
Introduction

Shell scripts cannot automate interactive processes
except in the simplest of ways. In particular, data can
be written to a process but only following one path
through the program. Responding to programs is not
possible. Problems such as timing and buffering can
make automation difficult if not impossible.

It is possible to reliably automate interactive
processes with a variety of tools including C, Perl,
and Emacs. For simplicity, I will present examples in
Expect [Libes94], but other tools are similarly appli-
cable. Indeed, both Perl’s “chat2” [Schwartz90] and
the C/C++ Expect library were modelled after the
Expect program.

Automating ftp is a common problem. The usual
solutions are to use an .ftprc file or an in-line “<<”
script. Unfortunately, these sacrifice both reliability
and security. Reliability is lost because these mecha-
nisms offer no way to verify that the commands
succeed. Security is lost when passwords are stored
as cleartext in a file or passed as cleartext through
command-line arguments. (For simplicity, from now
on I will refer to all sensitive information as “pass-
words”.) Security systems such as Kerberos
[Miller87] do not address these problems.

This paper does not address the simple cases where
applications are entirely under your control and can
be modified or otherwise forced to run without pass-
words. sudo [Nieusma] and similar programs
provide a direct solution to these problems.

In contrast, the problems addressed by this paper
demand a password. A simple case might be that of
designing a means to use a service from a commercial
provider in the background. An automated solution
requires you to log in and supply the password. The
commercial service is not under your control.

This paper describes several techniques that can be
used to handle passwords in background processes in
a secure way. The techniques are non-traditional yet
relatively simple to implement. These techniques
will be demonstrated using Expect.

Expect – An Overview

Because the examples in this paper are written in
Expect, an overview of the language is provided
here. The implementation and philosophy of Expect
is described at length in the literature [Libes90,
Libes91]. Briefly, scripts are written in an interpreted
language. Commands are provided to create interac-
tive processes and to read and write their output and
input. Expect is named after the specific command
which waits for output from a program.

The language of Expect is based on Tcl
[Ousterhout94]. Tcl is actually a subroutine library,
which becomes embedded into an application and
provides language services. The resulting language
looks very much like a typical shell language. There
are commands to set variables (set), control flow
(if, for, continue, etc.), and perform the usual
math and string operations. Of course, UNIX
programs can be called (exec). All of these facilities
are available to any Tcl application. Tcl is
completely described by Ousterhout.

Expect is built alongside of Tcl and provides addi-
tional commands. The spawn command invokes a
UNIX program for interactive use. send sends
strings to a process. expect waits for strings from a
process. expect supports regular expressions and
can wait for multiple strings at the same time,
executing a different action for each string. expect
also understands exceptional conditions such as time-
out and end-of-file.

Handling Passwords with
Security and Reliability

in Background Processes
Don Libes – National Institute of Standards and Technology

ABSTRACT

Traditionally, background automation of interactive processes meant giving up security and reli-
ability. With the advent of software such as Expect for controlling interactive processes, it has
become possible to improve reliability and security with relative ease.

This paper reviews the reliability aspects but focuses primarily on the security aspects, presenting
several non-obvious techniques for dealing with passwords and other sensitive information in back-
ground processes. These techniques require no changes to existing programs and no new security
systems are necessary. With the appropriate tools and examples, these techniques can be applied
with surprisingly little effort to a wide variety of problems.

Reprinted from the Proceedings of the Eighth Systems Administration Conference (LISA VIII),
San Diego, California, September 19-23, 1994.

Using Expect it is possible to script telnet, ftp,
rlogin, rz/sz, and numerous other programs.
Many of these tasks fall in the domain of system
administration. For example, a system administrator
creating thousands of accounts each semester will
find an automated passwd program much more
convenient than having to type in each password
manually.

The following script is another example, driving the
fsck program so that one class of questions is
answered “yes” while another is answered “no”. If
anything else appears, control is temporarily turned
over to a user to answer it.
while 1 {

expect {
eof {break}
"UNREF FILE*CLEAR\\?" {send "y\r"}
"BAD INODE*FIX\\?" {send "n\r"}
"\\? " {interact +}

}
}

Using a script like this one can substantially raise the
reliability of tasks that normally require interactive
use.

