
SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 27(4), 481493 (APRIL 1997)

Tcl/Tk -based Agents for Mail and News
Notification

DON LIBES
National Institute of Standards and Technology, Bldg 220, Rm A-127, Gaithersburg, MO,

20899, U.S.A. (emuil: libes@nist.gov)

SUMMARY

Two agent implementations are described-ne for mail notification and one for news notification.
Both agents are implemented using Tcl. This paper provides a brief history and perspective of
similar agents. Included are experiences using Tcl as an agent-implementation language, and
comparisons of the results to similar agents. Also described are some new techniques of interest
to Tcl programmers. 0 1997 by John Wiley & Sons, Ltd.

KEY WORDS: agents; biff; mail notification: Tcl; Tk: Usenet news notification

INTRODUCTION
Agents are semi-intelligent software systems that autonomously provide service to
humans and provide and use services to and from other programs.* -* Our experience
in engineering domains demonstrate that agents encourage code-reuse and ease the
construction of some types of complex systems. However, the lessons of agents are
amenable to many domains and applications.

A common type of agent provides notification about new or modified information,
such as mail. Two such agent implementations are described -one for mail and one
for news-both implemented using T c ~ . ~Whi le notification tools are seemingly
prosaic, their very simplicity allows us to focus on issues that would be obscured
by more complex agent applications. Thus, it i s useful to study them and their
implementation techniques.

This paper gives a brief history of mail notification agents. Experiences using
Tcl as an agent-implementation language are presented, describing advantages and
disadvantages. The results are compared to similar agents. Finally, the use o f Tcl
as a configuration and interface language i s discussed and some new techniques of
interest to Tcl programmers described.

BACKGROUND
Mail notification agents inform humans that electronic mail has arrived. There i s a
long history of such agents, including a large class of programs whose names include
the syllable ‘biff such as xbiff, xbifftt, pbiff, and of course, the original biff that
appeared in an early BSD release of UNIX.

CCC 0038-0644/97/040481 -13 $17.50
0 1997 by John Wiley & Sons, Ltd.

Received 8 April 1996
Revised 15 August I996

482 D. LIBES

The basic idea of these programs is the same-to notify the user when mail has
arrived. There are many variations and extensions of this idea. For example, some
programs print a message on the console while others play an audio clip or perform
an animation.

Traditionally, biff-like programs were written as stand-alone tools. They were
written in C and provided little flexibility in how they interacted with the user and
other processes. And even contemporary biffs, while supporting polished visual or
audio presentations, provide no means of communication with another program.

A HISTORY OF BIFF

In early versions of BSD, mail notification was accomplished by allowing mail
delivery programs to write messages (e.g. ‘You have new mail’) directly on the
recipient’s terminal. 4 Later, a dedicated daemon (‘comsat’) was created to encapsulate
the common tasks such as figuring out to which terminal to write based on the
username. The snapshot in Figure 1 shows sample output from comsat which prints
out the important headers and the beginning of the body of the message.

Simultaneous writing on a terminal by multiple programs invariably produced a
corrupt display. Fortunately, this could be disabled by trivially changing the write
permissions of the terminal device. There were a variety of ways to do this, but the
biff program became a popular method. I t i s not clear why biff was written, except
perhaps that it was an excuse to use a rather distinctive and easily pronounceable
name that stuck in people’s minds. Among others, one legend has it that the author
named biff after a colleague’s dog and then enlisted the help of others to come up
with a rationale for why the name made ~ e n s e . ~ . ~Whatever the reason, biff has
entered common parlance for describing the class of programs that performs mail
arrival and simi la r notifications (Figure 2).

Modern biffs work quite differently than the original biff. Modem biffs periodically
poll for changes, typically looking directly at the mail spool file. Polling places
more of a load on the CPU than being signaled directly. However, humans do not
need instantaneous notification and so the polling cycle can be done infrequently
with subsequent low cost. More importantly this design moves all of the control
directly into the user’s domain where no special permissions are required. This
solution also solves the screen updating problem by using a dedicated display rather
than an existing window.

