
1 Don Libes

ABSTRACT

The NIST EXPRESS toolkit is a software library for building
EXPRESS-related tools. EXPRESS is an ISO language for de-
scribing information models. EXPRESS descriptions are neutral
to different data storage paradigms and systems on different hard-
ware platforms and networks.

This paper describes the design and implementation of the tool-
kit including its important interfaces, data structures, and algo-
rithms. This paper is recommended for anyone wishing to modify
the toolkit or anyone wishing to build their own EXPRESS imple-
mentation. The reader is assumed to be familiar with the EX-
PRESS language, the basics of traditional language
implementations, and C – the language with which the toolkit is
implemented.

As a testbed against which to benchmark the evolving EX-
PRESS language, conformance to the standard (currently Draft In-
ternational Standard) is the highest priority in the toolkit.
Nonetheless, time/space efficiency, accurate and helpful diagnos-
tics, and ease-of-use are also critical to the success of the toolkit.
The paper describes how these concerns are addressed even
though EXPRESS is a complex and sophisticated language.

The toolkit is available from the National Institute of Standards
and Technology. The toolkit is just one of a number of tools for
data management in STEP, a family of ISO standards currently in
development. All of the NIST tools, including the NIST EX-
PRESS toolkit, are in the public domain.

Keywords: compiler, EXPRESS; implementation; National
PDES Testbed; PDES; STEP

CONTEXT

The PDES (Product Data Exchange using STEP) activity
(Furlani, 1990) is the United States’ effort in support of the Stan-
dard for the Exchange of Product Model Data (STEP) (ISO,
1992a), an emerging international standard for the interchange of
product data between various vendors’ CAD/CAM systems and
other manufacturing-related software. A National PDES Testbed
has been established at the National Institute of Standards and
Technology to provide testing and validation facilities for the
emerging standard. The Testbed is funded by the Computer-aided
Acquisition and Logistic Support (CALS) program of the Office
of the Secretary of Defense.

As part of the testing effort, NIST is charged with providing a
software toolkit for manipulating STEP data. The NIST EX-
PRESS Toolkit is a part of this. The toolkit is an evolving,
research-oriented set of software tools. This document is one of a
set of reports (documented by Libes (1993a)) which describe vari-
ous aspects of the Toolkit.

INTRODUCTION

The NIST EXPRESS toolkit is a software library for building
EXPRESS-related tools. This paper describes the philosophy and
design of the toolkit implementation including its important inter-
faces, data structures, and algorithms. Also, the conventions
found within the toolkit will be described. This paper is recom-
mended for anyone wishing to modify the NIST toolkit or anyone
wishing to build their own EXPRESS implementation. The read-
er is assumed to be familiar with the EXPRESS language (ISO,
1990b), the basics of traditional language implementations, and C
– the language with which the toolkit is implemented.

THE NIST EXPRESS TOOLKIT – DESIGN AND IMPLEMENTATION

Don Libes

Factory Automation Systems Division
National Institute of Standards and Technology

Gaithersburg, Maryland

2 Don Libes

The implementation is subject to change. Because of this, no
guarantee is made that the descriptions in this paper are still accu-
rate with regard to the current implementation.

OVERVIEW

The toolkit is not a traditional translator in the sense of a com-
piler or interpreter which translates source into executable code.
Rather, the toolkit is a library with which to build translators. For
instance, a subroutine is provided to tokenize a stream of ASCII
characters into a stream of EXPRESS tokens while another sub-
routine is provided to parse a stream of EXPRESS tokens.

The library stops short of providing subroutines to perform code
generation since EXPRESS schemas are not intended to be trans-
lated directly into executable code. In lieu of this, the toolkit
provides functions with which to query the EXPRESS schemas in
a high-level way. These functions collectively can be considered a
specialized database that describes the EXPRESS schemas.

The goal of the EXPRESS toolkit then is to populate the data-
base and provide access to the database to application programs.
Application-specific modules typically use these functions to
translate the original EXPRESS to another language (producing
application-dependent programs) or to immediately manipulate
some other data (application-independent).

The toolkit Programmer’s Reference (Libes, 1993b) defines
bindings between function names and information in the database.
In contrast, this document concentrates on the underlying data
structures and algorithms used in the database. A comparison of
this implementation to earlier implementations is presented by
Libes and Clark (1992).

Lest the reader be concerned by the apparent complexity of the
toolkit description herein, please note that it is not exposed to the
application programmer. The internals are covered by suitable
macros and functions; all the programmer sees is a very straight-
forward EXPRESS database.

BACKGROUND

It would be misleading to think that the work described here was
created out of whole cloth. In this paper, references made to earli-
er work is sparse, yet much of what is described here depends on
experience gained during that earlier work. The toolkit as it stands
now has been redesigned and rewritten from top to bottom three
times and in two different languages over a period of five years
while the EXPRESS specification changed at least a dozen times.

As the EXPRESS specification matures (it is now a Draft Inter-
national Standard), and with our implementation and usage
experience, we have gradually settled upon the data structures and
algorithms defined here. Libes and Clark (1992) describe experi-
ences and rationale for these choices.

There is no such thing as a perfect implementation. An imple-
mentation is full of choices, such as speed vs. space. In that

particular respect, the toolkit is strongly speed conscious. While
space is well-managed, it is sacrificed immediately for speed. We
believe this is a correct choice in the context of information mod-
eling tasks today and in the future, with respect to the direction of
computing resources.

Another trade off is data structures vs. algorithms. We have
clearly tried to push as much of the complexity of the system as
possible into the data structures to reduce the complexity of the
code. This will be evident. While some of the data structures
strongly parallel their EXPRESS counterparts, some are complete-
ly alien, existing only for supporting the algorithms.

OBJECTS

This section describes the types of objects used by the imple-
mentation, and how they map to EXPRESS objects. In theory,
each EXPRESS object is represented as a C structure with pointers
to other C structures representing other EXPRESS objects. For
example, the EXPRESS notion of an Entity is represented by a C
structure called “Entity”.1 EXPRESS entities include informa-
tion about subtypes, supertypes, attributes, types, etc. Similarly,
so does the C structure representing entities.2

struct Entity {

... subtypes

... supertypes;

... attributes;

};

In EXPRESS, virtually all objects are referenced multiple times.
For example, Entity definitions are referenced by other Entity def-
initions. In order to efficiently make use of such references, the
toolkit creates a C pointer to the object being referenced. In es-
sence, a pointer provides the definition behind a reference.