Expect and related programs can be put to a wide
variety of uses as others have found [Woodson91,
Morrison92, Stevens92, Caffrey92, Dichter93]
solving problems which were not even recognized as
problems only because there were no good solutions.

A particularly common problem addressed by interac-
tion automation software is entering passwords.
Passwords are usually entered by hand. Most
programs (rlogin, crypt, etc.) use getpass, a
UNIX library function, which reads the password
from /dev/tty. Since /dev/tty cannot be redi-
rected from the shell, the user must enter keystrokes
manually. A variety of kludges have appeared over
the years to defeat such security measures. Why?
Because entering passwords manually is tiresome.
Consider having to enter the same passwords every
day to make use of a service.

The remainder of this paper will focus on automating
the handling passwords with special regard to back-
ground processes. Background processes are a
general goal – if you can run a process in the back-
ground, it is completely automated. You can turn
your attention to other things.

In many cases, everything in a process can be auto-
mated except for the password entry. Were this
automated, the process as a whole could be made into
a background process. So how do we fix this
problem?

I will describe several common scenarios involving
handling passwords. In each case, I will explain how

to automate the handling, usually resulting in a
completely automated and backgroundable process.

I will use the term script to refer to that which
performs the automation and may indirectly run the
true program of interest. Of course, the program may
indeed be a script. Similarly, the role of the script
may be played by a compiled program. However, the
terms I will use are accurate for most applications.

Technique 1: In the Foreground, Prompt For Pass-
words Ahead Of Time

The technique described in this section is appropriate
for a user who decides at the spur of the moment to
schedule a background task for a later time. (Spur of
the moment is not meant to imply the command is
trivial or light-hearted. Virtually all interactive
commands are spur of the moment.) For example,
imagine a user wants to automate a telnet session to
another host. The session must occur several hours
later, however. The user will not be present to supply
the password.

One solution is to write a script that prompts for the
password immediately when the user makes the
request. The script begins running interactively. The
first thing it does is prompt for passwords. Once all
sensitive information has been gathered, the script
disconnects from the terminal and continues in the
background, perhaps sleeping if necessary until an
appropriate time. The script then starts the program,
interactively answering the program’s requests for
passwords.

Below is a sample of such a script using Expect. The
script is not setuid and may be readable to others
since no passwords are embedded within.
prompt and collect password for later
stty -echo
send "password? "
expect -re "(.*)\n"
send "\n"
set password $expect_out(1,string)

got the password, now go
into the background
if {[fork] != 0} exit
disconnect

now in background, sleep (or wait
for event, etc)
sleep 3600

now do something requiring the password
spawn rlogin $host
expect "password:"
send "$password\r"
. . .

This script can be extended as necessary. For
example, the task might telnet to multiple hosts or

a additional hosts from the first telnet. Each of
these in turn requires more passwords. These can be
prompted for and collected when the script has begun.

The prompt should make clear what the passwords
are for. It may be helpful to explain why the pass-
word is needed, or that it is needed for later.
Consider the following prompts:
send "password for $user1 on $host1: "
send "password for $user2 on $host2: "
send "password for root on hobbes: "
send "encryption key for $user3: "
send "sendmail wizard password: "

It is a good idea to force the user to enter the pass-
word twice. It may not be possible to authenticate it
immediately (for example, the machine it is for may
not be up at the moment), but at least the user can
lower the probability of the script failing later due to
a mistyped password.
stty -echo
send "root password: "
expect -re "(.*)\n"
send "\n"
set passwd $expect_out(1,string)
send "Again:"
expect -re "(.*)\n"
send "\n"
if {[string compare $passwd \
 $expect_out(1,string)] != 0} {

send "mistyped password?"
exit

}

You can even offer to display the password just
typed. This is not a security risk as long as the user
can decline the offer or can display the password in
privacy. Remember that the alternative of passing it
as an argument allows anyone to see it if they run ps
at the right moment.

