
1

The NIST EXPRESS Server
–

Usage & Implementation

Don Libes

Factory Automation Systems Division
National Institute of Standards and Technology

Gaithersburg, MD 20899

Abstract
The National Institute of Standards and Technology (NIST) has built numerous software toolkits
and applications for manipulating STEP and EXPRESS data. The NIST EXPRESS Server is a
computational facility at NIST, which provides the ability to run toolkit-based applications
remotely without installing them locally. EXPRESS Schemas and other data files are e-mailed to
the server. The server runs the requested applications on the files and returns any diagnostics or
output, also by e-mail. Applications requiring interaction can either be returned via e-mail so that
they can be run locally, or run remotely by telnet or rlogin across the Internet.

Access to the EXPRESS Server is available at zero cost to anyone who can send e-mail. No initial
registration is required. Use is anonymous by default, however it is possible to use the server as a
collaborative testbed in which case results can be immediately shared with other server users.
The server is capable of restricting file access to one user or a subset of users. It is also possible to
make files publicly available. The server maintains many STEP-related standards and draft
standards for public access. Machine-processable standards such as STEP schemas can be
incorporated automatically when processing user files.

The server dramatically lowers the traditional start-up cost and manpower required to obtain and
install STEP and EXPRESS tools as well as the continuing support costs to upgrade and maintain
the software, by leveraging NIST research, software support and installation, and computing
facilities. The server enables people to experiment or demonstrate STEP without a significant
investment of time and money, allowing them to build experience and make informed decisions
about their future needs for STEP.

Keywords: compiler, EXPRESS; implementation; National PDES Testbed; PDES; STEP

2

Background
The PDES (Product Data Exchange using STEP) activity is the United States’ effort in support of
the Standard for the Exchange of Product Model Data (STEP). STEP is an emerging international
standard for the interchange of product data between various vendors’ CAD/CAM systems and
other manufacturing-related software [1][2][3]. The National PDES Testbed has been established
at the National Institute of Standards and Technology (NIST) to provide testing and validation
facilities for the emerging standard. The Testbed is funded by the Computer-aided Acquisition
and Logistic Support (CALS) program of the Office of the Secretary of Defense.

As part of the testing effort, NIST is charged with providing software for manipulating STEP
data. Provided in the form of tools and toolkits for building new tools, the software is research-
oriented and evolving. This document is one of a set of reports ([4] - [14]) which describe various
aspects of the software.

Introduction
The National Institute of Standards and Technology (NIST) has built numerous software toolkits
and applications for manipulating STEP and EXPRESS data. The NIST EXPRESS Server is a
computational facility at NIST, which provides the ability to run toolkit-based applications
remotely without installing them locally. EXPRESS Schemas and other data files are e-mailed to
the server. The server runs the requested applications on the files and returns any diagnostics or
output, also by e-mail. Applications requiring interaction can either be returned via e-mail so that
they can be run locally, or run remotely by telnet or rlogin across the Internet.

For example, a request to analyze a single schema is initiated by sending e-mail to express-
server@cme.nist.gov. The message starts with the line:

analyze schema.exp

where schema.exp is the name of the file to be analyzed. (The filename can be omitted.
However, the server will then not identify the file in its responses. This can be confusing if you
send multiple requests simultaneously.)

The file itself then follows in the e-mail message. When the server receives the analysis request,
the schema is analyzed and any diagnostics are returned via e-mail. A variety of other
applications are available through the server.

The functions provided through the EXPRESS server represent only a fraction of the capabilities of
the underlying tools used by the server. (For example, the software enables the creation of
entirely new tools. However, the server provides no way to exercise this ability.) Nonetheless,
the server provides a wealth of services to the public.

In return, NIST benefits by getting very fast feedback on new software releases. If bugs are
discovered, new software distributions do not have to be created and distributed. Rather, once the
server applications are repaired, all users immediately begin using the new versions. An
analogous practice occurs with the draft standard schemas that the server uses.

Access to the EXPRESS Server is available at zero cost to anyone who can send e-mail. No initial
registration is required. Use is anonymous by default, however it is possible to use the server as a
collaborative testbed in which case results can be immediately shared with other server users.
The server is capable of restricting file access to one user or a subset of users. It is also possible to

3

make files publicly available. The server maintains many standards and draft standards for public
access. Machine-processable standards such as STEP schemas can be incorporated automatically
when processing user files.

The server dramatically lowers the traditional start-up cost and manpower required to obtain and
install STEP and EXPRESS tools as well as the continuing support costs to upgrade and maintain
the software, by leveraging NIST research, software support and installation, and computing
facilities. The server enables people to experiment or demonstrate STEP without a significant
investment of time and money, allowing them to build experience and make informed decisions
about their future needs for STEP.

For More Information
Contact the Factory Automation Systems Division – National PDES Testbed (1-301-975-3386 or
npt-info@cme.nist.gov) for more information about the software in general, or other NIST
projects at the National PDES Testbed.