For instance, examine the EXPRESS attribute declaration:

A: B;

This declares A as an attribute reference and B is the corre-
sponding type. In order to effectively use A, the actual definition
of B must be known. But B is defined elsewhere in the schema.
In the toolkit, B is represented by another C structure. To record
that A is of type B, we record a pointer to B within A.

The act of locating a referent involves searching through masses
of definitions. This operation is called dereferencing or colloqui-
ally, mapping back. In order to efficiently respond to user queries,
it is useful to search for each object no more than once. It is also
useful to search for each object at least once – to verify that all ref-

1. For each structure exposed to the user, a C typedef is defined
which can point to it, i.e., typedef struct Entity
*Entity; Structures used only internally to the implementation
use the raw declaration form to avoid cluttering the user’s
namespace.
2. C source is set in Courier bold. EXPRESS source is set in
Times Roman (as is the text of this paper).

3 Don Libes

erences are meaningful. The toolkit is designed to address both
concerns. It dereferences all references in a set of schemas, leav-
ing a network of C structures connected by pointers. If any
references could not be located, diagnostics are issued.

As the references in each object are being dereferenced, the ob-
ject is said to be in resolution. After resolution is complete, the
object is resolved. During resolution, it is convenient to check se-
mantic consistency. For example, if an attribute reference is used
where a type reference is expected, a diagnostic will be issued.
Such checks are not a necessary part of resolution and can be dis-
abled, but if desired, they are efficiently handled at this time.

Symbol

Every object in the original EXPRESS file is associated with a
Symbol structure. This structure provides a place to record the
object name. The structure also records the file name and line
number corresponding to where the object was defined. The file
name and line number are necessary only for generating diagnos-
tics and are not otherwise used by the toolkit.

struct Symbol {

char *name;

char *filename;

short line;

char resolved;

};

A bitfield, resolved, describes whether the object has been
resolved. The values of the bitfield are:

#define UNRESOLVED1

#define RESOLVED

#define RESOLVE_FAILED

#define RESOLVE_IN_PROGRESS

Dictionary, Object

A dictionary is used to store object pointers2 which can later be
retrieved by name. The dictionary is implemented as a traditional
open hash table that expands when it is a certain percentage full.
It is augmented with extra functionality specifically for the toolkit.

Unlike the typical hash table, it is possible to step through a dic-
tionary sequentially, for example, to resolve each object in the
dictionary. In addition, each entry is augmented with an object’s
symbol and type.

Since the dictionary knows the type of each object, it is possible
to search only for specific types. This solves several problems.
For instance, attribute types can be declared in the entity scope it-

1. When irrelevant to the discussion, macro values are omitted.
2. Object pointers are simply “void *” meaning that they can
point to anything. While object-oriented techniques are used, this
is more due to the requirements of the task being performed than
what the environment supports.

self. However, EXPRESS allows attributes to be named the same
name as the type:

A: A;

Since the dictionary knows the types of each object, it can skip
attribute objects in this case where it is only interested in types.
To select sets of different object types, the selectors are bit strings
which can be ORed together. Some of the type selectors are:

#define OBJ_TYPE_BITS

#define OBJ_ENTITY_BITS

#define OBJ_FUNCTION_BITS

#define OBJ_EXPRESS_BITS

The dictionary’s knowledge of types also allows an efficient so-
lution to the problem of multiple enumerations with the same
name in the same scope (in which the enumeration type is de-
clared). EXPRESS allows this name clash but only for
enumerations. Such ambiguous enumerations must be qualified in
use while non-ambiguous enumerations need not be. Name clash-
es of other types are errors. Since the dictionary knows all
objects’ symbols, it can detect an existing declaration when the
object is stored and report the problem accurately rather than hav-
ing each caller handle it.

If two objects with the same name are indeed enumerations but
in different enumeration types, the type in the common scope is
changed from OBJ_ENUM to OBJ_AMBIG_ENUM. (If they are in
the same enumeration type scope, than a diagnostic is issued re-
porting this.) This technique sacrifices extra storage space (for
duplicate entries in two scopes), but greatly reduces processing
time since scoping exceptions are only handled during dictionary
collisions, rather than having a complex scope lookup algorithm.

Primarily for the benefit of diagnostics, a table (OBJ) is provid-
ed that maps object types to type selectors or an English
description of the type. In addition, the table contains functions
which can be applied to any type object that will yield its Symbol.

struct Object {

struct Symbol *(*get_symbol)();

char* type;

int bits;

} OBJ[...];

This is particularly useful in generating error messages of the
form: “Expected entity but encountered <some object name> of
type <some other type name> on line <#> in file <file name>.”
Additional types can be added to this table. For example, the
NIST Part 21 Exchange File Toolkit (Libes, 1993c) defines “in-
stances” as OBJ_INSTANCE.

Linked List

A Linked_List is the omnipresent linked list, used to store
various lists of information. It is implemented (Libes, 1993d) as a
doubly-linked list. The implementation will not be further de-
scribed here.

4 Don Libes

Scope

Many objects in EXPRESS define scopes, such as entities,
types, and schemas. Some objects do not define scopes, but are
more easily implemented by imagining that they do define scopes.
The Scope structure, shown in Figure 2, defines elements com-
mon to all scopes, real or imaginary.

search_id prevents looping in the network of scopes created
by partially-recursive USE statements. Each time a search is initi-
ated, a new value for search_id is generated. As each scope is
searched, its search_id is compared with the new search_-
id. If unequal, the search_id is set to the new search_id,
and the scope is searched. If equal, the scope has already been
searched.

symbol_table is a collection of pointers to all the objects di-
rectly defined by the scope. superscope is a pointer to the
scope that lexically encloses the scope. For instance, if the current
scope is an entity, the superscope might be the scope of the sche-
ma.