Even without the disconnect command, this is a
valuable technique. For example passmass is an
Expect script that changes passwords on multiple
machines simultaneously. This is useful if you have
accounts on several machines that do not share pass-
word databases yet you want to use the same
password on all of them. While this sounds like an
obvious security hole, passmass can actually
increase security. Because passmass makes it so
much easier to change your passwords on all your
accounts, you are much more likely to change them
more frequently. And by keeping them the same, you
are less likely to have to resort to writing them down
in places that you shouldn’t. Note that passmass is
not recommended for widely distributed sites where
communications over public networks provides little
defense against password exposure. Nor is pass-
mass recommended for root, where this idea is too
simplistic and additional precautions should be taken.

Technique 2: From the Background, Prompt For
Passwords When Needed

This technique described in this section is appropriate
for commonly occurring tasks such as those that are
scheduled at boot time or are regularly scheduled
through cron.

One solution is to write a simple script which runs the
program until it requests a password. The script then
tracks down a user (possibly from a list) and requests
the user talk to it (using “talk” or “write”). Once
connected, the script explains what it wants and why,
and then asks the user for a password. The user
supplies it, the script disconnects and returns to the
background to continue its processing.

In the following example, the script communicates
only with a single user. The script uses kibitz
[Libes93] to communicate. kibitz is a talk-like
program notable in that it allows sharing of a process
(e.g., shell) between multiple users. With the
-noproc flag, kibitz supports communication
without a shared process.
spawn kibitz -noproc $user

Once connected, the user can interact with the Expect
process or can take direct control of the spawned
process. The following Expect fragment, run from
cron, implements the latter possibility. The variable
proc is initialized with the spawn id of the errant
process while kibitz is the currently spawned
process. When the user presses the tilde key, control
is returned to the script.
spawn some-process; set proc $spawn_id
. . .
. . .
script now has question or problem
so it contacts user
spawn kibitz -noproc some-user
interact -u $proc -o ~ {

close
wait
return

}

If proc refers to a shell, then you can use it to run
any UNIX command. You can examine and set the
environment variables interactively. You can run
your process inside a debugger or while tracing
system calls (i.e., under trace or truss). And this
will all be under cron. This is also an ideal way of
debugging programs that work in the normal environ-
ment but fail under cron. Figure 1 shows the process
relationship created by this bit of scripting.

Those half-dozen lines (above) are a complete, albeit
simple, solution. A more professional touch might
describe to the user what is going on. For example,
after connecting, the script could send an explanation
such as:

send "Host frisbee.net is requesting a
password when I tried to login in
as user ferdy. Can you tell me
what the password is (p) or should
I let you interact (i) or kill me
(k)?"

The script describes the problem and offers the user a
choice of possibilities. Here is how the response
might be handled:
expect {

k {
send "ok, I’ll kill myself...

 thanks"
exit

}
p {

send -i $proc [get_password]
send "thanks!"

}
i {

send "press X to give up control,
 A to abort everything"

interact -u $proc -o X return A
exit
send "ok, thanks for helping.

 I’ll take over now"
}

}
close
wait
script continues from here

This technique can also be used for non-essential
information, such as if the script has a question about
what to do in a certain situation, or is performing a
backup and needs another tape.

Technique 3: Protect Cleartext Passwords in
Scripts by Permission
The scenario described in the remaining techniques
applies when a user does not know a password but
needs a service performed that requires the password.
For example, mounting devices and initiating backups
are typical operations that users need to perform but
which require root permission on many hosts.

An obvious solution is to embed the cleartext pass-
word in a heavily-protected script. For example:
spawn su
expect "Password:"
send "ak3KuIO3\r"
.
.

Schemes to do this without root involvement are well
known, such as by using setgid scripts to artificial
users and groups created just for the purpose of
running such scripts. However, this is difficult to
make secure and impossible on some systems when
using scripts. Even when using compiled programs,
secure handling of passwords is tricky and prone to
mishap. The storing of cleartext passwords on a
public system is a bad idea. There are too many possi-
bilities for lapses of security. These issues are
described at length in the literature [Garfinkel91].

This technique is very insecure. Do not use it!