This software is a research prototype, intended to spur development of commercial products.
Most of the system is available in source form and you are encouraged to obtain and experiment
with it.

If you have questions and/or problems, you may send e-mail to the following addresses. Please
include schemas, version numbers, platform descriptions, and any other information that could be
relevant.

EXPRESS Server express-server-admin@cme.nist.gov

Data Probe dprobe@cme.nist.gov

EXPRESS Analysis exptk@cme.nist.gov

Part 21 Analysis p21tk@cme.nist.gov

Annotated Listing Generator shtolo@cme.nist.gov

Note that the versions of application software used by the server will typically be one release
ahead of the software officially available for public distribution.

Applications used by the server that are stable may be obtained through an automated source
distribution server at the National PDES Testbed project. The server may be accessed via e-mail
to nptserver@cme.nist.gov. If you are unfamiliar with the server, send the message “help”
and you will receive an explanation of how to use it.

Typography and other Conventions
In this document, shell commands and output are set in Courier bold. EXPRESS source is set in
Times Roman as is the rest of the text. Words or phrases being defined and placeholders that must
be replaced by actual data are set in Times Roman italic. Optional elements are surrounded by
brackets, [such as this phrase]. Occasionally fragments are quoted when they are very small or
contain punctuation characters that might otherwise cause them to be confused with the
surrounding text.

The NIST EXPRESS Server is simply called “the server” in the remainder of this paper.

4

Cost, Privacy, and Security
There is no cost for using the server.

The server records who uses it but will not retain any private data (e.g., user-provided data files)
once a transaction is completed. Logging information is intended only to show use and justify
the project to the funding sponsor. Users will never be retroactively billed.

A mechanism is provided to allow joint access or to prevent access between multiple users. See
Keys – Storing Multiple Files on page 6.

Services Provided
The following services are currently provided. More services may be provided in the future. The
services are described in more detail later in this paper.

• Analysis of EXPRESS schemas
Schemas are analyzed for syntactic and semantic errors. See Public files on page 9.

• Analysis of Part 21 exchange files
Part 21 exchange files are analyzed for syntactic and semantic errors. They are also
checked against accompanying schemas. See Public files on page 9.

• Creation and/or use of Data Probes
A Data Probe is a schema-specific editor that can be used to browse or edit entity
instances. See Building a Data Probe on page 11.

• Conversion of Short Form to Annotated Listing
Multiple Integrated Resource Model (IR) schemas are merged and a subset is produced
corresponding to the definitions used by a particular Application Protocol (AP) schema.
See Converting the Short Form to an Annotated Listing on page 10.

• Public repository for standard and draft standard schemas
Standard, draft standard, or otherwise interesting schemas may be retrieved or used with
other services provided by the server. See Public Files on page 15.

• Sharing and collaboration between other parties
Users may collaborate on schemas or Part 21 information, using the server as a neutral
site. See Keys – Storing Multiple Files on page 6.

Contacting the Server
To use this service, send e-mail to express-server@cme.nist.gov or
uunet!cme.nist.gov!express-server (UUCP). The “Subject:” line is ignored.

The return address (or Reply-to field if given) is used to e-mail responses to. E-mail systems
typically provide return addresses automatically. If your e-mail system does not provide a return
address, or the provided address is known to be incorrect, you may override the default by giving
the following command as the first line of the body of your message:

path <path>
where <path> is the correct address from the server to you. For example:

path fred%swill.net@hack.party.edu

5

The server usually responds promptly – within seconds if you are on the Internet, and within a day
for most other sites (depending on the number of network gateways between you and the server).
Occasional electrical or network problems at NIST can cause substantial delays. While the NIST
computers run 365 days a year, weekends are a popular time for NIST-wide power repairs that can
temporarily force the server to remain unavailable. We have no control over this, and can only
provide this general warning that weekend response time can be unreliable.

If you do not receive a response from the server after several days, then your return address may
be incorrect. If the server does not return your e-mail, we probably can’t either, so call us on the
phone (see For More Information on page 3).

Commands
Most of the services provided by the server are initiated by commands in your e-mail message.
Each line of the message is read. If a line begins with a command, the remainder of the line is
passed as arguments to the command. Depending upon the command, the remainder of the
message will be interpreted as data or additional commands. Commands are case sensitive. It is
up to the application as to whether data is case-sensitive or not. All case is preserved.

If an error is encountered, the remainder of the message is discarded, and an appropriate message
is returned via e-mail.

Commands For more information see

analyze Analyzing Files – Overview on page 9
annotate Converting the Short Form to an Annotated Listing on page 10
deletekey Keys – Storing Multiple Files on page 6
get Receiving a File on page 8
help Commands on page 5
list Listing Files on page 8
newkey Keys – Storing Multiple Files on page 6
path Contacting the Server on page 4
probe Building a Data Probe on page 11
put Explicitly Sending a File on page 7

Additional commands may be added in the future. Any unrecognized command will be treated as
a help command. The help command sends back a brief description of all commands and how to
use them.

