
SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 27(2). 123-137 (FEBRUARY 1997)

Automation and Testing of Character -graphic
Programs

DON LIBES
National Institute of Standards and Technology, Bldg 220, A-127, Gaithersburg, MD,

20899, U.S.A.
(email: libes@nist.gov)

SUMMARY

This paper describes a technique that allows automation and testing of character -graphic programs
using existing public-domain tools. Specifically, Tcl, Tk, and Expect are augmented with a terminal
emulator in order to build a screen representation in memory. This screen can be queried in a
high-level way and the interaction can be further controlled based on the screen representation.

One immediate use of this is to build a test suite for automating standards conformance of the
interactive programs in POSIX 1003.2 (Interactive Shells and Utilities). This technique i s portable
and inexpensive. All the software described in this paper i s free or in the public domain. 0 1997
by John Wiley & Sons, Ltd.

KEY WORDS: conformance testing; Expect: interaction automation; POSIX 1003.2: regression testing: Tclmk

INTRODUCTION

This paper describes a general technique that allows automation and testing of
character -graphic programs using portable and inexpensive tools. Specifically, Tcl,
Tk, and Expect are augmented with a terminal emulator in order to build a screen
representation in memory. T h i s screen can be queried in a high-level way and the
interaction can be further controlled based on the screen representation.

One immediate use of this i s to build a test suite for automating standards
conformance of the interactive programs in POSIX 1003.2 (Interactive Shells and
Tools).'

BACKGROUND

Tcl (Tool Command Language) i s an embeddable language library that can be linked
to other applications. Tcl provides a fairly generic but reasonably high-level language.
The language i s interpreted and resembles the UNIX shell in many ways. Elements
are also derived from C and LISP. Despite i t s mixed heritage, much of the
excess baggage from these other languages has been omitted, leaving a modest but
capable language.

Tcl i s extensible. Two popular Tcl extensions are Tk and Expect. Tk enables
control of graphic user interfaces. Expect enables control of interactive character -

CCC 0038-0644/97/020123 -15
0 1997 by John Wiley & Sons, Ltd

Received 25 October 1995
Revised 19 March 1996

124 D. LIBES

oriented interfaces. Both Tk and Expect can work together. For example, they
can be used to layer a graphic user interface on top of an existing character -
oriented program.2

Tcl and Tk are described by Ou~terhout.~Expect i s described by L i b e ~ . ~ , ~The
remainder of the paper assumes a reasonable understanding of Expect, Tcl, and Tk.

Expect processing in non-character -graphic programs

In non-character -graphic applications, characters are written on each line from left
to right. After completing a line, characters are written to the next line. When the
last line of the screen i s filled, the screen i s scrolled. The oldest line at the top of
the screen is deleted, all the other lines are moved up, and new characters are
written to the new line at the bottom of the screen.

Because characters appear in exactly the order that they are written, i t i s simple
to wait for specific patterns. As characters arrive, they are appended to a buffer.
The buffer can then be searched for the patterns of interest.

For example, suppose a program prompts with the string ‘yes or no:’. This
prompt can be detected by waiting for exactly that string to appear in the output of
the program.

Expect i s a popular public-domain program that automates interactive programs.
Using Expect, the actual command to wait for the string ‘yes or no:’ is:

expect “yes or no:”

Expect has a rich set of built-in tools to describe patterns. However, they are all
serial in nature. Expect sees a stream of characters and does not attempt to interpret
the characters in a different order than they were received.

Expect processing in character -graphic programs

In contrast to non-character -graphic programs, character -graphic programs write
characters to arbitrary character locations on a screen or window. For example, a
DEC VTlOO terminal can display a 24 by 80 grid of printable ASCII characters.
Characters can only appear in discrete locations in the grid. However, the grid can
be filled in any order and characters at any location may be replaced at any time
by other characters.

Special character sequences, usually beginning with an escape character (ASCII
ESC), are used to position subsequent characters in the grid. These sequences are
referred to as positioning sequences.

Because the grid may be filled in any order, it i s not trivial to watch a stream
of characters for patterns. Typically, such programs take advantage of characters that
already exist on the screen to reduce the amount of characters that have to be
produced to update the display.

For example, suppose a line on the screen contains ‘yesterday.’. If this i s to
be replaced with the ‘yes or no:’ prompt, the program can rewrite the entire line
with ‘yes or no:’. However, the program can achieve the same effect by replacing
the ‘te’ with ‘0’ and ‘day.’ with ‘no:’. This i s shown in Figure 1.

The output of this program to produce ‘yes or no’ would be:

yesterday. <positioning sequence> o <positioning sequence> no:

CHARACTER -GRAPHIC PROGRAMS

After -
Characters remaining the same

B e f o r e + y e s t e r d a y .

v e s o r n o :

125

Figure 1. Replacing selected characters on a screen

The simple Expect command used earlier would not be able to match ‘yes or
no’ in such output. However, with an understanding of how to interpret the
positioning sequences, it i s possible to model the screen and match the string. In
that case, the match i s not made against the output directly. Instead, the match i s
made against the model of the screen.