Technique 4: Protect Cleartext Passwords in
Scripts by Login
It is possible to embed cleartext passwords in scripts
and protect the scripts more securely than in the
previous technique by placing password-containing
scripts on an entirely different host (called the admin

kibitz kibitz

expect

cron

logical
data flow
during interact

spawned
process

Figure 1: Process hierarchy and data flow established when Expect script running a
spawned process under cron decides that it needs assistance from a user.

host from hereon), thereby avoiding file system
access holes. Rather than using file system permis-
sions, general shell access is not permitted to the
admin host. Instead, each different script is run by
logging in to a different account. Their are no normal
user accounts – only root has access to a general-
purpose shell on the admin host.

Writing such a login script to provide a service takes
little extra skill than writing any script. Programmers
must avoid the obvious pitfalls such as allowing users
to invoke a shell or write arbitrary files. However,
these are a small subset of the usual concerns in
writing setuid scripts. For example, without a shell,
users can not change the IFS definition or play games
with symbolic links.

The key concept here is that scripts can literally store
passwords in them with no fear of them being
exposed. They cannot be exposed because users
cannot read them. They cannot read them because
they cannot even log in to the machine in any but
extremely restricted ways.

With this technique it is possible to write scripts that
log in and connect to other machines which require
passwords. For instance, a user may indirectly
connect back to their own machine. Imagine a user is
working late and wants to suspend the automatic
backups that normally run every night at 3AM. The
user logs in to the admin host as, say, “backup-
suspend”. The login script for backup-suspend
logs into the user’s host as root and suspends the
backup. The user might see this interaction:
lion% telnet admin-host
login: backup-suspend
Backup suspended on host lion
lion%

This particular interaction could be simplified by an
email interface since there is nothing interactive here
but one might imagine interactions that are much
more complex, perhaps even popping up a window on
the user’s system.

An obvious drawback of this approach is that a
second host is required. However, this is not a big
deal because computers are cheap. Realistically,
most environments have unused computers sitting
idle – oftentimes shunned just because they are
slow. These slow hosts are entirely suitable for this
job since the significant processing occurs on the
user’s host after the password-containing script has
logged in. Although the admin host is executing a
script, the admin host is not actually doing the cpu-
intensive work, the admin host is merely telling the
user host what to do. The user host is where the
significant work is being done.

A second drawback of this technique is that the pass-
word is made available for exposure by network
sniffing. However, this is a problem for any supe-
ruser that logs in over the network.

Finally, it should be obvious that the admin machine
must be physically off-limits and its backup tapes
must be secure. If either of these are not the case,
then obviously the machine is not a safe place to store
passwords.

One may draw the analogy that this is akin to placing
all of your eggs in one basket. This is quite accurate,
however this is a very small basket and easy to keep
watch over. Many sites have the analogy of such a
basket already, but without realizing or admitting it.
Indeed, sites with servers that are kept behind locked
doors are treating their computers as such baskets.

Technique 5: Protect Cleartext Passwords in
Scripts by Using Daemons
In the previous technique, the script is invoked by
remotely logging in to another host. An unfortunate
attribute of that technique is that some minimal inter-
action is hard to avoid. In particular, programs such
as telnet will prompt for the user name. If the user
is on a UNIX-like host, they can use rlogin which
avoids the prompt for the username. If no password
is demanded, the invocation is not interactive. This
may seem to be a convenience, but is really a neces-
sity when scripts are invoked by other scripts,
background processes, or in other situations where
the user is not conveniently available to answer the
prompts.

For instance, in heterogenous environments, users can
not necessarily depend on the presence of rlogin.
The rlogin program simply is not available from
many PCs and Macs for example.

Many programs designed to operate on the heteroge-
nous Internet stick to the lowest common
denominator for communications functionality. For
example, Mosaic and Gopher are information systems
that follow links of information that may lead from
one machine to another.1 The Gopher daemon does
not support the ability to run interactive programs.
For instance, suppose you have a telnet interface
(using the normal telnetd) to a valuable resource
such as a database. You can make it available
through Gopher but only in an uncontrolled way. The
Gopher daemon is incapable of running interactive
processes itself so it passes the telnet information
to the Gopher client. Then it is up to the Gopher
client to run telnet and log in.