Processing Files In-line
Some commands include files in-line. The filename is one of the command arguments, and the
remainder of the e-mail message is taken as the contents of the file.

For example, with one argument, the analyze command (see Analyzing Files – Overview on page
9) takes a filename as argument, immediately followed by the contents of the file.

analyze empty-schema.exp

SCHEMA FOO;

END_SCHEMA;

6

The file may also be compressed and uuencoded. For example:

analyze empty-schema.exp

begin 664 empty-schema.exp

:’YV04X8@*=(D” @C3Y[L4%#$”9$O 0<67 CY

end

Commands which process a single file and then immediately send back the results, such as in this
example, delete the input file immediately after the command is completed. (Do not send your
only copy....)

Some commands also accept a key parameter (see Keys – Storing Multiple Files on page 6). In
this case, the in-line file is saved until the key is later destroyed. If no key is supplied, the
filename argument is optional as well. If omitted, the server uses the filename “noname.exp” to
refer to the file in any reports sent back. Thus, for example, the earlier example can be simplified
even further:

analyze

SCHEMA FOO;

END_SCHEMA;

Keys – Storing Multiple Files
It is possible to process multiple files together. There are numerous reasons to split large files up
or to keep multiple files separate:

• Many network gateways and mailers enforce length restrictions. 50K files are fine, 64K
files are risky from some sites, and 100K are unlikely to arrive from anywhere.

• Schemas may naturally be stored in separate files. In this case, it is desirable for any
diagnostics to refer to the original filenames.

• Analysis of a Part 21 file requires an EXPRESS file.

• The server maintains standard and draft-standard schemas already. It is unnecessary to
transmit these to the sender or append them to other schemas.

To process multiple files, you must send each file in a separate e-mail message. To avoid conflicts
with other users, a key is used to distinguish one user’s files from another’s. Thus, you must first
get a key. To get a key, send a message with the command:

newkey [<password>]
A key will be e-mailed back to you. This key can be used with commands that require a key, such
as the command for sending a file. (See “Sending a file”.) For example, the command:

newkey

would generate a response from the server such as:

Your new key is: 17

An optional password may be used to reduce the likelihood of other people using your keys. For
example, if you send the command:

newkey foo

you might be told:

7

Your new key is: 17.foo

From then on, you would supply 17.foo wherever a key is normally provided. (The format of
keys may not actually look like what is used in these examples – suffice it to say, you should use
as a key whatever the server tells you to use as a key.)

When done with the key, you should tell the server that it can delete your files and key. Do this by
sending a message with the command:

deletekey <key>
There is no limit on the number of keys you may create (subject to disk space limitations). For
housekeeping purposes, keys and files will be deleted automatically one month after their
creation. During disk crises, this lifetime may be capriciously shortened. Key creators are sent e-
mail upon deletion of their keys.

Keys may be shared by people collaborating on information stored by the server. Various
scenarios are possible:

• Two or more developers from different companies may share files.
To accomplish this, the first developer simply tells the other developers the key and
associated password. Each developer, can then send files to the server which can be
retrieved by other developers.

• A developer may create a Data Probe that is usable by others, without providing access
to the underlying schema files.
To accomplish this, the developer creates the Data Probe, deletes the schema files, and
then announces the key.

• A developer may request public comments on schemas or other STEP data.
To accomplish this, the developer downloads the files to a key with no password, and
then announces the key.

A more fine-grain sharing policy is not available.

Explicitly Sending a File
Some commands allow files to follow them in-line (see Processing Files In-line on page 5). It is
also possible to send a file explicitly. No processing occurs in such a case except that the file is
stored at the server.

To send a file, send the following command followed immediately by the data.

put <key> <filename>
The data will be stored and associated with the key and filename. For example:

put 17 junk.exp

The software does not actually enforce it, but we recommend that files containing EXPRESS

schemas end with “.exp” while Part 21 files end with “.p21”. Filenames can be constructed of
any character but “/”. Filenames may not have a leading “.”.

Filenames may be further suffixed with “.#” where # is a number. All such files with otherwise
matching names are put together in the order implied by the #. The first number should be 0
(zero).

For example, the files:

8

foo.exp.0

foo.exp.1

foo.exp.2

will be joined together to make a single file known as “foo.exp”. This joining together actually
occurs when an application command is received (analyze, probe, etc.).

While not demanded by the server, it is often helpful to compress and uuencode files before
sending them to the server. In particular, it

• reduces network usage, which can save you time and money, and

• avoids possibility of truncation or translation problems caused by “intelligent” gateways.

If you want to compress and uuencode files, you should compress, uuencode and then split (if
necessary) the files, rather than splitting them first. This should save you some effort. By
splitting afterwards, you will only have to compress/uuencode once, rather than on each split
fragment. With sufficient compression, it may turn out that splitting is not even necessary.

The server will automatically detect files that are uuencoded and compressed, and uudecode and
uncompress them. The uuencode label will be ignored in favor of the filename supplied on the
command line. (Files should be both compressed and uuencoded. Doing one without the other
does not make sense.)