While embodying characteristics that are generally accepted of agents, al l of these

Just a followup t o l e t you knowI got Xxpoct working a8 you dacribed. I
was having trouble w i t h a particular telnet c l ien t until I found what 80-...more.. .

Figure 1. comsat output

TCL/TK-BASED AGENTS 483

1

I---,
DILBERT reprinted by perrnlsslon of Unlted Features Syndicate Inc.

Figure 2. Another theory for the name ‘b#’

prior implementations are limited in various ways.’ Consider the following two
biff implementations:

1. xbiff displays a mailbox icon with a flag that goes up when mail i s present
(Figure 3).8 The C source i s 112 lines but it i s primarily a wrapper for the
Athena mailbox widget.”

2. xbi f f t t plays audio clips and displays bitmaps upon receipt of mail.’

Both of these programs are limited as to the displays and actions they can carry
out. The most flexible, xbifftt -, can play different audio clips and display different
bitmaps upon reception of mail from different users. However, xbiffi-t can take no
other actions. For example, xbif fw offers no way to display the messages, nor i s
there any way to have it communicate its results with other programs. I t i s also
highly nonportable since the routines are all ‘wired in’. For example, the audio clips
are only supported on Sun systems.

T h i s nonportability and inflexibility i s not surprising. Historically, biffs have been
written in C, a compiled language that presents no special support in i t s programs

Figure 3. xhff display

*Why does it take 112 lines of code for a single call? I t doesn’t. Most o f the lines are used for comments, option
handling, error handling, and of course, disclaimers and copyrights.

484 D. LIBES

for end-users to perform sophisticated control. Passing simple flags (e.g. getopts) or
simple variable assignments (e.g. .Xdefaults) i s common. I t i s difficult to justify
designing (and writing and debugging) a specialized language specifically for such
a simple tool. However appropriate for system applications, C i s expensive in terms
of programmer effort. As an example, the credits for xb i f f t t l ist seven peo
three singled out for the audio support alone, which only runs on a computer from
a single vendor! The source code for xbiff++ i s 3360 lines of C.

Because biff agents have historically not allowed their results to be communicated
to other agents, many programs that are not biff agents provide their own biff-like
behavior. For example, this i s a common trait among news readers and serial-port
communication programs. These programs are usually very complex in the sense
that they do many related things-mail notification i s just one more-and often
present themselves as monolithic pieces of software. Monolithic software i s good
for users who have limited needs that the software meets. However, users with
additional needs often find it difficult to extend or reuse such software, because i t
was not intended for these purposes.

In contrast, programs such as shells and editors are usually quite configurable.
However, because few people want to spend the time (or are capable of the
programming involved), many shells (e.g. csh, zsh) and editors (e.g. emacs) have
mail notification capabilities built in. Unfortunately, this built-in support i s much
like that of the monolithic programs-if it doesn’t closely meet the needs of users,
they are back to programming from scratch. Even worse, configuration o f these large
programs i s hard because they are typically doing so many unrelated things simul-
taneously.

CONFIGURATION AND INTERFACE SOLUTIONS

This paper addresses two requirements that are important in notification agents. The
first requirement i s to detect situations and to carry out requests with enough
flexibility so that the user does not need to create yet another tool or to modify the
notification agent. The second requirement i s that the agent be able to interact not
only with the user, but with other agents or programs as well.

Tcl provides a solution to the configuration problem. Users can express their
requests using Tcl. Unlike C, Tc l i s interpreted and it i s straightforward to allow
end-users to express arbitrarily complex requests at run-time. A trivial request might
be to display an image using Tcl statements.* Tcl is also capable of running other
programs, interacting with other programs, using sockets, accessing files, etc.

Tcl also provides a solution to the interfacing problem. For example, a biff agent
could communicate with an editor, asking it, for example, to display the contents
of a message. By isolating notification in a single agent, other agents and the user
environment in general i s greatly simplified. Other random, seemingly unrelated tools
do not have to know about the vagaries of mail formats, spool locations, or even
what the user i s interested in. That i s all the domain of the mail notification agent.
I return to this topic in more detail later in the paper.

* Displaying an image can actually be done in a single command, but the point i s that any command or commands
may be executed, not just an image display command.

