else
set spawn_id $tty; send $expect_match

}

2. The usual defense against a spoofer is to disallow write access so that the spoofer cannot open public terminals to begin with.

expect: Scripts for Controlling Interactive Processes 11

case $tty in $ready {
set spawn_id $tty
expect "*\r*" {

if $log {
send_user $expect_match
set log 0

}
} "*"
if $log {

send_user $expect_match
}
set spawn_id $login; send $expect_match

}
}

The script works as follows. First connections are made to a login process and terminal. By de-
fault, an entire session is logged to the standard output (via send_user). Since this is not of inter-
est, it is disabled by the command log_user 0. (A variety of commands are available to
control exactly what is seen or logged.)

In a loop, select3 waits for activity from either the terminal or the process and returns a list of
spawn_ids with pending input. case executes an action if a value is found in a list. For example,
if the string login appears in the output of the login process, the prompt is logged to the stan-
dard output and a flag is set so that the script will begin recording the user’s keystrokes until a re-
turn is pressed. Whatever was received is echoed to the terminal. A corresponding action occurs
in the terminal half of the script.

These examples have demonstrated expect’s form of job control. By interposing itself in a dia-
logue, expect can build arbitrarily complex I/O flow between processes. Multiple fan-out, multi-
plexed fan-in, and dynamically data-dependent process graphs are all possible.

In contrast, the shell makes it extraordinarily difficult just to read through a file one line at a time.
The shell forces the user to press control characters (^Z, ^C) and keywords (fg, bg) to switch jobs.
These cannot be used from shell scripts. Similarly, the shell running non-interactively does not
deal with history and other features designed solely for interactive use. This presents a similar
problem as with passwd earlier. Namely, that it is impossible to build shell scripts which regres-
sively test certain shell behavior. The result is that these aspects of the shell will inevitably not be
rigorously tested.

Using expect, it is possible to drive the shell using its interactive job control features. A spawned
shell thinks it is running interactively, and will handle job control as usual. Not only does it solve
the problem of testing shells and other programs that handle job control, but it also enables the
shell to handle the job for expect when necessary. Processes to be manipulated with shell-style
job control can be backed with a shell. This means that first a shell is spawned, and then a com-
mand is sent to the shell to start the process. If the process is suspended by, for example, sending

3. select calls poll() on USG systems and, in retrospect, should have been called something less biased and more meaningful.

12 Don Libes

a ^Z, the process stops and control returns to the shell. As far as expect is concerned, it is still
dealing with the same process (the original shell).

Not only is expect’s approach flexible, it also avoids duplicating the job control software that is
already in the shell. By using the shell, you get the job control of your choice since you can pick
the shell to spawn. And should you need to (such as when testing), you really can drive a shell so
that it thinks it is running interactively. This is also useful for programs that change the way they
buffer output after detecting whether they are running interactively or not.

To further pin things down, during interact, expect puts the controlling terminal (the one expect
was invoked from, not the pty) into raw mode so that all characters pass to the spawned process
verbatim. When expect is not executing interact, the terminal is in cooked mode, at which time
shell job control can be used on expect itself.

9. Using expect interactively

Earlier were shown scripts that are used interactively with interact. interact essentially gives a
user free access to the dialogue, but sometimes finer control is desired. This can be achieved us-
ing expect which can read from the standard input just as easily as it reads from a process. A pre-
defined spawn_id maps to the standard input and the standard output. Alternatively, the
commands expect_user and send_user perform I/O with the standard input and the standard out-
put without changing spawn_id.

The following script reads a line from the standard input for a given amount of time. This script
(named timed_read) can be called from, for example, a csh script as set answer =
‘timed_read 30‘.

#!/usr/local/bin/expect -f
set timeout [index $argv 1]
expect_user "*\n"
send_user $expect_match

The third line accepts any newline-terminated line from the user. The last line returns it to the
standard output. If nothing is typed before the timeout, nothing is returned.

The first line allows systems that support the #! magic to invoke the script directly (without saying
expect before the script name) if its execute permission is set. Of course a script can always be
invoked explicitly, as “expect script”. Options preceded by a –c flag are executed as com-
mands before any in the script. For example, an expect script can be traced without reediting by
invoking it as expect -c "trace ..." script (where the ellipsis represents a tracing
option).