Do not append signatures to messages as this will confuse the software. Since the usual signature
preface (“--” on a line by itself) is valid EXPRESS, there is no way for the server to automatically
detect and skip signatures.

Listing Files
To list files under a given key, send the command:

list <key>
To list public files, send the command:

list

Receiving a File
It is possible to receive any of the public files or any of your own files. To receive a public file,
send the command:

get <filename>
where <filename> is the name of the file.

To receive a file corresponding to a key, send the command:

get <key> <filename>
The file will be compressed and uuencoded. To read it, strip any e-mail headers off of it,
uudecode and uncompress it (using the utilities by those names).

If the file is sufficiently large, it will be broken into parts and each part will be e-mailed separately.
To recreate the file, strip the e-mail headers from each part and join them together. Then
uudecode and uncompress as before.

9

An automated program to strip the headers and uudecode a group of messages can be received by
sending the command “send unpack.c” to library@cme.nist.gov.

Files that are encoded or fragmented for transmission will always be prefaced with an explanation
(similar to this section) describing how to interpret the rest of the messages that follow.

Public files
Commonly referenced files, such as schemas extracted from various standards (STEP APs, IRs,
etc.) are pre-stored in a public area. These files will automatically be used if you have schema
references to them that are not otherwise provided by your own schemas.

You can list or retrieve the public files in the public area but you cannot create public files. The
other commands’ descriptions have the precise details on accessing public files.

Analyzing Files – Overview
The server is capable of analyzing EXPRESS Schemas and Part 21 exchange files for a variety of
syntactic and semantic errors and questionable constructions. It is possible to analyze files
together, for example, to allow inter-file schema references to be resolved. Analysis of a single
file is very simple (see Analyzing a Single File on page 9) while analysis of multiple files is more
complex, involving preparing the multiple files and then performing the analysis (see Analyzing
Multiple Files on page 10).

A database of standard or draft standard schemas is automatically made available by the server.
These schema definitions will be used by default, unless overridden in a user-supplied schema.

Analyzing a Single File
If you are sending a single file for analysis, give the following command as the first line of the
body of your message:

analyze <filename>
where <filename> is the name of the file. (Currently, only EXPRESS files are analyzed this way, so
<filename> should end with “.exp”.) The file itself should follow immediately afterward in the
body of the message. For example:

analyze empty-schema.exp

SCHEMA FOO;

END_SCHEMA;

The file may also be compressed and uuencoded. For example:

analyze empty-schema.exp

begin 664 empty-schema.exp

:’YV04X8@*=(D” @C3Y[L4%#$”9$O 0<67 CY

end

The file will be deleted immediately after analysis is complete. (Don’t send your only copy....)

Analysis of single files generally takes on the order of a few seconds, after which the results are e-
mailed back. Any delays are due to e-mail, hardware, or network problems.

10

Errors and warnings are formatted so that they can be automatically read by emacs compile-mode.
In this mode, emacs lets you browse through the diagnostics while it automatically loads and
positions the appropriate source file for each diagnostic. This is a significant time-saver. (This
also explains why a filename should be supplied even when the file immediately follows – the
filename is referred to in the diagnostics.)

Analyzing Multiple Files
To start the analysis, send the command:

analyze <key> <EXPRESS filename> [<Part 21 filename>]
where <EXPRESS-filename> (and optionally, <Part 21 filename>) is the name of a file
previously sent. If the file references schemas not defined in the current file, a search will be
made for a file which has a name matching the unresolved schema, but with a “.exp” extension.
For example, if the current schema encounters the statement:

USE ENTITY FROM FOO;

then the file “foo.exp” will be loaded and analyzed. If foo.exp is not associated with the key,
the file is loaded from the public files. If foo.exp contains other schemas, they will also be
analyzed.

It is also possible to logically insert other files during analysis by use of an INCLUDE statement.
INCLUDE statements were, at one time, valid EXPRESS. However, they are not currently. It is
best to think of them as a preprocessing phase of the implementation that has nothing to do with
the language proper.

With that in mind, INCLUDE statements can appear outside a schema or at the top-level of a
schema. Included files are not restricted to including schemas, but may include, for example, a set
of entities, a rule, etc. For example:

INCLUDE 'schema-file.exp';

The analyze command takes an optional argument specifying a Part 21 file. The Part 21 file is
analyzed against the given EXPRESS file.

Part 21 files place additional constraints against EXPRESS files. For example, because Part 21 files
provide no entity-to-schema association, they carry an implicit assumption that top-level entity
names are unique across all referenced schemas. Thus legal EXPRESS files may not be valid in the
Part 21 environment.

Converting the Short Form to an Annotated Listing
Standard APs require an annotated listing, also known as “the long form”. An annotated listing is
composed of a subset of multiple IRs used by a particular AP. The final form is a listing in the
context of a single schema with no cross-schema referencing information. The server generates
such a listing with the following command:

annotate [<key>] <schema name> <file name>
<file name> is the name of the file containing the AP short form. If <key> is not present, the
remaining lines in the message are used to form the contents of the file.