TCL~TK-BASEDAGENTS 485

Figure 4. tkpostage displays

TCL-OFTEN USED, BUT NOT TAKEN ADVANTAGE OF

I t i s relatively easy to build X window system clients using Tk. With the spread of
Tk, i t i s only natural that several people have written Tk-based biffs. Surprisingly,
though, these have not taken advantage of the flexibility offered by Tcl upon which
Tk i s based. Instead, these Tk-based biffs have been mere rewrites of the older C-
based biffs. For instance:

3. tkpostage shows a picture of a U.S.A. metered stamp with a count of how
many messages are present (Figure 4).'O Another window contains a l is t of
subject and author pairs. The source i s 513 lines. The image data i s another
6.5 Kb. tkpostage i s based on xpostage, which was written in 826 lines of C."

4. tkpbiff performs an animation (a spinning postcard icon) and briefly pops up
a window containing sender and subject (Figure 5).'* The source is 506 lines.
The image data i s another 43 Kb. tkpbiff i s based on xpbiff, which was written
in 632 lines of C.I3

Again, all of these tools are limited in the actions they can take and the interactions
they can have with other programs. Most importantly, these tools cannot affect any
other programs and they can only assist the user directly.

The remainder of this paper describes two agent programs that use Tcl effectively,
allowing execution of arbitrary user actions upon relevant events. These actions may
be communication with another program, creation of a new process, etc. Since any
other program may be executed, i t i s possible to invoke native programs to perform
tasks that would otherwise by nonportable. For example, playing an audio clip can
be handled by a native program rather than routines built in to the agent.

TKNEWSBIFF-A NEWS NOTIFICATION AGENT

tknewsbiff i s a Tcl/Tk -based agent for providing notification o f new Usenet news.
By default, tknewsbiff learns about user interests by examining a user-prepared file

Figure 5. tkpbiff displays

486 D. LIBES

called .tknewsbiff. This configuration file contains initial declarations and attributes of
newsgroups. For example, 'watch' commands define newsgroups to be watched, e.g.

watch dc.dining
watch n i s t.*
watch coqp.unix.wizard
watch *.sources.*

- threshold 3
-threshold 20

For each newsgroup pattern, any newsgroup that matches it and which the user
i s subscribed to (according to their newsrc file) i s eligible for reporting. By default,
tknewsbiff reports on the newsgroup if there i s at least one unread article. What i s
reported may be modified in various ways. For example, '-threshold 3' means there
must be at least three articles unread before tknewsbiff wil l report the newsgroup.

The 'ignore' command suppresses newsgroups that would otherwise be reported.
For example, the following matches all comp.* and nist.* newsgroups except for
nist.posix or .d (discussion) groups:

w a t c h camp.*
watch nist.*
ignore nist.posix.*
ignore *.d

The flag '-new' describes a command to be executed when the newsgroup i s first
reported as having unread news. For example, the following lines invoke the UNIX
'play' command to play a sound.

watch dc.dining -new "exec play / u s r / l o c a l / s o u n d s / y . a u "
watch rec.auto* -new "exec play /usr/local/sounds/vroan.au "

Both the 'exec' command as well as the 'watch' and 'ignore' commands are Tcl
commands. This provides great power in what can be done. For example, '-new'
commands may be arbitrarily complex, perhaps calling user procedures or external
commands. 'watch' commands could be called from a loop or even from a -new event.

wh i l e {...I{

1
watch $newsgroup -new "ignore $newsgroup rr

The default action merely displays the newsgroup with the count of unread articles.
An example i s shown in Figure 6.

INTERACTIONS WITH OTHER AGENTS

Built in to Tk i s a high-level communication command called 'send'. The 'send'
command supports application remote control of already executing programs (i.e.
agents) that are also Tk-based. Commands may be sent including new procedure
definitions (since process definitions are themselves commands). Security i s possible
to screen out inappropriate commands.I 4 Command evaluation is handled as an event
so that no explicit support i s necessary for agents to offer send-based service.