This means that the client system has to do something
with the account information. By default, the Gopher
client displays the information on the screen and asks
users to type it back in. Besides being redundant, this
interaction means that accounts and passwords are

1.While the Mosaic interface is different than
Gopher, both have the same restrictions on han-
dling interactive processes and both can take
advantage of the approach described here.

necessarily exposed to users. Unfortunately, Gopher
clients cannot perform interaction automation. And
even if they could, the accounts and passwords would
still be made available to the Gopher client. By
substituting their own Gopher client, users could
obtain the passwords and then interact by hand, doing
things you (as the advertiser of the service) may not
want.

One solution is to use the technique I described in the
previous section but modified specifically to run as a
telnet daemon. telnet itself does not demand any
account or password, so security is entirely up to the
daemon. It is possible to make a non-interactive
script simply by not querying for accounts or pass-
words. A trivial Expect script to run a non-interactive
program as a daemon takes no special adaptation.
The script merely handles the passwords as before
and then runs the program. The client’s invocation
becomes simply:
telnet host service

Unfortunately, invocation of interactive programs
demands more work because telnet clients default
to communications with rather peculiar characteris-
tics. Characters are echoed locally and not sent until
a carriage-return is entered. Carriage-returns are
received by the daemon with a linefeed appended.
This peculiar character handling has nothing to do
with cooked or raw mode. In fact, there is no
terminal interface between telnet and telnetd.

This translation is a by-product of telnet itself.
telnet uses a special protocol to talk to its daemon.
If the daemon does nothing special as in the case of
the script that spawned the non-interactive applica-
tion), telnet assumes these peculiar characteristics.
Unfortunately, they are inappropriate for most interac-
tive applications. For example, the following Expect
script will not work correctly as a daemon:
spawn /bin/sh
interact

Fortunately, a telnet daemon can modify the
behavior of telnet. A telnet client and daemon
communicate using an interactive asynchronous
protocol. An implementation of a telnet daemon in
Expect is short and efficient. The basic idea is to
make sure that the daemon is always ready to respond
to telnet commands at all times. This is easily
accomplished with an expect_before statement.
expect_before provides patterns that are tested
before any explicit patterns. Thus, they do not have
to be repeated for each expect command in an
interaction.

A fragment of the Expect dialogue to handle the
telnet protocol is shown below. Variables such as
IAC contain the relevant protocol values. The script
begins by offering to do echoing instead of the local
client. SGA is also offered. SGA (Suppress Go
Ahead) means that communication is asynchronous

instead of synchronous. The script also offers to
support the terminal type.
send "IACWILL$ECHO"
send "IACWILL$SGA"
send "IACDO$TTYPE"

The expect_before command defines actions for
each command that can be sent from the client. For
instance, the first pattern matches an acknowledgment
by the client that the server should do echoing. The
second pattern is similar but for SGA. The third
pattern refuses requests from the client to do anything
else. The last pattern matches the offer by the client
to send the terminal type. In response, the daemon
acknowledges by requesting that the client go ahead
and send the information.
expect_before {

-re "^IACDO$ECHO" {
accept as acknowledgment
exp_continue

}
-re "^IACDO$SGA" {

accept as acknowledgment
exp_continue

}
-re "^IACDO\(.)" {

refuse anything else
send_user \

 "IACWONT$expect_out(1,string)"
exp_continue

}
-re "^IACWILL$TTYPE" {

respond to acknowledgment
send_user \

 "IACSB$TTYPE$SENDIACSE"
exp_continue

}

This is not a complete definition to handle the entire
telnet protocol, but it suffices to give the flavor of
it. Indeed, there are near a dozen extensions to
telnet and more are added frequently. Most
telnet daemons do not handle most of the telnet
protocol commands. A richer implementation of the
protocol is shown in [Libes94].