11

<schema name> names the particular schema within the file which is to be annotated. A schema
name must be provided even if there is only one schema in the file.

If no errors are encountered, the generated annotated listing is placed into a schema called
“annotated_listing”. The schema is stored in a file by the name
annotated_listing.exp and e-mailed back.

The presentation of the IRs are regenerated from an internal representation. For this reason, the
IR schemas may not superficially resemble their original representation, although they are
semantically identical. All comments are stripped from the EXPRESS representing the reference
models due to limitations in the underlying schema representation used by the EXPRESS toolkit.

Building a Data Probe
A Data Probe is an EXPRESS schema instance editor and browser [15][16][17]. Currently, a Data
Probe can read and write STEP Part 21 exchange files. Data Probes are schema-specific. To build
a Data Probe, send the command:

probe [<key>] <filename>
If a key is provided, <filename> is the name of a file previously sent, otherwise anything
following is used as the contents of the file.

If no key is provided, the Data Probe is immediately sent back to you as an e-mail message.
Currently, Data Probes are provided as SunOS 4.1.2 SPARC stripped executables. The minimum
size of a probe is 1.2Mb. (See Receiving a File on page 8 for more information on receiving large
files.)

If a key is provided, the Data Probe is stored on the server. You can then ask for it to be sent to
you, or (assuming you are on the Internet) you can run it remotely on the EXPRESS server and have
it display on your own X server.

The Data Probe is saved as a file called “probe”. Thus it can be retrieved just like any file:

get <key> probe
where <key> is the key with which the Data Probe was created. (See “Receiving a file” for more
information.)

To run the Data Probe remotely, provide the EXPRESS server with the permission to write to your X
server. Permission is typically granted by issuing the following command locally:

xhost tribble.cme.nist.gov

Next telnet or rlogin to the Internet host tribble.cme.nist.gov and log in as “express”.
No password is needed. You will be prompted for the name of your X display, your key and
password. If you do not have a password, just press return. (The name of your X display is
typically your Internet address followed by “:0.0”, such as “snark.cme.nist.gov:0.0”.)
The Data Probe will then run remotely (on tribble) and display locally on your own X display.

Here is an example of the interaction, beginning from the telnet command on the local host. User
keystrokes are underlined.

xyzzy% telnet tribble

Trying 129.6.32.54 ...

Connected to tribble.

12

Escape character is ‘^]’.

SunOS UNIX (tribble)

login: express

Last login: Thu Apr 8 14:34:59 from OOPS.NCSL.NIST.G

SunOS Release 4.1.2 (TRIBBLE) #2: Wed Sep 2 12:17:13 EDT 1992

Welcome to the NIST Express Application Server. If you have

problems or comments, email them to express-server-admin@cme.nist.
gov

This server uses the X window system. For operation, you must
provide the server with permission to write to your local screen.
To do this, execute “xhost tribble.cme.nist.gov” or its equivalent
on your system.

Enter your X DISPLAY (e.g., bart.uunet.uu.net:0.0): xyzzy.cme.nist
.gov:0.0

Enter key (without password). This will have been previously
given to you from the NIST EXPRESS server. Enter key: 111

Enter password:

The password is not echoed. The Data Probe starts at this point.

Expect [18] is a scripting language which enables automation of interactive programs. Here is an
Expect script called autoprobe which automates the task of logging in. The script takes a key
as the first argument and an optional password as the second argument.

#!/usr/bin/expect

if {[llength $argv] < 2]} {

send_error "usage: autoprobe key \[password]\n" exit

}

set timeout -1

exec xhost tribble.cme.nist.gov

spawn telnet tribble.cme.nist.gov

expect "login: " {send “express\r"}

expect "DISPLAY*: " {

send "[exec hostname].[exec domainname]:0.0\r"

}

expect "key: " {

send "[lindex $argv 1]\r"

}

expect "password: " {

if {[llength $argv] > 2} {

send "[lindex $argv 2]\r"

} else {

send "\r"

13

}

}

expect

Implementation Notes
The following sections of the paper describe implementation aspects of the server software itself.
These notes are of primary relevance to the server administrator. Currently, the server software is
not available for public distribution. Nonetheless, these notes may be useful to others wishing to
better understand this server or anyone designing their own server.

Server
The server runs on tribble.cme.nist.gov, a Sun SPARCstation II owned and supported by the
Factory Automation Systems Division at NIST. The machine is physically located in the
Metrology Building at the NIST campus in Gaithersburg, Maryland. All file references in the
remaining sections of this paper are assumed to be from tribble.cme.nist.gov.

To preserve good response time, users are prevented from logging in when three or more users are
effectively using 100% of the CPU time for more than one minute. This figure was not
scientifically determined and may be readjusted as we gain experience with the server.