TCL/TK-BASED AGENTS 487

Figure 6. tknewsbiff display

As an example of inter-agent support, the ‘-new’ action could direct a newsreader
program to begin reading news in a different newsgroup. Or the agent could query
the newsreader as to what newsgroup is currently being read so that i t can be
monitored more closely. For example:

w a t c h $ng1 -new ”send $newsreader newsgroup $ng2**

Similarly, the newsreader could in turn direct the news notification agent to monitor
different newsgroups. For example, the newsreader could send watch commands for
all newsgroups to which an article was cross-posted. In th is way, the user would be
able to follow a web of related news automatically.

INTERACTIONS WITH THE USER

The initial rules used by the tknewsbiff are expressed as Tcl commands and
stored in a configuration file. This contrasts sharply with most X tools, which use
X resources.

No extra provisions are made for X resources beyond what Tk automatically
provides. For example, it i s possible to change the color of the widget backgrounds
using the resource database, but non-Tk resources are not defined th is way. Since
users may invoke arbitrary Tcl/Tk commands, i t i s more general and powerful to
phrase everything in terms of commands rather than through the X resource database.

tknewsbiff makes little use of command-line options since command-line options
are very limited in power, comparable to that of X resources. About the only
appropriate command-line option i s one that directs the agent to i t s Tcl-based
configuration file where much more complex configuration commands can appear.

Keystrokes (or mouse events) are interpreted by ‘bind’ commands. For example,
by default, button 3 (right) i s bound to ‘unmapwindow’. The unmapwindow command
causes tknewsbiff to remove the window from the display until the next time
it finds unread news. (The mapwindow command causes tknewsbiff to restore
the window.)

The user may continue to interact with the agent via the configuration file or the

488 D. LIBES

keyboard. The configuration file i s reread periodically by the agent. Changing the
configuration file i s appropriate for complex commands that are to be permanent
across future agents using the same configuration file. In contrast, temporary changes
are typically made by interacting with tknewsbiff through pressing keystrokes and
reading the display. Each of these are controllable to a large degree.

The display normally shows a scrollable l is t of pairs of newsgroup names and
unread article counts. The basic idea of a l is t in a window i s all that i s automatically
provided. This can be turned off entirely, or it can be modified in part. For example,
it i s possible to change what newsgroups are displayed. In particular, the watch
command supports a -display flag, which describes a command to be executed every
time the newsgroup i s reported as having unread news. The command ‘display’ is
the default command. I t schedules the newsgroup to be written to tknewsbiff‘s
display when i t i s next rewritten.

‘display-list’ i s the l ist of newsgroups to be displayed at the next opportunity.
This can be examined and modified by the user before the display i s updated. While
the display can be disabled totally or in part, it i s built in to tknewsbiff program. I
contrast this with the tkbiff agent described next in the paper.

There are a large number of other commands, options, and variables that tknewsbiff
presents to the user. However, the details are not relevant to this paper.

One other noteworthy aspect i s that tknewsbiff supports both common protocols
for news access: (1) active fi le for directly mounted news file systems; and (2)
NNTP for Internet news feeds. tknewsbiff uses Expect, an interactive automation
tool, to provide access to NNTP, an interactive p r o t o ~ o l . ~ ~

No directly comparable agents are known. A great deal of related agent work has
occurred based around personal information filtering. The general approach i s to
scan the actual articles themselves looking for keywords, perhaps biased by recent
newsreading history. The NEWT system i s a good example of this.16

TKBIFF-A MAIL NOTIFICATION AGENT

tkbiff i s a mail notification agent. Like tknewsbiff, tkbiff maintains an in-memory
database of interesting information. In tkbiff, the information corresponds to the mail
fi le and various information about i t in an easily usable form. tkbiff tracks whether
mail i s created or deleted so that user-actions can be taken upon such events. T h i s
tracking is not trivial. For example, the user might concurrently use an MUA to
change a message’s status from ‘unread’ to ‘read’. Messages can also change location
or order in a file.*

While tkbiff i s similar to tknewsbiff as an agent, there are several interesting
differences. The primary architectural difference between tknewsbiff and tkbiff i s in
how the GUI is provided. In tknewsbiff, the GUI i s built in and the user i s provided
with numerous hooks with which to control the interface.