The lines in the listing are not present in the actual source. Here
they simply emphasize that scopes contain type-dependent and -
independent information. (Other object definitions are similar and
will omit the lines from hereon.) The type of any particular scope
is selected by the element type which effectively selects a mem-
ber of the union u. For instance, an entity scope defines
u.entity with the value of type == OBJ_ENTITY. Enti-
ty and other definitions are described later. Other scope types
are:

#define OBJ_EXPRESS

#define OBJ_PROCEDURE

#define OBJ_RULE

#define OBJ_FUNCTION

#define OBJ_SCHEMA

#define OBJ_INCREMENT

Several scope types do not have type-dependent information.
They are as follows:

#define OBJ_RULE

#define OBJ_ALIAS

#define OBJ_QUERY

A Note about Unions

As in the previous section on scope, many other structures in the
system use unions, a C construct that permits storage of different
types in a single place at different times. This is not so much for
storage reasons (although this is helpful) but for type flexibility.
Since unions are not particularly pleasant to use and they are per-
vasive in the toolkit, a brief note is appropriate.

EXPRESS objects can naturally be viewed as creating a class
hierarchy. For example, scope would be inherited by procedures,
functions and other objects. Indeed, an earlier implementation of
the toolkit was written on top of an object-oriented (OO) engine
and appropriate EXPRESS classes.

Pleasant as it was to write, the OO implementation sacrificed a
great deal of speed. While the current toolkit code lays more of
the typing burden on the implementor, there is actually 30% less
code and the toolkit runs in less than 1% of the time than did the
object-oriented implementation. Libes and Clark (1992) present a
complete and fascinating discussion of the problems encountered
and rationales in developing both systems.

struct Scope {

Symbol symbol;

int search_id;

Dictionary symbol_table;

struct Scope *superscope;

char type;

union {

struct Procedure *proc;

struct Function *func;

struct Rule *rule;

struct Entity *entity;

struct Schema *schema;

struct Express *express;

struct Increment *incr;

} u;

};

type-
independent

type-
dependent

Figure 2: C representation of Scope

5 Don Libes

Type

The EXPRESS type system is complex. This naturally shows
up in the implementation. Consider the statements:

TYPE A = SET OF INTEGER;

TYPE B = A;

In this statement, A is the name of a type being defined while
SET OF INTEGER is the type body. Two different structures ful-
ly represent a type. Type names (e.g., A) are associated to type
bodies (e.g., SET OF INTEGER) by the structure TypeHead,
while the type bodies themselves are defined by TypeBody.

struct TypeHead {

Symbol symbol;

struct TypeHead *head;

struct TypeBody *body;

Linked_List where;

};

If type references are defined in terms of other type references,
head points to the other type reference. body points to the body
definition. As a shorthand, body is always defined. Even if a
type reference is defined in terms of another type reference, body
points to the true type definition. Declarations of type references
can have an associated where clause.

Type bodies encode notions such as set and bounds. Primitive
types (e.g., INTEGER) are defined by the type element. There
are over thirty type values, nine of which are primitive types. Sev-
eral others denote types of expressions. A few others are
noteworthy. Aggregate types (e.g., ARRAY) require that base
point to the type of the aggregate value. Enumeration types re-
quire a dictionary in which enumeration identifiers can be found.
Entity types include a pointer to the entity scope. The type self
implies a reference to the entity or type defining the current type.
Operations such as indexing from an array of SELECT types are
not well-defined by the resolution process described here, but re-
quire run-time evaluation. In cases like these, the type runtime
is used.

Several boolean flags record additional information such as
whether a type is unique or optional. shared denotes that the
type body is shared by multiple TypeHeads. This is used by var-
ious predefined types. For example, if multiple attributes are
declared as INTEGER, they can all share the same TypeBody.
repeat indicates that the object is a repeat count.

struct TypeBody {

enum type_enum type;

struct {

unsigned unique :1;

unsigned optional :1;

unsigned fixed :1;

unsigned shared :1;

unsigned repeat :1;

} flags;

struct TypeHead *base;

Type tag;

Expression precision;

Linked_List list;

Dictionary enumeration;

Expression upper;

Expression lower;

struct Scope *entity;

};

The remaining elements are generally optional and depend on
the specific value of type. Several of these should be unionized
for space efficiency, but this has not been a problem in our work.

An optional type tag may be recorded in tag, precision
points to an optional precision expression, and upper and low-
er are optional expressions for aggregate bounds. Finally, list
is a catch-all for types that need to keep object lists such as select
types and composed types.

Variable

EXPRESS attributes and constants are almost identical as far as
processing required. For this reason, the definition Variable is
used for both. The choice of name is meant to be synonymous
with “variables” in typical programming languages.

struct Variable {

Expression name;

Type type;

Expression initializer;

int offset;

struct {

int optional:1;

int var:1;

int constant:1;

} flags;

Symbol *inverse_symbol;

Variable inverse_attribute;

};

Because attribute names can be compound, they are stored as
Expressions. type is the variable type. initializer is
set if the attribute is derived or the constant is initialized. If the
variable is indeed an EXPRESS constant, the constant flag is
set. var and optional correspond to the keywords of the same
name.

inverse_attribute contains the attribute related by the
optional inverse relationship. During parsing, the name of the in-
verse is known but not the attribute itself. Rather than allocating a
dummy attribute, the code saves the name in inverse_symbol.
After parsing, the symbol is mapped back to the true attribute
which is then stored in inverse_attribute.

offset is one of several hooks for run-time support. In each
entity, the size required to store each attribute value is computed.

6 Don Libes

Offsets are computed by adding up all the sizes prior to the current
attribute.

Expression

EXPRESS expressions are complicated because of the many op-
erators and forms these expressions take.

struct Expression {

 Symbol symbol;

 Type type;

 Type return_type;

 struct Op_Subexpression e;

 union expr_union u;

};

Each expression has a Symbol. Sometimes there is no reason
to have a name (e.g., A+B) but sometimes there is. For example,
enumeration identifiers, strings, and function calls all have names.

Syntactic and semantic types are recorded in type and re-
turn_type. For example, the expression A+B has the syntactic
type of op (meaning “has opcode and operands”) while the return
type is integer, real, etc.