Software
The server is written in approximately 1000 lines of Expect. The code to handle e-mail requests is
900 lines while the code executed at login (to run a Data Probe) is 100 lines. Application-specific
processing is performed by toolkit software written in C and C++. These commands include:

fedex EXPRESS schema analyzer
p21 Part 21 analyzer
mkprobe Data Probe creation software
probe Data Probe itself (one for each schema)
shtolo Short to annotated listing generator

The executable code for the server is in /proj/elib/services/express. In this directory
are the following files:

README brief description of files in the directory
common.exp common definitions for login.exp and server1

login.exp script run when a person logs into tribble as user “express”
mkProbe symbolic link to real mkProbe2

p11 symbolic link to real fedex
p21 symbolic link to real p21 program

1. Both Expect scripts and EXPRESS files are optionally suffixed with a “.exp” extension for readability. Unfor-
tunately, the benefit fails entirely in situations like these.
2. The “real” executables are stored in a common bin directory elsewhere. This was done out of habit. It is stan-
dard practice for large software package and may turn out to be unnecessary for the server.

14

pub public EXPRESS schemas. For more information, see Public Files on page
15. This directory includes:

README brief description of files in the directory
p21_header.exp header schema defined in Part 21
other EXPRESS files

relink script to recreate all the symbolic links in the pub directory
server script run when e-mail is received
server.help help file for server
shtolo symbolic link to real shtolo program
symlink script to create symbolic links corresponding to all the schema names in a

single EXPRESS file
spool where user-writable files are kept. This directory includes:

key contains last key used
log log of activity. See Log on page 14.
key-specific directories See Key-specific Directories on page 15.

Configuration
A number of configuration parameters are stored in the file common.exp. These include the
location of the spool and public directory and the log file. Also parameterized is the garbage
collection frequency, server administrator, format of the log file, and the EXPRESS server host
itself.

The server and the login code each customize parameters specific to themselves. For example,
the server parameterizes the location of the key file, help file, as well as all the applications.

Error Handling
Server error handling is robust. There are several types of errors that are handled by the server:

• User-Server Errors
The server reports user-server errors (e.g., unknown command) by e-mail back to the
user, with an appropriate explanation of the error.

• User-Application Errors
The server reports user-application errors (e.g., improper application usage) by e-mail
back to the user, with whatever diagnostic is produced by the application.

• Internal Application Errors
Internal errors in an application are e-mailed back to the user. The user should report the
problem to the application maintainer. See For More Information on page 3.

• Internal Server Errors
Internal diagnostics generated by the server are e-mailed to the server administrator. A
brief note is also e-mailed back to the user saying that the server administrator has been
alerted to the problem.

15

Log
Each command (or login) generates an entry in the log. Here are several sample entries:

Wed Apr 7 19:28:46 EDT 1993;libes@cme.nist.gov (don libes);m;newkey

Wed Apr 7 19:28:48 EDT 1993;libes@cme.nist.gov (don libes);m;newkey is
122

Wed Apr 7 19:34:07 EDT 1993;libes;m;list 111

Thu Apr 8 02:17:58 EDT 1993;”douglas j. martin” <70412.3036@com-
puserve.com>;m;path 70412.3036@compuserve.com

Thu Apr 8 02:17:58 EDT 1993;70412.3036@compuserve.com;m;analyze pipe.-
exz

Thu Apr 8 02:48:24 EDT 1993;”douglas j. martin” <70412.3036@com-
puserve.com>;m;path 70412.3036@compuserve.com

Thu Apr 8 03:01:33 EDT 1993;droid.cme.nist.gov:0.0;l;probe, key 17

Each entry is a set of fields delimited by semicolons. The first field is the date when the entry was
made. The second is the e-mail address and an optional user name, or the DISPLAY value for
logins. The next field is the letter m if the request came via e-mail or l for login. The last field is
the actual command or an appropriate comment generated by the server.

The log must be world-writable. It should be cleaned out occasionally since it will grow without
bounds.

Public Files
The server maintains a directory (see Software on page 13) of public files. Most files can be
added or removed from this directory using the usual UNIX commands. Schema files require an
additional step to define symbolic links for the purposes of inter-schema references.

The relink program will delete all old links and recreate any new links that can be deduced from
the schema files in the public directory. relink calls symlink on each schema file in the public
directory. relink takes no arguments. symlink should be called as follows:

symlink -r <schema-file>
The -r flag causes resolution processing to be skipped (which presumably cannot occur because
the symbolic links necessary for inter-schema references have not been created).

Key-specific Directories
For each existing key, a directory exists to contain all key-specific files. Schema files, Part 21
exchange files and all other user files are stored at the top level in this directory. The directory
name is the key itself. A key is represented by an integer. New keys are generated by
incrementing the last key and wrapping back to zero if the keys grow large enough. The last key
used is stored in the key file in the spool directory (see Software on page 13).

Transactions that take place without a key, are assigned a temporary one. After the transaction is
completed, the key and the directory are deleted.

If the key has an associated password, the directory will contain a file called “.password” which
contains the password. The password is not encrypted. There is no need to encrypt passwords
since the server provides no user commands to read plain files.