In contrast, tkbiff cleanly separates the GUI from the data collection responsibilities
of the agent. Indeed, tkbiff has no GUI built in. The responsibility for providing a
GUI, i f any, i s provided entirely by the user. tkbiff can actually be run with a pure
Tcl interpreter since it has no knowledge of any particular GUI.

A s with the tknewsbiff agent, tkbiff takes additional instructions from the user

* A MUA (‘mail user agent’) is a program that managcs activities involving sending and reading mail.

TCL/TK-BASED AGENTS 489

via a configuration file. Unlike tknewsbiff, any concepts of display lists, keyboard
bindings, etc., are dealt with wholly in the configuration file. This simplicity permits
the tkbiff program to be relatively short-about 300 lines. This can be smaller than
a configuration file that provides a reasonably decent GUT.

Since building a GUI i s actually a non-trivial task, a sample GUI configuration
file i s provided with tkbiff. In much the same style as tknewsbiff, a scrolling l i s t
o f pairs-‘from’ and ‘subject’ fields-are displayed. Example bindings provide popup
displays of message bodies merely by pointing and clicking on a particular message.

I f run using a Tk-enabled interpreter, tkbiff automatically installs the example
GUI configuration file if the user does not already have one. If run using a pure
Tcl interpreter, tkbiff uses a primitive interface, merely printing the ‘from’ and
‘subject’ fields to the standard output.”

Both interfaces can be extended arbitrarily. For instance, a sound may be associated
with the reception of a message similarly to the way it was accomplished in
tknewsbiff. The following example demonstrates how the user might control a voice
synthesizer (‘speak’) to announce messages.

proc announce-one-new-msg {fromsubject) {

1
exec speak “$fromsent youmailabout $subject”

The announce-one-new-msg procedure i s an procedure called and defined solely
by the user configuration. For this reason, the user configuration can add additional
arguments such as ‘cc’ or ‘body’ without changing the agent itself. Communication
of data between the agent and the user configuration routines i s made through a
small set o f functions and a database implemented via Tcl-based associative arrays.

TKBIFF INTERFACES

The user-supplied functions required by tkbiff are:

(a) announce-new-msgs-called when new messages arrive;
(b) renounce-msgs-called when messages disappear.

tkbiff calls these functions as messages are added or deleted (by other agents). When
called, the user functions browse through or update the database taking any action
desired. The database i s defined primarily by one array: msgs. For example,
msg(1,from) contains the ‘from’ field of the first message, and msg(new-list) contains
the indices of any new messages that have arrived. Using these interfaces, i t i s
possible to emulate any other biff program. For example, a simple version of the
original comsat -based biff i s achieved with the following definition:

proc announce-newsnsgs { 1 {

global msg
foreach i d $msg(new -list) {

1
puts ”you have newmail from $msg($id,from)“

1

* ‘tkbiff could more properly be called ‘tclbiff; however, the ‘tk’ prefix i s what most people expect for Tcl-based
software capable of supporting an X GUI.

490 D. LIBES

Other actions are easily accomplished including adaptive behavior. As a simple
example, an agent may observe that a user quickly read mail from some people or
about some subject but not others. For these apparently interesting messages, the
agent could vocalize more or all of the body, or could a start a mail reader on the
user’s behalf. Wooldrige and Jennings mention even more complex mail notification
tasks that are also solvable in the tkbiff f rame~ork .~

WELL-KNOWN MAIL PROBLEMS

tkbiff easily solves the mail recognition problems described by Arensburger and
R0senfe1d.l~They pose several scenarios in which a user (Bertie) wants automatic
but different mail processing depending upon the source and content of the mail.
Although A&R’ s final goal i s different, the mail recognition handling requirements
are the same. Thus, A&R’s scenarios are shown, along with how a user configures
tkbiff to handle the scenarios.

Scenario 1 Was the mail addressed to Bertie personally or to a mailing list? (Any
message that Lists more than 10 recipients is considered to be a de facto mailing
list message.)

The following two-part test solves this scenario. The first half of the test checks
for explicit mention of ‘Bertie’. The second half checks whether the address has
more than 10 recipients.

if(0 = [string match “*Bertie*“ $to]
11 [llength Crfc822 -split $toll> 101 C
. . .