Op_Subexpression is a straightforward structure for re-
cording an op_code and up to three operands (since EXPRESS
supports operators with up to three operands). The next element is
a union of other possible expression values. (The Op_Subex-
pression has not been folded into this union for historical
reasons.)

union expr_union {

 int integer;

 float real;

 char *attribute;

 char *binary;

 int logical;

 Boolean boolean;

 struct Query *query;

 Linked_List list;

 Expression expression;

 struct Scope *entity;

 Variable variable;

};

Most of these fields can be intuited from their names. list is a
catch-all for any expression that contains a list such as an aggre-
gate definition or the parameters in a function. variable is for
attribute references. A special structure is defined for query ex-
pressions.

struct Query {

 Variable local;

 Expression aggregate;

 Expression expression;

 struct Scope *scope;

};

local is the variable generated by the query expression. ag-
gregate and expression are the set from which to test and
the logical expression, respectively. Finally, scope is a scope
created specifically created for the query expression.

Entity

EXPRESS entities are represented by a Scope structure that
points to an Entity structure. The entity structure is defined as:

struct Entity {

 Linked_List supertype_symbols;

 Linked_List supertypes;

 Linked_List subtypes;

 Expression subtype_expression;

 Linked_List attributes;

 int inheritance;

 int attribute_count;

 Linked_List unique;

 Linked_List instances;

 int mark;

 Boolean abstract;

 Linked_List where;

 Type type;

};

subtypes and supertypes are linked lists of other entities.
subtype_expression is an expression representing the di-
rected-acyclic-graph form as originally specified by the
SUPERTYPE clause. supertype_symbols is a temporary
convenience. The parser stores the supertype names in a list of
Symbols as they are encountered. After parsing, they are
mapped back to the true entities and stored in supertypes as a
list of Entitys. This procedure is not necessary for subtypes,
since expressions are self-describing while lists are not. The same
expression can be re-used whether it points to a symbol or an enti-
ty.

attributes is a list of the entity’s attributes. unique is a
list of the unique attributes. where is a list of Expressions denot-
ing WHERE clauses.

attribute_count is the number of attributes directly de-
fined by the entity while inheritance is the number of
attributes inherited by the entity. instances is a pointer not set
by the implementation. Rather, it is provided to run-time packag-
es so that they can point to entity instances. All of these elements
are not required by the toolkit but are provided as a convenience.

Two other elements are not required but exist as internal conve-
niences. mark is used to prevent repeated traversal of the
subtype/supertype network while searching for entities. The use
of mark is analogous to search_id in Scopes. type is a
pointer to an entity type with the value of entity equal to this

7 Don Libes

entity. This is particularly useful to have easily available when
evaluating expressions involving entities.

Warning, Error

For consistent diagnostic generation and handling, a diagnostic
package is provided. Each error/warning can be enabled or dis-
abled. This is extremely useful for EXPRESS, a language that has
not been standardized and is continually changing. Constructions
acceptable in this release may not be accepted in the next release
and vice versa. Errors are formatted appropriately so that they are
acceptable to “GNU emacs compile-mode”. Using this ability of
the GNU emacs editor (Stallman, 1992), the user can move the
cursor from one diagnostic to the next in one window, while in a
second window, the schema is automatically repositioned to the
line that the diagnostic describes.

The diagnostic package supports a number of features that may
no longer be particularly useful with the current toolkit implemen-
tation. For example, diagnostics can be buffered and sorted. This
was particularly useful with previous toolkits that generated diag-
nostics in a non-intuitive order. Although the toolkit no longer
needs these features, it is possible that applications may find them
of use.

Currently, diagnostics are generated in the order of greatest im-
portance to least importance. This is a consequence of the
multiple-pass nature of the resolution process and will be men-
tioned further later. The diagnostic package is further described
by Clark (1990a).

Statement

EXPRESS statements have almost nothing in common with one
another except that they usually contain expressions and other
statements. Thus, a common structure is defined. But it is more a
grouping artifice so that all statements are easily processed at the
same time in the toolkit.

struct Statement {

Symbol symbol;

int type;

union u_statement {

struct Alias *alias;

struct Assignment *assign;

struct Case_Statement *Case;

struct Compound_Statement
*compound;

struct Conditional *cond;

struct Loop *loop;

struct Procedure_Call *proc;

struct Return_Statement
*ret;

} u;

};

Inside the Statement structure is a union of structures for
each different kind of EXPRESS statements. They are as follows:

struct Alias {

struct Scope *scope;

struct Variable *variable;

Statement statement;

};

struct Assignment {

Expression lhs;

Expression rhs;

};

struct Case_Statement {

Expression selector;

Linked_List cases;

};

struct Compound_Statement {

Linked_List statements;

};

struct Conditional {

Expression test;

Statement code;

Statement otherwise;

};

struct Loop {

struct Scope *scope;

Expression while_expr;

Expression until_expr;

Statement statement;

};

struct Increment {

Expression init;

Expression end;

Expression increment;

};

struct Procedure_Call {

struct Scope *procedure;

Linked_List parameters;

};

8 Don Libes

struct Return_Statement {

Expression value;

};

Some of these statements have interesting behaviors. In particu-
lar, Procedure_Call requires a scope to deal with tagged
parameters. Similarly, Alias introduces a very tiny scope – of
only one variable! It is convenient to use the Scope mechanism
even though EXPRESS proper does not define these statements in
terms of having scopes.

REPEAT statements require a scope if an increment control is
specified, in which case it is provided by a Scope of type In-
crement. Figure 2 shows a symbolic representation of the
following REPEAT statement in memory:

REPEAT V:=1 TO 100 BY 2;

 <statement>

END_REPEAT;.

The SKIP and ESCAPE statements do not have defined struc-
tures. Since every SKIP statement is identical, the type field of
Statement suffices to describe it completely. The ESCAPE
statement is analogous.

While statements are not named by the user, it is still useful to
tag each one with a Symbol, since this information can be used to
identify the source (line number and file name) should the user
need to be informed about a conflict arising involving the state-
ment. Several other structures in the toolkit have no name, but are
usefully tagged in this same way.