Once the protocol handling is defined, a more typical
Expect script can follow. As an example, suppose
you want to let people log into another host – such as
a commercial service for which you pay real money –
and run a single program there but without knowing
which host it is or what your account and password
are. Then, the server would spawn a telnet (or tip
or whatever) to the other host.
log_user 0 ;# turn output off
spawn telnet secrethost
expect "Username:"
send "8234,34234\r"
expect "Password"
send "jellyroll\r"

expect "% "
send "ncic\r"
expect -re "ncic\r\n(.*)"
log_user 1 ;# turn output on
 ;# send anything that
 ;# appeared just after
 ;# command was echoed
send_user "$expect_out(1,string)

Additional protocol commands can be exchanged at
any time, however in practice, none of the earlier
ones ever reoccur. Thus, they can be removed. The
protocol negotiation typically takes place very
quickly, so the patterns can be deleted after the first
expect command that waits for real user data.
expect_before -i $user_spawn_id

One data transformation that cannot be disabled is
that the telnet client appends a null character to
every return character sent by the user. This can be
handled in a number of ways. The following
command does it within an interact command
which is what the script might end with.
interact "\r" {

send "\r"
expect_user null

}

Additional patterns can be added to look for
commands or real user data, but this suffices in the
common case where the user ends up talking directly
to the process on the remote host.

Ultimately, the connection established by the Expect
daemon resembles what is shown in figure 2. Notice
that the usual telnet daemon, telnetd, is not part
of the figure. Rather, the Expect script plays the role
of the daemon. Similarly, the pty and the interactive
process replace the pty and login shell normally allo-
cated and created by the telnet daemon.

The daemon could then do any operation involving
passwords. For instance, the daemon could telnet
to yet another host. But in this case the user would
get only what the intermediate server allowed. By
controlling the dialogue from the server rather than
the client, passwords and other sensitive pieces of
information do not have a chance of being exposed.
There is no way for the user to get information from
the server if the server does not supply it. Another

advantage is that the server can do much more sophis-
ticated processing. The server can shape the
conversation using all the power of Expect. Without
Expect, the user has full access to the spawned inter-
active program.

In practice, elements of the earlier script (containing
the long expect_before definition) can be stored in
another file that is sourced as needed. For instance,
all of the commands starting with the telnet
protocol definitions down to the bare expect
command could be stored in a file (say, expectd.
proto) and sourced by a number of similar servers.

xinetd [Tsirigotis92], a freely-available version of
inetd provides control on the basis of hosts/
networks and time-of-day over access to the services.
xinetd is strongly recommended over inetd.

Summary and Conclusion

Shell scripts and redirection are so easy to use that
users ignore the fact that they provide no reliability or
security when it comes to handling passwords in the
background. Even users who practice “safe computer
sex” in other ways, are negligent when it comes to
automation of interactive processes. This paper
hopes to enlighten users and save them from the holes
into which they will inevitably fall if they stick to the
tools and techniques of the past.

The solutions outlined here avoid the historic prob-
lems with automating interactive processes in the
background. The first two techniques avoid
supplying passwords from the command-line
(avoiding the well-known “ps” hole) or from files
(avoiding the “look at the backup tape” and other
holes). The last two techniques store cleartext pass-
words in files but in such a way that they are
inaccessible yet usable by normal users.

Expect-style scripting also offers the ability of reli-
able control over processes. Scripts can verify
responses and can retry or take alternative actions
upon failure or unexpected results. When dealing
with users, scripts can also shape the dialogue
showing users only parts of the dialogue that are
appropriate, or making substitutions in what the user
sees.

Expect has been available for several years, yet these
techniques are non-intuitive, and for this reason, not

telnet Expect interactivepty

local host remote host

script process

Figure 2: Expect Playing the Role of Telnet Daemon

known. This paper has shown that each of these tech-
niques requires only a few lines of code with the
result that interactive background processes can be
automated with security and reliability.

All of the tools mentioned in this paper are freely
available and widely portable.

Availability

Since the design and implementation of this software
was paid for by the U.S. government, it is in the
public domain. However, the author and NIST would
appreciate credit if this software, documentation,
ideas, or portions of them are used.