Multiple commands may be strung together on a single script line or within braces, separated by
semi-colons. Naturally, this extends to the –c argument. For example, the following command
runs program foo for 20 seconds.

expect -c "set timeout 20; spawn foo; expect"

expect: Scripts for Controlling Interactive Processes 13

Once the timeout is set and the program is spawned, expect waits for either an end-of-file or the
20 seconds to pass. If the end-of-file is seen, the program has (almost certainly) exited, and ex-
pect returns. If the timeout has passed, expect returns. In either case expect exits, implicitly kill-
ing the current process.

It is educational to try and solve these last two examples without using expect. In both cases, the
usual approach is to fork a second process that sleeps and then signals the original shell. If the
process or read finishes first, the shell kills the sleeper. Passing pids and preventing the back-
ground process start message is a stumbling block for all but the most expert shell programmers.
Providing a general approach to starting multiple processes this way complicates the shell script
immensely. Invariably, the programmer writes a special-purpose C program.

expect_user, send_user, and send_error (for writing to the standard error) are frequently used in
longer expect scripts which translate a complex interaction from a process to a simple one for the
user. In [7], Libes describes how adb could be securely wrapped with a script, preventing a sys-
tem administrator from needing to master the intricacies of adb, while at the same time dramati-
cally lessening the likelihood of a system crash due to an errant keystroke.

A simpler example is automating ftp to retrieve files from a personal account. In this case, a pass-
word must be supplied. Storing the cleartext password in a file should be avoided even if the file
permissions are heavily restricted. Supplying passwords as arguments to a script is also a security
risk due to the ability of ps to retrieve them. A solution is to call expect_user at the beginning of
the script for each password that the script must supply later. The password will be available to
the script (and only to the script), even if it has to retry ftp every hour.

This technique is useful even if the information is to be entered immediately. For example, you
can write a script which changes your password on every machine on which you have an account,
whether or not the machines share a common password database (or even run UNIX). By hand,
you might have to telnet to each machine and then enter the new password. With expect, you en-
ter the password once and let the script do the rest of the work.

expect_user and interact can also be mixed in a single script. Imagine debugging a program that
only fails after many iterations of a loop. An expect script could drive the debugger, setting
breakpoints, running the program for the appropriate number of loops, and then returning control
to the keyboard. It could also alternate between looping and testing for a condition, before return-
ing control.

10. Programming expect interactively

expect may be programmed interactively. For example, if expect is run with no arguments, it
prompts for commands. This is similar to what one normally does when interactively using a
shell. This interactive mode may also be entered by pressing a user-defined string during interact.

Once prompted by the interpreter, you can type expect commands which are executed immediate-
ly. You can call defined procedures, perform job control, or even recursively invoke interact. For
example, suppose you are running a script to automate fsck. You answer some of the questions
yourself, and then decide that the rest should all be answered “yes”. You can escape from interact

14 Don Libes

to the expect interpreter and invoke a procedure to answer the remaining questions without fur-
ther interaction from you. This can be made as complex as you like.

The arguments to interact are actually string-action pairs. (The default action is to invoke the in-
terpreter interactively.) This generalized mechanism can support all the usual styles of escapes.
such as tip’s ~-prefixed commands or csh’s single-character job control keys. Actions may be
any expect command. As an example, the following line maps the strings ~y, ~a, and the ^C and
^Z characters.

interact \
~y {yes} \
~a {send "[exec date]"; send_user "hello world"} \
\Cc {exit} \
\Cz {exec kill -STOP 0}

When ~y is typed, a procedure called yes is invoked. This could further automate the fsck inter-
action just described, so that the user does not have to explicitly start the interpreter and type yes.
~a invokes a more complex action. When typed, hello world is seen at the terminal and the
current date is sent to the process as if the user had typed it. The other pairs exit or suspend an ex-
pect session while interacting with a spawned process. (With no map, the characters would be
passed uninterpreted to the current process.) Appropriate maps can simulate csh-style job control
or much fancier actions. For instance, ^Z could pass control to the interactive expect interpreter –
analogous to what ^Z does in the shell – or it could change jobs to a spawned shell and resume the
interaction.