Case Item

The CASE statement is defined by a list of actions. Each action
may be labelled by a number of expressions. The following struc-
ture is used to hold the association between a single action and a
list of expressions (labels):

struct Case_Item {

Symbol symbol;

Linked_List labels;

struct Statement *action;

};

Express

An artificial construct, Express, is used to refer to all the sche-
mas and their contents as a single model. This allows the

Figure 2: Representation of EXPRESS REPEAT statement

(Loop)

scope

u.incr

(Variable)

init end increment

while until statement

(Scope) (Expression) (Expression) (Statement)

(Increment)

(Expression) (Expression) (Expression)

symbol_table

null null <statement>

1 100 2V

Legend:
C structure element name

value

(C typedef)

9 Don Libes

possibility of reading two EXPRESS definitions and comparing
them, generating one from another, or other applications using
multiple models.

The actual definition of an Express structure contains the file
descriptors and other miscellaneous detail that is not relevant here.
The important aspect of Express is that it is owned by a Scope
structure which supplies a dictionary containing all the top-level
information that would normally be found in a schema file such as
SCHEMA and CONSTANT information.

Schema, Rename

Each schema is maintained by a Scope structure which points
to a Schema structure.

struct Schema {

Linked_List rules;

Dictionary refdict;

Dictionary usedict;

Linked_List uselist;

Linked_List reflist;

};

rules is a list of WHERE clauses represented as Expres-
sions. Everything else in the structure supports intra-schema
references. References to entire schemas are placed on uselist
(for USE) or reflist (for REFERENCE). During parsing, ref-
erences to specific objects are inserted into refdict or
usedict. Objects are entered under their new name if they are
renamed, such as in:

REFERENCE FROM SCHEMA1 (OBJ1 AS OBJ2)

All dictionary references are made using the following struc-
ture:

typedef struct Rename {

struct Symbol *schema_sym;

Schema schema;

struct Symbol *old;

struct Symbol *new;

Generic object;

char type;

enum rename_type rename_type;

};

During parsing, schemas names are saved in schema_sym.
old and new are the original and new name of the object. If the
object is not being renamed, new == old.

After parsing, each reference is tracked through any number of
referencing schemas to the schema in which the object is actually
defined. A pointer to the defining schema is stored in schema.
An object pointer to the object definition is stored in object and
its type in type. rename_type is set to either use or ref, al-
lowing later searching to behave differently for the two.

[2] contrasts the current implementation with a prior implemen-
tation that literally copied referenced objects from one schema to
another.

Procedure, Function, Rule

The following definitions support procedures, functions, and
rules.

struct Procedure {

int pcount;

int tag_count;

Linked_List parameters;

Linked_List body;

};

struct Function {

int pcount;

int tag_count;

Linked_List parameters;

Linked_List body;

Type return_type;

};

struct Rule {

Linked_List parameters;

Linked_List body;

Linked_List where;

};

parameters is a list of lists of type expressions. For conve-
nience to the toolkit, pcount is a count of parameters. In
contrast, tag_count is just the number of parameters which are
tagged (with type labels). The tagged parameters may first require
resolution of other tagged parameters, for example if one is
marked INTEGER while another is GENERIC. A more likely
scenario is that the algorithm gives no type information which in-
stead must be garnered from the algorithm callers. This can
change at each call and even mid-call. For example, imagine a
function with the following header:

FUNC FOO(
A: GENERIC;TAG1;
B: GENERIC:TAG2;

): GENERIC:TAG2;

which is called as:

FOO(FOO(T1,T2),FOO(T2,T3))

In order to determine the types of this function’s arguments, it is
necessary to determine the type of the function in two other calls
at the same time! Hence the type labels cannot be associated with
the functions (which is why they don’t show up in the Function
structure definition) but are associated with each individual func-
tion call.

10 Don Libes

For each type label and call, a tag structure holds the mapping
between name and type. This is discarded after resolution.

struct tag {

char *name;

Type type;

};

Memory

A special-purpose memory allocation system (Libes, 1993d) is
provided that understands the predominant number of requests for
memory that come in a small number of sizes corresponding to the
different objects in the system. It speeds up the entire toolkit by
approximately 10-15% over the more general-purpose memory al-
locators (i.e., malloc and friends) provided with C compilers.

The memory allocation system will not be further described
here.

MULTIPLE PASSES – OVERVIEW

The toolkit provides a number of functions that combine to im-
plement a multiple-pass translation. Normally, these passes are
called consecutively however, this is not necessary. Nonetheless,
we will describe this as the ‘usual’ use of the toolkit.

An earlier release of this software used a three pass total, single
pass resolution system. An attribute of single pass resolution is
that objects have to be resolved when they are first encountered.
There are a number of drawbacks to this including: heavily recur-
sive processing can be complex especially when handling errors;
detection of recursive references takes a lot of overhead; and diag-
nostics are generated in a very non-intuitive way as processing
follows depth-first paths of references.

In contrast to that system, the multiple pass architecture of the
current system guarantees that all objects are resolved before be-
ing used. This makes error handling simpler – errors are handled
at very shallow levels of processing. Lastly, since objects are re-
solved only after all their dependencies are, diagnostics are
naturally generated in a most-meaningful-first order. Libes and
Clark (1992) present a complete discussion of the differences be-
tween single and multiple passes in EXPRESS translation.

The specific passes are briefly described below. They will be
described further later in the paper.

Pass 1: Parse

Tokens are scanned and a parse tree is built repre-
senting a collection of schemas. A dictionary is
created for each scope, and names are entered into
the dictionaries during parsing.

If any referenced schema is unknown, a search is
made to find an appropriate file in the file system and
the Parse pass is repeated.

Pass 2: Resolve Use and References

Use and reference lists and dictionaries are traversed
and connections are created to objects in the defining
schemas.

Pass 3: Resolve Subtypes and Supertypes

Entity subtypes and supertypes are resolved.

Pass 4: Resolve Other Static Types

All static type definitions, attribute types, return
types, etc., are resolved.

Pass 5: Resolve Expressions, Statements, and Dynamic
Types

Expressions and statements are resolved. Types for
ALIAS and other dynamically-typed variables are
resolved here since they depend upon expression re-
turn types, and the types are not necessary for earlier
results.