16

The e-mail address (and optional user name) that sent the newkey request is stored in the file
“.creator”. This is useful if there is a problem with the directory. “.creator” is not
otherwise examined.

Each time a key directory is accessed, the file “.last_access” is rewritten to contain the name
of the current user. This information in itself is not used anywhere, although it could conceivably
be useful for debugging. More importantly, the modification date on this file is used to decide
how old files are, which is helpful in keeping the system free of files that are no longer in use.

Key-specific files that have not been accessed in thirty days are subject to deletion. An automatic
garbage collection occurs whenever the server runs.

All of the per-key files that are used to maintain server overhead information (rather than user
information) are prefaced with a “.”. The server does not allow users access to such files, nor do
the applications.

File Ownership and Permissions
The files in the directory that contains the user-specific key directories are written by user daemon
for e-mail transactions and user express for login transactions. To simplify ownership and
security, this directory and all files within should be world-writable. This also reduces problems
faced by the server administrator while doing manual maintenance of the key directories or the
key or log file (which are also stored in the same top-level directory).

Ownership of all other files in the server is irrelevant (assuming they are world-readable) as no
other files are written or updated while the server is performing user transactions.

Security
File references by users or indirectly by applications are restricted to public files or files in a key
directory. Users can only write or delete files in their own directories. Some applications (e.g.,
Data Probe) which would otherwise permit arbitrary filesystem references are called with special
flags to enforce the aforementioned restriction. Calling sequences are controlled by the server
itself which does not permit arbitrary flags to be passed to applications.

Access to user directories may be protected by keys. The use and implementation of this is
described elsewhere (see Keys – Storing Multiple Files on page 6 and Key-specific Directories on
page 15 respectively).

All files written during operation of the server are maintained in the spool directory. Keeping all
writable files separate from the server itself and other static files simplifies the problems in
administering access levels to each file. The spool directory is world-writable. All other files and
directories in the system are not world-writable. If the spool directory is damaged or destroyed
(such as by a bug in the server), it can be restored simply by recreating the directory and
initializing the log and key file. While not restoring the user files, this at least restores service to
users very quickly. Restoration of user files or of the server itself requires that the entire directory
hierarchy be restored from backup.

17

Modifying the Server or Applications
The server itself may be modified by editing any files in the source directory (see Software on
page 13). Executing “make” in this directory will copy the appropriate files to the public
directories.

Application are stored as symbolic links to executables in other directories. This allows the
binaries to be shared with PDES Testbed users or developers for testing purposes. “make apps”
copies applications to tribble in order to isolate any testbed changes from server users who
should not be affected by changes to the PDES testbed.

New commands may be added by providing a new procedure and adding it and a corresponding
command name to the list of commands accepted by the server.

The server can be tested by running it by hand. Input should look just like an e-mail message.
The only input absolutely necessary is a From: line separated by a blank line before the body of
the message. Normally, output is e-mailed back, however the server will produce output at the
terminal instead, if the server is run with the flag -c “set debug 1”. In addition, the
application programs will be assumed to come from the current directory and the spool directory
is in the relative directory named “./spool”. This is convenient for testing the server from its
source directory. A number of other debugging aids are controlled by statements in common.exp
that are normally commented out.

Current Limitations and Future Enhancements
While fully functional, there are admitted limitations in the server, and many enhancements can
be made. Applications will be added. Applications which send out binaries could be augmented
to support multiple architectures. Applications could send out actual code or object files. This
section briefly describes some of the more obvious limitations that may be addressed in the future.

Currently, no attempt is made to derive high-level statistics from the log. This should be done
automatically. At the same time, the log file should also be trimmed to only keep a recent history
such as one year.

The current access mechanism is simple but effective. A more sophisticated access system may
be desirable as more sophisticated collaborations are attempted. For instance, it is probably
desirable to reference files from multiple keys at the same time, and differentiate between reading
and writing access. Some provision should be made for long-term access to files that do not fit
well with the current automatic garbage-collection scheme.

While the command structure is currently consistent, extensibility was not a high-priority goal in
designing the server. Future applications or enhancements may require a redesigned command-
structure or commands that diverge significantly from others as they exist now. A clear priority in
the current server was simplicity to the user and ease-of-use. The command structure will
certainly be revisited as new applications or functionality is added to the server.

The server does not follow the Multipurpose Internet Mail Extensions (MIME) [19], a relatively
new specification for structured e-mail. MIME would simplify some of the server’s user interface
such as having to deal with uuencoded, compressed, and split files. Currently however, MIME
requires specialized user interfaces which are not in common use. When they are more common,
the EXPRESS server should be converted to use MIME.

18

Acknowledgments
The EXPRESS server was funded by the NIST Scientific and Technical Research Services and is
part of the Persistent Object Base Evaluation project. Some of the programs controlled by the
server were designed and built as part of the Application Protocol Development Evironment
(APDE) project which funded jointly by the Computer-aided Acquisition and Logistic Support
(CALS) program of the Office of the Secretary of Defense and ARPA. Development of shtolo
was funded by CALS as part of the APDE project.