Scenario 2 Was Bertie the primary recipient of the message or did Bertie only
appear in the ‘carbon copy’ list?

The following two-part test checks for explicit mentions of Bertie in the To: and
Cc: fields and offers different behavior for all possibilities:

if { [string match ‘*Bertie*“ $to) {. . .
e l s e i f { [s t r ing match “*Bert ie*“ $cell C. . .

Scenario 3 I fa message was addressed to Bertie directly, where did it come from?
Any message that was sent from within Bertie’s institution is considered important
and is brought to his attention. Bertie has also speciJied a list of ‘email friends’-
friends, colleagues, VIPs-whose messages are considered to be important enough
to be brought to his attention.

The following three-part test handles this scenario. The ‘isfriend’ procedure i s
assumed to be a simple test that returns true i f the sender matches one of the
‘email friends’.

TCL/TK-BASED AGENTS 491

if { [s t r ing match “*Bertie*” $to] &t i

C [str ing match ”*$institution*“ Sfroml
11 [isfr iend $from]}}{. . .

CONFIGURATION MANAGEMENT IMPLEMENTATION TECHNIQUES

This section of the paper presents some experiences with Tcl as a configuration
management language.

Tcl versus X Resources

(I)The configuration language used by both notification agents i s Tcl. This i s
exactly the language in which the agents are implemented. Thus, there i s no need
for an extra parser. The user communicates in the same language in which the
agent ‘thinks’.

Although Tcl i s not a trivial language, the commands are straightforward for most
tasks. For example, setting the width of a window could be as simple as:

set w i d t h 50

This could also be done using X resources; however, X resources provide limited
power. For example, suppose the user wants one resource to be twice the value of
a second resource. The traditional solution requires both values to be updated
separately because resource files do not provide any way of parameterizing values.
There i s no support for arithmetic, variables, procedures, etc. Since Tcl provides
this, it i s simpler to use Tcl for the entire configuration. Configuring the programs
through X resources is still possible but i s so much harder, there i s no point.

One drawback of Tcl i s that i t s power brings with it the demand for responsibility.
Even users who are doing the simplest of configurations are in essence doing Tcl
programming. Written in pure Tcl, neither tkbiff nor tknewsbiff have any significant
mechanism for preventing users from wreaking havoc upon their internals such as
by redefining procedures or data structures.

However, functions can be written to hide some of the detail that i s unnecessary
to the user’s point of view. For example, the tknewsbiff agent maintains a l i s t of
newsgroups of interest to the user. Using l i s t manipulation commands to add a new
newsgroup requires the user to think about other things on the l ist and even the
fact that they are maintained as a sequential list. In raw Tcl, this might look like this:

lappend watch - list comp.lang.tc1

In tknewsbiff, this operation was turned into a procedure call, which hides the
irrelevant aspects:

wa tch comp.lang.tc1

A small procedure encapsulates this:

492 D. LIBES

proc watch {args) {
global watch - list
lappend watch - list Sargs

1

Similar procedures encapsulate other user interfaces while still allowing the user
full use of Tcl.

Providing an example configuration fi le automatically

As mentioned earlier, the tkbiff agent includes an example configuration file. For
many people, the default configuration will be sufficient, and so the agent immediately
installs the configuration file if no other i s found.

To avoid dependencies on external files (that is, for the prototype configuration),
the default configuration i s stored within the agent. Much like Lisp, Tcl i s effective
at treating code as data which makes th is particular problem easy to do. Alas, the
obvious approach-storing the entire file as a l is t within the agent-was unsatisfactory
because Tcl reformats backslash -newline sequences. There i s no semantic difference
after interpretation of these sequences. However, since the user i s expected (or more
precisely, encouraged) to modify the configuration file, it i s helpful to preserve the
original formatting of the file.

To avoid this pitfall, the agent opens i t s own source as a simple file, discards the
source to itself, and reads the Tcl configuration commands at the end of the file.
This approach seems inelegant, yet it i s reliable and very fast.