Pass 6: Application-Specific Backend

While not restricted to following all the other passes,
application-specific code is usually performed at this
point.

MULTIPLE PASSES – DETAIL

The multiple passes of the toolkit will now be described in de-
tail.

Scanner

Individual characters are read and grouped into tokens by the
scanner. The current implementation of the scanner can be built
either with Lex or Flex (Lesk and Schmidt, 1978).

The only salient difference between Lex and Flex is that Flex
does not count lines (required for tagging diagnostics and objects).
Some other difference exist but they are minor syntactic-level ele-
ments handled by #ifdefs. Flex provides support for scanning
by state. Using this would simplify the scanner, but we have
avoided it for portability.

As the scanner runs, comments are discarded. While comments
have semantic value, they could conceivably be maintained by the
implementation. Unfortunately, there is no obvious way to associ-
ate comments with objects, since comments can appear between
arbitrary tokens.

EXPRESS allows comments to be nested, so the scanner keeps a
stack for this purpose. A termination routine reports all non-ter-
minated comments. EXPRESS also allows non-nested comments,
which the scanner carefully handles even in the presence of nested

11 Don Libes

comments. (In other words, they are both handled as described in
the EXPRESS specification.)

A token is returned for each EXPRESS reserved word, symbol,
and identifier. Numbers, literals, etc. are returned as single tokens.
In the case of tokens such as TOK_INTEGER and TOK_IDEN-
TIFIER, the union exp_yylval is used to store additional
data. For example, when an integer is scanned, the value of the in-
teger is stored in exp_yylval.iVal and TOK_INTEGER is
passed to the parser.

EXPRESS identifiers are case-insensitive. Thus, all identifiers
are translated to uppercase. If they are keywords or built-in func-
tions or procedures), the matching token is returned. If they are
not keywords, they are presumed to be user-defined identifiers. If
identifiers, the name, line number, and file name are stored in ex-
p_yylval.symbol and TOK_IDENTIFIER is returned to the
parser.

Parser

The parser is a traditional LR parser. The current implementa-
tion runs either with Yacc (Johnson, 1978) or Bison (Stallman,
1992). The following discussion assumes a rudimentary familiari-
ty with Yacc parsers.

The grammar is fairly close to that found in the current EX-
PRESS specification, however there are several reasons why it
diverges significantly in many places:

• The grammar evolved over time and multiple
EXPRESS specifications, rather than being
rewritten from scratch with each release of
the specification. For the most part, the mini-
mum changes necessary were made to keep
the language accepted in conformance with
the specification.

• Little semantic analysis occurs during pars-
ing. For this reason, the parser itself accepts
some constructs that are illegal, the idea be-
ing that they will be caught during semantic
processing later. While this requires some
additional complexity later, the parser is
greatly simplified. For example, a number of
specification rules can be handled by a single
Yacc rule.

• The BNF used by the specification is a super-
set of what is accepted by Yacc. Some of the
rules had to be simplified.

• Parts of the grammar were rewritten to be
more efficient to the LR parser built by
Yacc. The EXPRESS grammar provides no
assistance in building efficient implementa-
tions.

As the parser runs, it builds a tree representing its input. (After
parsing is completed, the tree will then be manipulated into a net-

work.) At the root of the tree is a dictionary of schemas. Each
schema in turn is a tree to entities, functions, etc.

The only semantic processing that occurs during parsing are ob-
ject definitions. For example, when the string “ENTITY FOO” is
encountered, an entity is created. This entity is entered into the
previous scope. Similarly, a scope is created for future attributes
that will be encountered while parsing the rest of the entity defini-
tion. Other objects are created similarly.

A stack called scopes is used to retain lexical knowledge of
scopes as they are encountered. This is primarily used to simplify
access to the current scope while adding objects to it, however it
also simplifies other actions such as scope creation and generation
of more descriptive contexts in diagnostics.

As each schema reference is encountered, it is added to a fifo
called PARSEnew_schemas. This is explored immediately af-
ter parsing. If any unknown schema references are found,
matching files are searched for and the parser is restarted.

The exp_yylval union is used extensively during bottom-up
parsing to pass low-level information back up to higher-level
rules. A few rules require information to be passed down, but
these are rare. Implemented as static variables, they can be found
at the beginning of the parser source.

One of the shortcomings in Yacc/Bison has been its crude error
messages. We have improved that by incorporating a mechanism
(Schreiner and Friedman, 1985) to report what tokens were en-
countered and what tokens were expected. Due to the design of
Yacc/Bison, this modification requires one-time hand editing of
the Yacc/Bison template. This must be done when the toolkit is
ported to a new computer (or the parser is “upgraded”).

The Yacc parser is composed of machine-generated C, and as
such is not particularly efficient (although we use GNU’s Bison
(Stallman, 1992) , a more efficient version of Yacc). Nonetheless,
we have not tried to rewrite an EXPRESS parser by hand. While
such an effort would produce more efficient code, we expect that it
would be a lengthy task, and further changes would be extremely
painful.

The scanner is similarly constructed by Lex (or Flex, a faster
Lex). Currently, the parser and scanner together take 75% of the
time used by parsing and resolution of an EXPRESS schema. We
speculate that a hand-built pair could reduce the total run-time by
as much as 50%.

After Parsing But Before Resolution

As mentioned earlier, the parser creates a tree representing all
the information (except comments) found in the original schema
file. At this point, most of it has little semantic information. For
example, in the attribute declaration ATTRX = TYPEX, TYPEX
becomes represented as a Type but with no information except its
name. Later resolution will determine whether it is a Type, Entity,
or erroneous in some way.

In some parts of the grammar, it is impossible to tell anything
about a token other than it is a name for some object. While EX-

12 Don Libes

PRESS has a well-defined (BNF) syntax, without semantic help it
is possible to parse valid schemas in multiple ways. Unfortunate-
ly, EXPRESS allows objects to be referenced before being
declared, so semantic assistance is impossible in all cases. Thus,
may tokens are forced to be represented simply as Symbols – that
is, just a name and a record of where it was found. During later
resolution, it will be replaced or augmented.