An unrealistic but amusing application of character mapping is the following script which runs a
shell with a Dvorak keyboard. For brevity, only lowercase letters are mapped.

proc dvorak {} {
interact ~q {return continue} ~d {} \

q {send ’} w {send ,} e {send .} \
r {send p} t {send y} y {send f} \
u {send g} i {send c} o {send r} \
p {send l} s {send o} d {send e} \
f {send u} g {send i} h {send d} \
j {send h} k {send t} l {send n} \
x {send q} c {send j} v {send k} \
b {send x} n {send b} , {send w} \
. {send v} / {send z} ’ {send -} \
\; {send s} z {send \;} \

}

log_user 0
scan [exec printenv SHELL] "%s" shell
spawn $shell
log_user 1
send_user "~d for dvorak, ~q for qwerty (default)\n"
send_user "Enter ~ sequences using qwerty keys\n"
interact ~d dvorak ~q {}

expect: Scripts for Controlling Interactive Processes 15

This script has two interacts. The user switches between them by typing ~d (for Dvorak) and ~q
(for qwerty). The Dvorak translation occurs in the procedure dvorak defined with proc. Within
dvorak, an interact gives each character an action that corresponds to sending its Dvorak counter-
part instead. Nothing has to be sent to the user, since the character will be echoed (if necessary)
by the current process.

The return continue action for ~q causes the Dvorak interact to return the value continue
to its caller. interact’s caller happens to be an earlier interact (at the bottom of the script) which
evaluates the continue and literally continues. This isn’t anything magical. They are just Tcl
commands that are appropriately handled.

The script chooses the desired shell by examining the SHELL environment variable. Since print-
env appends a newline to the end of its output, this has to be stripped off and is done here by scan
– an equivalent to scanf in the C programming language.

This script is excessive and is not at all what this feature of interact was intended for. Neverthe-
less it works and demonstrates a number of interesting aspects.

11. Non-interactive programs are controlled differently

Some interactive programs have non-interactive alternatives. However, it is often the case that
these alternatives are controlled in a way quite unlike the original interactive program. Thus, you
need to learn two ways of doing things: interactively and non-interactively.

For example, suppose you want to locate a printer server. This is described by the rm value in the
printcap file. Interactively, you might use an editor, or even, more, to search the file for the cor-
rect printer and then begin scanning for the rm field. To automate this, you must switch to a com-
pletely different program, such as awk.

Alternatively, you could just translate the interaction you were doing by hand into send/expect se-
quences. The following fragment does exactly this. It was used by a larger script that manipulat-
ed printers by running lpc, the interactive interface to the BSD line printer system.

spawn ed /etc/printcap
expect {*\n} ;# discard character count
send "/$printer/\r"
for {} {1} {} {

expect "*\r\n*:rm=*\n*" {
found rm, now get value
set i [string first :rm= $expect_match]
scan [range $expect_match [expr $i+4] end c] \

"%\[^:\]" server
break

} "*\r\n*\\\r\n" {
look at next line of entry
send "\r"

} "*\r\n*\n" {
no more lines in entry - give up

16 Don Libes

break
}

}

This script uses ed although any editor could be used. First ed is directed to search for the printer.
Once the printer is found, returns are sent to get the successive lines until the value is either locat-
ed or no more lines remain.

Using a specialized tool such as awk might seem like a better alternative, except if you aren’t fa-
miliar with awk’s style of processing. While the same claim could be made about expect, this
script illustrates the idea that (ignoring syntax differences) you can automate a procedure you
know how to do interactively by simply translating it into send/expect sequences.

12. Is expect too fast?

The previous example demonstrated how expect can use an editor to read a file. expect has sim-
pler ways of reading files. For instance the command send [exec cat /etc/motd] writes
the contents of /etc/motd to the current process. Calling a UNIX program to read a file may not
seem like a fast method but it is a lot faster than having a user type it in. In a window environ-
ment, cutting and pasting is an alternative, but this takes a large amount of time also. Realistical-
ly, blazing speed is hardly needed in a program that simulates users.

The speed of expect operations is described by Libes [2]. One side-effect not discussed is that ex-
pect can overrun input buffers designed for human typists. send supports a slow option (send -
s) specifically to avoid this problem. It is controlled by parameters which describe the number of
bytes to send atomically and a length of time to wait between each packet.

send also supports a simulation of actual human typing speed (send -h) according to a modi-
fied Weibull distribution [8], a common statistical tool to simulate interarrival times. The algo-
rithm is driven by a random number generator and several user-chosen parameters. The
parameters describe two average character interarrival times (default and word endings), mini-
mum and maximum interarrival times, and a variability “shape”. Errors are not simulated as this
can be done by the user directly. Simplistic errors may be generated by embedding typing mis-
takes and corrections (if desired) in a send argument. A more sophisticated approach could use
an expert system as a coroutine.