The scripts and programs described in this document
may be ftp’d as pub/expect/expect.tar.Z1

from ftp.cme.nist.gov. The software will be
mailed to you if you send the mail message “send
pub/expect/expect.tar.Z” (without quotes) to
library@cme.nist.gov.

Acknowledgments

Portions of this work were inspired by Sandy Ressler
and the NIST Virtual Library Project, and funded by
the NIST Scientific and Technical Research Services.

Thanks to W. Richard Stevens, Henry Spencer,
Bennett Todd, Miguel Angel Bayona, Brent Welch,
Danny Faught, Paul Kinzelman, Barry Johnston, Rob
Huebner, Todd Bradfute, Jeff Moore, Sandy Ressler,
Carolyn Rowland and Susan Mulroney for providing
suggestions that greatly enhanced the readability of
this paper.

Author Information

Don Libes is a computer scientist at the National Insti-
tute of Standards and Technology where he does
research related to interaction automation and occa-
sionally logs in as root to “fix things” much to the
consternation of the real system administrators there.
For the development of Expect, he received the Inter-
national Communications Association Innovation
Award and the Federal 100 Award. He has written
over 85 papers and articles as well as two books: Life
With UNIX (co-author Sandy Ressler, publisher Pren-
tice-Hall) and Obfuscated C and Other Mysteries
(Wiley). He is presently working on a book called
Exploring Expect: A Tcl-Based Toolkit for Automating
Interactive Programs (O’Reilly). He can be reached
at libes@nist.gov.

References

[Caffrey92] Paul Caffrey, “User Interfaces and Auto-
mating Computer Human Interaction”, MSc.
Thesis, Amdahl Ireland Ltd., 1992.

1. The “.Z” file is compressed. A “.gz” version is
also available which is gzipped.

[Dichter93] Carl Dichter, “Surviving Software Test-
ing”, UNIX Review, pp. 29-36, V11, #2, Feb-
ruary 1993.

[Garfinkel91] Simson Garfinkel and Gene Spafford,
Practical UNIX Security, O’Reilly & Associ-
ates, Inc., June 1991.

[Libes90] Don Libes, “Expect: Curing Those Uncon-
trollable Fits of Interaction”, Proceedings of
the Summer 1990 USENIX Conference, pp.
183-192, Anaheim, CA, June 11-15, 1990.

[Libes91] Don Libes, “Expect: Scripts for Controlling
Interactive Programs”, Computing Systems,
pp. 99-126, Vol. 4, No. 2, University of Cali-
fornia Press Journals, CA, Spring 1991.

[Libes93] Don Libes, “Kibitz – Connecting Multiple
Interactive Programs Together”, Software –
Practice & Experience, John Wiley & Sons,
West Sussex, England, Vol. 23, No. 5, May
1993.

[Libes94] Don Libes, Exploring Expect: A Tcl-based
Toolkit for Automating Interactive Programs,
O’Reilly & Associates, Inc., to appear.

[Miller87] S. P. Miller, B. C. Neuman, J. I. Schiller,
and J. H. Saltzer, “Section E.2.1: Kerberos
Authentication and Authorization System”,
M.I.T. Project Athena, Cambridge, Massa-
chusetts, December 21, 1987.

[Morrison92] Brad Morrison & Karl Lehenbauer, “Tcl
and Tk: Tools for the System Administrator”,
1992 LISA VI Proceedings, Long Beach, CA
October 19-23, 1992.

[Nieusma] Jeff Nieusma and David Hieb, “sudo”
manual page, The Root Group, Boulder, CO,
undated.

[Ousterhout94] John K Ousterhout, Tcl and the Tk
Toolkit, Addison-Wesley, April 1994.

[Schwartz90] Randal Schwartz, “Expect.pl”, Usenet
article id 1990Nov2.003228.22744@iwarp.
intel.com, comp.lang.perl, November 2,
1990.

[Stevens92] W. Richard Stevens, Advanced Program-
ming in the UNIX Environment, Addison-
Wesley, pp. 635, 653-655, 716, September
1992.

[Tsirigotis92] Panagiotis Tsirigotis, “xinetd” manual
page, University of Colorado, 1992.