Expressions are represented in the form suggested by the prece-
dence of their operators. For example, the expression “X + (Y +
Z)” is represented by two Expressions. Both have + as opera-
tors. The first has Y and Z as its operands. The second has X as
its first operand and a pointer to the first Expression as its sec-
ond operand.

Expressions are used to represent several other things. For
instance, each entity has an expression representing its subtype re-
lationships. Entity-attribute dereferencing is another example of
an expression. For example, the EXPRESS expression “A.B.C” is
represented in memory as:

Recalling the Parser

If schemas have been referenced but not defined, a schema file is
searched for so that references can be resolved. This is performed
by EXPRESSfind_schema. This function examines each di-
rectory defined by the environment variable EXPRESS_PATH (or
the current directory if EXPRESS_PATH is not defined) for a file
by a name similar to that of the schema itself. The only difference
is that the schema name is converted to lowercase and “.exp” is
appended.

If such a file is found, it is read and parsed (as described earlier).
This procedure of resolved schema references is repeated as long
as such references exist.

As schemas are located, USE and REFERENCE lists are re-
solved as described earlier. After parsing, they are initially simply
lists of schema names and local (and possibly remote) names. A
separate pass is made to establish connections to remote schemas.
A second pass connects the actual objects (Entitys, Types,
etc.) together. This separation of passes avoids problems related
to partial or total recursion between schemas that reference each
other.

Resolving Subtypes, Supertypes, and Type Definitions

Once all the schemas have been resolved, object types must be
resolved. Unlike schemas which occur only at the top-level of an
EXPRESS model, types can be nested within other objects includ-

A B

C

•

•

ing other types. Because of this, type resolution recurses if
necessary to resolve all types.

Type resolution is broken into several steps, partly for simplicity
and partly of necessity.

During the first type resolution pass, subtypes, supertypes, and
type definitions are resolved. Symbols representing types are
sought out and replaced by pointers to the true type. A recursive
search to do this is fairly simple, because the only object that can
contain other objects are scopes. Pseudocode for this is as fol-
lows:

SCOPEresolve_subsupers(Scope s)

for each object x in scope
dictionary s

if object type is

OBJ_ENTITY:

ENTITYresolve_supertypes(x);

ENTITYresolve_subtypes(x);

OBJ_FUNCTION:

OBJ_PROCEDURE:

OBJ_RULE:

SCOPEresolve_subsupers(x);

case OBJ_TYPE:

TYPEresolve(x,scope);

default:

/* ignored everything
else */

}

Notice that resolution of algorithms (OBJ_FUNCTION, etc.)
does nothing but recurse looking for entities and types. When en-
tities are found, the sub and supertypes are traversed and resolved.
When types are found in a scope, the scope must also be passed to
the resolver since our representation of a type does not include a
scope.

In each of these routines, scopes are used to search for objects.
For instance, if an entity has declared that it is a supertype of an-
other entity, the name of that other entity is known but nothing
else. The search strategy to locate the entity is as follows:

Step 1: If the object is in the local Scope, return it.
Step 2: Else if the current Scope is not a Schema, repeat

step 1 with the superscope.
Step 3: When the schema is reached:
Step 3.1: Search the scope of every full USEed schema.
Step 3.2: Search the rename dictionary of all partially

USEed schemas.
Step 3.3: Search the scope of every fully REFERENCEd

schema.

13 Don Libes

Step 3.4: Search the rename dictionary of all partially
REFERENCEd schemas.

Since the subtypes and supertypes form a network rather than a
simple tree, each type is tagged as it is seen. Much like a garbage
collection algorithm, this prevents the possibility of looping over
types already seen.

Resolving Static Types

After all type definitions are known, they can be referred to by
other objects. For example, attributes can redefine other attributes
in inherited supertypes. Naturally, the supertype must be resolved
in order to extract its attributes. Hence, supertype resolution must
precede attribute resolution. Other miscellaneous static type reso-
lutions can also be performed at this time such as the resolution of
function return types.

Searching for inherited entities is a common operation. The
search strategy to locate such an entity is as follows:

Step 1: For each supertype of the entity:
Step 1.1: If the supertype name matches, return the super-

type.
Step 2: For each supertype of the entity:
Step 2.1: Recursively apply this search.
Step 2.1: If the supertype is found, return it.

As with the earlier search strategy, each entity is tagged as it is
encountered to prevent looping.

Resolving Expressions, Statements, and Dynamic
Types

All expressions have a semantic type, such as INTEGER or AR-
RAY OF REAL. These types must be resolved by visiting each
expression and examining its operands and operations. For in-
stance, in the expression “A+B”, if A and B are both integers, the
resulting expression is an integer. The expression is tagged with
the type which can then be propagated upwards.

Expression types are examples of dynamic types. Dynamic
types are those that depend upon context. Not all dynamic types
are expressions although they almost always depend upon expres-
sions at some level. For example, the control variable of a query
expression is not explicitly typed. Rather the type is intuited from
the query expression. Fortunately, it is always possible to deter-
mine the type of a query expression before having to determine the
type of the control variable.

EXPRESS statements must also be resolved. Statements do not
have return types, but the types of expressions used within state-
ments must be resolved. For example, the assignment statement
has a left-hand-side and a right-hand-side, both of which are ex-
pressions. These must be type-compatible.

Expression-type resolution is quite complicated because there
are many EXPRESS expressions and types and they can interact in
a variety of ways and have a large number of exceptions. Here are
some examples:

Functions need not have parameters. There is no way for the
parser to distinguish parameter-less functions from other identifi-
ers such as entity or variable names. This can occur only later
when all the identifiers have been defined. Similarly, entities can
also behave like functions or types depending on context. The ex-
pression resolver must therefore have the flexibility to treat
identifiers in expressions in vastly different ways.

SELF matches the nearest enclosing type or entity. It is not suf-
ficient simply to use the nearest enclosing Scope since this can
also be a Query, Alias, etc. If an entity is used as an implicit
constructor function (such as in a derived initialization of an enti-
ty), SELF can potentially refer to the function (originally an
entity).