13. Security

The passwd script shown earlier was designed solely to be used for conformance testing. Many
system administrators want such a script to embed in a comprehensive adduser script, which
would set up everything that a generic new user needs including an account and password. Unfor-
tunately, calling the passwd script from another script reopens the very problem that the passwd
program was designed to solve. Passwords should not be used as arguments to programs because
they can be seen by ps and similar programs.

expect: Scripts for Controlling Interactive Processes 17

The solution is to have the expect script generate the passwords directly. This closes the hole,
while at the same time forcing the use of computer-generated passwords which are generally more
difficult to guess than human-generated passwords.

This technique does not extend to programs such as telnet, ftp, su, etc., where a human really
does need to provide the password. The solution is to have the expect script prompt for the pass-
word interactively via expect_user. In contrast to the program (or shell script) prompting when
the password is needed, expect can prompt at the beginning of a script for all the passwords that
will be needed. Even if the same password is used in several programs, the user need only enter it
once since the script will remember it until it is needed.

Often, it is convenient to run such scripts in the background. Starting processes asynchronously
from the shell, however, prevents them from reading keyboard input. Thus expect scripts must be
started synchronously. The fork and disconnect commands are used later to move expect into the
background.

For example, the following script reads the password, disconnects itself from the terminal, sleeps
for one hour, and then goes on to execute commands that require a password.

system stty -echo ;# disable echoing
send_user "Password: "
expect_user "*\n"
send_user "\n" ;# echo newline
system stty echo
scan $expect_match "%s" pass ;# strip off terminating \n
if [fork]!=0 exit
disconnect
exec sleep 3600
spawn su
expect "*Password:*"
send "$pass\r"
more commands follow

This script begins by disabling echo so that the password can be typed unseen. Unlike exec
which manipulates its standard I/O so that it is accessible to expect, the system command does no
manipulation, thereby allowing stty to affect the terminal.

fork literally causes expect to fork. Like the UNIX system call of the same name, it returns the
child process ID to the parent. Since the parent has nothing else to do, it immediately exits. The
shell will detect this as normal program termination. Meanwhile, disconnect breaks the associa-
tion between the child process and the terminal so that the rest of the script can continue immune
to the user logging out.

This paradigm provides a secure way of starting long-running background processes which re-
quire passwords. This works well with security schemes such as MIT’s Kerberos system. In or-
der to run a process authenticated by Kerberos, all that is necessary is to spawn kinit to get a
ticket, and similarly kdestroy when the ticket is no longer needed.

Before expect, there was no way to achieve such results. The choice was either inflexibility or in-
security. expect has made this choice unnecessary, and given us the best of both worlds.

18 Don Libes

14. Conclusions

expect provides a means of automating interactive programs. There are a great many such pro-
grams in the UNIX domain that lack non-interactive alternatives. expect leverages off of these
programs with only a small amount of programming effort.

expect solves a variety of problems with programs that 1) don’t run non-interactively (rlogin, tel-
net); 2) “know” they’re running interactively and change their behavior (csh, rn); 3) bypass stdio
and open /dev/tty (crypt, passwd); 4) don’t provide their full functionality non-interactively
(fsck, ftp); or 5) don’t provide the friendliest user interface (adb, rogue). All of the “new” non-
interactive versions that result can now be usefully called from shell scripts because they can re-
turn meaningful error codes and no longer require user interaction.

expect provides help even when you want to run programs interactively. If they lack a program-
mable interface, you can partially automate the interaction and then share control. Of course, the
ideal solution is to rewrite the application with a programmable front-end. For new applications,
there is no excuse not to use Tcl. It is small, efficient, easy to use, and probably suffices for 90%
of all tools. Building Tcl into an application will always be better than an after-the-fact solution
like expect. But for tools which don’t warrant the Tcl library, or are too old to be rewritten, ex-
pect is a fast solution.

expect is actually quite small. On a Sun 3, the current version is 64k. This includes the entire Tcl
language. expect has few built-in functions. For example, expect doesn’t have a communica-
tions protocol, nor does it know about sophisticated file access methods. It doesn’t need to. It can
invoke another program to do the work. At the same time, this gives you the flexibility of using
any software you already have. Do you need to communicate with a serial line? Use tip, cu, or
kermit. With a TCP socket? Use telnet. You make the choice.