This approach allows the program to be distributed as a single file. No installation
and hence no Makefile i s required. The agent contains help functionality and therefore
requires no external documentation.

CONCLUDING NOTES

Agents should be able to gain and produce leverage from the strengths of other
programs and agents. To achieve this, i t i s important to provide agents with
sufficiently rich communication ability. This i s provided naturally and easily by Tk.
Agents should also have flexibility in how users and agents may describe what they
expect from agents, and in how agents may adapt to changing situations. Tcl provides
a framework that makes flexibility possible with a minimum of effort on the part
of users.

Once communication and flexibility are provided, i t i s possible to modularize
agents so that they can focus on their responsibilities without worrying about
irrelevant issues. As agents and systems of agents increase in size, correct structuring
of agents and their responsibilities will become more and more important.

The tknewsbiff and tkbiff programs demonstrate one way of accomplishing the
dual goals of rich and easy communication and flexibility. We anticipate that our
experiences building tkbiff and tknewsbiff using Tcl, Tk, and Expect, will prove
helpful as we build new agents.

TCL/TK-BASED AGENTS 493

ACKNOWLEDGEMENTS

Thanks to Neil Christopher and Peter Den0 for discussion and assistance on this
paper. Thanks to Dave Coombs, Ken Manheimer, Scott Paisley, K. C. Morris, and
Sandy Ressler for valuable suggestions on the design of tkbiff. Thanks to Nei l
Christopher, Steve Osella, Shaw Feng and Steve Ray for many insightful discussions
about agents. And thanks to Dave Fisher with the ATP Program for Component -
based Software who provided the funding for the work described in this paper.

Thanks to Scott Adams for Dilbert. The strip i s reprinted here with explicit
permission of United Feature Syndicate, Inc.

AVAILABILITY

tknewsbiff i s available and comes as an example in the Expect distribution. Expect
and tkbiff are available via anonymous ftp from ftp.cme.nist.gov in the directory
pub/expect.

REFERENCES

1. Y. Lashkari et al., Collaborative Interface Agents, MIT Media Laboratory, 1995.
2. M. Genesereth and S. Ketchpel, ‘Software agents’, Communications of the ACM, 37(7) (July 1994).
3. J. K. Ousterhout, Tcl and the Tk Toolkit, Addison -Wesley, April 1994.
4. W. Joy, Fourth Berkeley Distribution, University of California, Berkeley, CA 1981.
5. D. Libes and S. Ressler, Life With UNIX, Prentice Hall, Englewood Cliffs, NJ, 1989.
6. S. Adams, ‘Project Biff‘, Dilbert, United Feature Syndicate, Inc., New York, May 28 1995.
7. M. Wooldridge and N. Jennings, ‘Intelligent agents: theory and practice’, Knowledge Engineering Review

8. J. Fulton and R. Swick, ‘xbiff‘, MIT X Consortium, 1988.
9. J. Fulton, R. Swick, M. Wagner, J. Zawinski, Lucid, H. Spencer, J. Poskanzer and G. Earle, ‘xbifftl-’,

10. D. Wallach, ‘tkpostage’, URL:ftp://ftp.aud.alcatel.com/tcl/code/tkpostage -1.3.tar.gz., November 15 1993.
11. C. Herod, ‘xpostage’, Convex Computer Corp., 1989.
12. B. Lurie, ‘tkpbiff‘, URL:http://www.cis.ohio -state.edu/hypertext/faq/usenet/tcl -faq/part4/faq.htm~, 1993.
13. K. Shutoh, ‘xpbiff‘, InSoft System Lab., Yamaha Corp., 1990.
14. N. Borenstein, ‘EMail with a mind of i t s own: the Safe-Tcl language for enabled mail’, CJLPAA ‘94,

15. D. Libes, Exploring Expect, O’Reilly and Associates, Sebastopol, CA, January 1995.
16. B. Sheth, ‘NEWT’, PhD thesis, MIT Media Laboratory, 1995.
17. A. Arensburger and A. Rosenfeld, ‘To take arms against a sea of email’, Communications of the ACM,

(October 1994) (submitted).

MIT X Consortium, 1990.

Barcelona, Spain.

38(3) (March 1995) 108.

3