A large number of functions and operators exist. They can be
grouped into different classes depending upon what type of pro-
cessing is required to derive the return type from their arguments.
To simplify processing, the toolkit resolves functions and opera-
tors by table-lookup. An operator-resolution table produces a
function based on the opcode which can be called with the user-
supplied arguments to resolve the operator expression. A func-
tion-resolution dictionary produces similar information based
upon the name of the function. A similar dictionary is provided
for procedure-resolution.

Both function and procedure resolution require typechecking of
the supplied parameters against the formals. Formals can declare
dependencies against other formals or even parts of formals via
the tag mechanism. GENERIC formal declarations with matching
tags require that parameters be typechecked against each other, but
through the function or procedure – a circuitous path.

A very few types cannot be resolved. For example, evaluation of
a group operation requires a specific entity, however EXPRESS
allows constructs such as entity aggregates or selects. It is con-
ceivable that two entities are provided, one of which has a referred
to attribute and one which does not. Should the former be pre-
sumed? Should a diagnostic be issued. What if three entities are
supplied, two of which match? What if a set of entities is sup-
plied, indexed by a run-time value. There is no general solution to
this other than run-time evaluation. Expressions such as these are
marked with a type of runtime.

Reporting Suspicious Constructions

In each pass, the toolkit issues diagnostics when an EXPRESS
error prevents complete resolution. A small number of other com-
mon user-mistakes are checked which are not actually necessary
to performance of the resolver.

There are an infinite number of “suspicious constructions”
which could be checked. For example, shadowed types are not il-
legal but are probably a mistake nonetheless. (Or they might not
be.) Classical compiler optimization such as code-hoisting can
discover likely errors in semantics, yet this does not seem appro-
priate to the realm of the translator. Since semantic checks can
potentially take an unbounded length of time, we encourage peo-
ple to tell us what kinds of things are feasibly worth checking.

14 Don Libes

Additional checking could be added to each pass and/or could
be a separate pass.

Application-Specific Backend Processing

While not restricted to following all the other passes, applica-
tion-specific code is usually performed at this point. There are no
restrictions whatsoever on what can be done.

Not only can the model be read, but it can be modified and aug-
mented. Additional schema files can be read. Because each
structure includes a resolution status, the resolution functions will
not attempt to resolve objects that are already resolved (or have
failed to resolve).

A variety of tools have been built using the toolkit including a
graphical schema editor (Clark, 1990b), an EXPRESS-to-SQL
translator (Morris, 1990), a Part 21 Exchange File parser (Libes,
1993e), and an EXPRESS-to-C++ translator (Morris et al, 1993).

SUMMARY

This paper has sketched out the important data structures and al-
gorithms for an EXPRESS toolkit. The toolkit and its
predecessors serve as a testbed for the continued evolution of the
EXPRESS language, a baseline for commercial systems, and a
source of experience from which to draw on when designing new
implementations or modifying existing ones.

TO OBTAIN THIS SOFTWARE

The software described in this paper is in the public domain.
Contact the Factory Automation Systems Division (301 975-3508
or npt-info@cme.nist.gov) to obtain the software, or for any infor-
mation related to NIST work on the National PDES Testbed.

REFERENCES

Clark, S. N., “Fed-X: The NIST Express Translator”, NISTIR
4371, National Institute of Standards and Technology, Gaithers-
burg, MD, July 1990a.

Clark, S. N., “QDES User’s Guide”, NISTIR 4361, National In-
stitute of Standards and Technology, Gaithersburg, MD, June
1990b.

Furlani, C. “ Status of PDES-Related Activities (Standards &
Testing)”, NISTIR 4432, National Institute of Standards and Tech-
nology, Gaithersburg, MD, October 1990.

International Organization for Standardization, “ISO 10303 In-
dustrial Automation Systems and Integration — Product Data
Representation and Exchange — Overview and Fundamental
Principles”, Draft International Standard, ISO TC184/SC4, 1992a.

International Organization for Standardization, “ISO 10303 In-
dustrial Automation Systems and Integration — Product Data
Representation and Exchange — Description Methods: The EX-

PRESS Language Reference Manual, Draft International Stan-
dard”, ISO TC184/SC4, 1992b.

Johnson, S.C., “Yacc: Yet Another Compiler compiler”, UNIX
Programmer’s Manual, Seventh Edition, Bell Laboratories, Mur-
ray Hill, NJ, 1978.

Lesk, M.E. and Schmidt, E., “Lex: A Lexical Analyzer Genera-
tor”, UNIX Programmer’s Manual, Seventh Edition, Bell Labora-
tories, Murray Hill, NJ, 1978.

Libes, D., “The NIST EXPRESS Toolkit – Introduction and
Overview”, National Institute of Standards and Technology,
Gaithersburg, MD, 1993a.

Libes, D., “The NIST EXPRESS Toolkit - Programmer’s Refer-
ence”, National Institute of Standards and Technology, Gaithers-
burg, MD, 1993b.

Libes, D., and Clark, S., “The NIST EXPRESS Toolkit – Les-
sons Learned”, Proceedings of the 1992 EXPRESS Users’ Group
(EUG ‘92) Conference, Dallas, TX, October 17-18, 1992.

Libes, D., “The NIST STEP Part 21 Exchange File Toolkit: An
Update”, National Institute of Standards and Technology, Gaith-
ersburg, MD, 1993c.

Libes, D., Obfuscated C and Other Mysteries, John Wiley and
Sons, pp. 71-77, New York, NY, January 1993d.

Libes, D., “The NIST STEP Part 21 Exchange File Toolkit: An
Update”, National Institute of Standards and Technology, Gaith-
ersburg, MD, 1993e.

Morris, K.C., “Translating EXPRESS to SQL: A User’s Guide”,
NISTIR 4341, National Institute of Standards and Technology,
Gaithersburg, MD, May 1990.

Morris, K.C., Sauder, David, and Ressler, Sandy, “Validation
Testing System: Reusable Software Component Design”, National
Institute of Standards and Technology, Gaithersburg, MD, 1993.

Schreiner, A. T. and Friedman., Jr., H. G., Introduction to Com-
piler Construction with UNIX, Prentice Hall, New York, NY,
1985.

Stallman, R. M., et al, GNU’s Bulletin, Free Software Founda-
tion, Inc., Cambridge, MA, June 1992.