This building block philosophy is very much in keeping with the UNIX tradition of hooking small
programs together to build larger ones. In this respect, expect functions as a new kind of glue,
much like the shell itself. Unfortunately, shell job control was designed only with interactive use
in mind and cannot automatically control interactive processes. expect’s job control is general-
ized and has no such restriction. The two forms of job control do not interfere and can be used to-
gether.

While expect only runs on UNIX, it can be useful in managing non-UNIX sites as long as they are
networked to a UNIX host. Via telnet or tip, a script can login and play its usual interactive
games. My site has scripts that do exactly this on VMS and Symbolics Lisp machines. Our VMS
wizards would rather avoid UNIX entirely, but they know a timesaver when they see it.

15. Acknowledgments

This work was supported by the National Institute of Standards and Technology (NIST) Auto-
mated Manufacturing Research Facility (AMRF). The AMRF is funded by both NIST and the
Navy Manufacturing Technology Program.

expect: Scripts for Controlling Interactive Processes 19

Thanks to Scott Paisley who wrote the callback script. John Ousterhout is responsible for Tcl,
without which expect would not have been written. John also critiqued expect as well as the first
paper about it. I am indebted to him.

Several people made important observations or wrote early scripts while I was still developing the
command semantics. Thanks to Rob Densock, Ken Manheimer, Eric Newton, Scott Paisley,
Steve Ray, Sandy Ressler, Harry Bochner, Ira Fuchs, Craig Warren, Barry Warsaw, Keith Eber-
hardt, Jerry Friesen, and Dan Bernstein. Thanks to Mike Gourlay, Clem Cole, Andy Holyer, and
Alan Crosswell for help in porting expect to various UNIX platforms. Thanks to Steve Simmons,
Joe Gorman, and Corey Satten for fixing some of the bugs. Finally, thanks to K.C. Morris, Chuck
Dinkel, Sue Mulroney, and the anonymous Computing Systems reviewers, who gave me exten-
sive suggestions on improving this paper.

Certain trade names and company products are mentioned in order to adequately specify proce-
dures and equipment used. In no case does such identification imply recommendation or endorse-
ment by the National Institute of Standards and Technology, nor does it imply that the products
are necessarily the best available for the purpose.

16. Availability

Since the design and implementation was paid for by the U.S. government, expect is in the public
domain. However, the author and NIST would like credit if this program, documentation or por-
tions of them are used. expect may be ftped anonymously as pub/expect/expect.shar.Z from
ftp.cme.nist.gov. Request email delivery by mailing to library@cme.nist.gov. The con-
tents of the message should be (no subject line) send pub/expect/expect.shar.Z.

As of August, 1991, over 2500 sites had retrieved expect.

17. References

[1] fsck, UNIX Programmer’s Manual, Section 8, Sun Microsystems, Inc., Mountain View, CA,
September, 1989.

[2] Don Libes, “expect: Curing Those Uncontrollable Fits of Interaction”, Proceedings of the
Summer 1990 USENIX Conference, Anaheim, California, June 11-15, 1990.

[3] John Ousterhout, “Tcl: An Embeddable Command Language”, Proceedings of the Winter
1990 USENIX Conference, Washington, D.C., January 22-26, 1990.

[4] John Ousterhout, “tcl(3) – overview of tool command language facilities”, unpublished
manual page, University of California at Berkeley, January 1990.

[5] Don Libes, “expect User Manual”, to be published as NIST IR 744-91, National Institute of
Standards and Technology, Gaithersburg, MD.

[6] Don Libes, “Regression Testing and Conformance Testing Interactive Programs”, Proceed-
ings of the Summer 1992 USENIX Conference, San Antonio, Texas, June 8-12, 1992.

20 Don Libes

[7] Don Libes, “Using expect to Automate Systems Administration Tasks”, Proceedings of the
Fourth USENIX Large Installation Systems Administration (LISA) Conference, Colorado
Springs, Colorado, October 17-19, 1990.

[8] Norman Johnson, Samuel Kotz, “Continuous Univariate Distributions”, Vol. 1, Houghton
Mifflin Co, New York, NY, 1970.