The author gratefully acknowledges Scott Paisley for significant ideas that become components in
the server, and Kent Reed, Barbara Goldstein, Allison Barnard, and Douglas Martin who were
very patient and understanding while trying to use early versions of the server.

Thanks to KC Morris and Jim Fowler for project management. Both also provided significant
improvements to the content and style of this paper.

Disclaimers
Trade names and company products are mentioned in the text in order to adequately specify
experimental procedures and equipment used. In no case does such identification imply
recommendation or endorsement by the National Institute of Standards and Technology, nor does
it imply that the products are necessarily the best available for the purpose.

Both the application software and the server software are experimental. No claims are made for
either. The software may change unexpectedly as we fix (or add) bugs. Esoteric behavior (such
as disk full crises) will probably not ever be handled gracefully.

In no event will NIST be liable for damages, including any lost profits, lost monies, or other
special, incidental or consequential damages arising out of the use or inability to use (including
but not limited to loss of data or data being rendered inaccurate or losses sustained by third parties
or a failure of the program to operate with programs not distributed by NIST) the programs, even
if you have been advised of the possibility of such damages, or for any claim by any other party.

References
[1] Mason, H., ed., “Industrial Automation Systems – Product Data Representation and Ex-

change – Part 1: Overview and Fundamental Principles”, Version 9, ISO TC184/SC4/
WG PMAG Document N50, December 1991.

[2] Spiby, P., ed., “ISO 10303 Industrial Automation Systems – Product Data Representation
and Exchange – Part 11: Description Methods: The EXPRESS Language Reference
Manual”, ISO DIS 10303-11:1992(E), July 15, 1992.

[3] The NIST STEP Part 21 Exchange File Toolkit: An Update, National Institute of Standards
and Technology, Gaithersburg MD, to appear.

[4] Libes, Don, “The NIST EXPRESS Toolkit – Introduction and Overview”, National Institute
of Standards and Technology, Gaithersburg, MD, to appear.

[5] Libes, Don, and Fowler, Jim, “The NIST EXPRESS Toolkit – Requirements”, NISTIR 5212,
National Institute of Standards and Technology, Gaithersburg, MD, June 9, 1993.

19

[6] Libes, Don, “The NIST EXPRESS Toolkit – Design and Implementation”, Proceedings of the
Seventh Annual ASME Engineering Database Symposium, San Diego, CA, August 9-
11, 1993.

[7] Libes, Don, and Clark, Steve, “The NIST EXPRESS Toolkit – Lessons Learned”, Proceed-
ings of the 1992 EXPRESS Users’ Group (EUG ‘92) Conference, Dallas, Texas, Octo-
ber 17-18, 1992.

[8] Libes, Don, “The NIST EXPRESS Toolkit – Obtaining and Installing”, NISTIR 5204, Na-
tional Institute of Standards and Technology, Gaithersburg, MD, June 9, 1993.

[9] Libes, Don, “The NIST EXPRESS Toolkit – Using Applications”, NISTIR 5206, National In-
stitute of Standards and Technology, Gaithersburg, MD, June 9, 1993.

[10] Libes, Don, “The NIST EXPRESS Toolkit – Programmer’s Reference”, National Institute of
Standards and Technology, Gaithersburg, MD, to appear.

[11] Libes, Don, “The NIST EXPRESS Toolkit – Creating Applications”, National Institute of
Standards and Technology, Gaithersburg, MD, to appear.

[12] Libes, Don, “The NIST EXPRESS Toolkit – Updating Existing Applications”, NISTIR 5205,
National Institute of Standards and Technology, Gaithersburg, MD, June 9, 1993.

[13] Clark, S.N., “The NIST Working Form for STEP”, NISTIR 4351, National Institute of
Standards and Technology, Gaithersburg, MD, November 1990

[14] Clark, S.N., “NIST STEP Working Form Programmer’s Reference”, NISTIR 4353, Nation-
al Institute of Standards and Technology, Gaithersburg, MD, November, 1990.

[15] Sauder, D., “Data Probe User’s Guide”, NISTIR 5141, National Institute of Standards and
Technology, Gaithersburg, MD, March 1993.

[16] Morris, K.C., “Architecture for the Validation Testing System Software”, NISTIR 4742,
National Institute of Standards and Technology, Gaithersburg, MD, January 1992.

[17] Morris, K. C., Sauder, D., Ressler, S., “Validation Testing System: Reusable Software
Component Design”, NISTIR 4937, National Institute of Standards and Technology,
Gaithersburg, MD, October 1992.

[18] Libes, D., “Expect: Scripts for Controlling Interactive Programs”, Computing Systems, pp.
99-126, Vol. 4, No. 2, University of California Press Journals, CA, Spring 1991.

[19] Borenstein, N., and Freed, N., “MIME (Multipurpose Internet Mail Extensions): Mecha-
nisms for Specifying and Describing the Format of Internet Message Bodies”, RFC
1341, Bellcore. Innosoft, June 1992.