TERMINAL EMULATON

A screen may be modelled using emulation. Indeed, emulation i s the basis for
terminal emulators. Terminal emulators create a model of the screen and display i t
on a windowed system such as the X Window System (X11).6 However, terminal
emulators are not designed to support detection of patterns on the screen.

In this section, a terminal emulator i s presented that provides a framework upon
which to perform screen analysis. Functionally, the emulator i s capable of supporting
sophisticated character -graphic programs such as Vi and Emacs.’s8 Hooks are provided
so that screen analysis can be done after each screen update.

There are many ways to maintain a grid of characters. For simplicity, we started
out using Tk, a system for controlling X graphics. A Tk text widget i s convenient
for maintaining the grid because Tk can automatically display the grid in a window
and the Tk understands typical terminal features such as highlighting. In practice, i t
i s not necessary to display the grid. Indeed, non-display of the grid i s useful when
automating an existing program. In many cases, user comprehension of the character -
graphic user interface i s no longer necessary so there i s no need to display it. A
version of this work was repeated without using Tk-a simple Tcl array was used
to model the screen.

To run processes, a shell is used through which any programs under test are
invoked. By using Expect’s spawn command, a pseudo-terminal i s automatically
supplied, allowing applications to believe that they are talking to a real user. Without
the pseudo-terminal, many nominally character -graphic applications would forego
their character -graphic interface, making them impossible to test. Many applications
would refuse to run at all.

In theory, the task of understanding screen manipulation sequences i s straightfor -
ward. However, in reality, i t i s complex. Some of the problems are:

0 Many vendors use non-standard screen manipulation sequences.
0 Even with a single screen-manipulation definition, there i s an infinite number

0 High-level databases and libraries exist to deal with the multi-vendor problem,
of sequences that can generate a particular screen image.

however there i s no single standard.

126 D. LIBES

0 Some programs do not follow the specifications described by the high-level
databasesflibraries.

Intuitively, the way to build a terminal emulator is to figure out what the character
sequences mean and model this in computer code. The solution presented in th is
paper i s not far from that idea, but it gets there by a somewhat circuitous route.

First, it i s necessary to understand that there i s no standard terminal type. Although
there i s an ANSI standard, it i s so limited that all vendors extend it. Naturally,
these extensions are rarely compatible with one another. Indeed, manufacturers often
produce extensions that are different even within their own model lines.

Several attempts have been made to define high-level databases and software
interfaces to understand these hundreds of definitions. However, these interfaces are
for producing character sequences, not consuming them.

Given an arbitrary character sequence, there is no trivial way to figure out what
it does. Presuming a particular terminal type simplifies the problem but does not
necessarily make it solvable. Inverting database descriptions may not be possible if
any of the sequences are identical. For instance, consider descriptions that use the
same sequence for both highlight and inverse. In this case, there i s no way of telling
which one was intended just by knowing the sequence had arrived. A related problem
exists with individual sequences that are identical to a sequence of other sequences.
A different problem arises when terminals are used beyond their documented limits.
In some cases, sequences defined with only enough space for 24 rows can match
two different requests if a terminal with more than 24 rows i s emulated. This i s a
common scenario with emulated terminals where users expand the terminals many
times larger than their physical counterparts. In such cases, which request i s correct
can only be determined by the undocumented operation of the physical terminal
itself. This can change from one release to the next and i s not necessarily derivable
via software.

To avoid these problems, a theoretically 'ideal' terminal was designed. Designing
a terminal from scratch makes it possible to avoid the difficulties of having to
deduce the characteristics of another existing terminal. However, there are two
drawbacks of an ideal terminal:

0 An ideal terminal cannot be automatically displayed on a terminal emulating a

0 A program that only generates output for a specific type wil l not necessarily
different type.

display correctly on an ideal terminal.

Fortunately, both of these are moot. The f i rs t drawback i s irrelevant partly because
typically the emulator itself provides a display. T h i s display process is described
later. In addition, the emulator can be augmented to consume characters meant for
one terminal type and convert this into characters to drive yet another type. The
second drawback i s irrelevant because the programs of interest should not be tied
to a particular terminal type but should be terminal independent. Whereas it i s
possible to force the emulator to understand a particular terminal type, it can be
much more difficult because the ideal terminal i s invariably much simpler than any
real terminal.

CHARACTER -GRAPHIC PROGRAMS 127

Defining terminal definitions

An arbitrary terminal definition would be meaningless if there were no way to
inform programs of it, but the same databases as before serve th is purpose. The
approach taken by modern databases i s to support arbitrary terminal types through
the use of a terminal description language. Unfortunately, there i s no single standard.

In UNIX environments, there are two ‘standards’-Termcap and Terminf~.~The
presence o f one of these can often be explained by the derivation of the system.
Termcap was invented as Berkeley and can be found on Berkeley -derived systems.
Terminfo was a redesign provided by AT&T and can be found on AT&T (Le. SV)
derived systems. Many systems support both and it i s not uncommon to find half
the utilities on the system using Termcap and half using Terminfo. Hence, the
solution in this paper necessarily implements both. The script i s forgiving in that i t
runs even if one of the two implementations i s absent.

Fortunately, i t i s much easier to design a terminal description from scratch than
it i s to mimic an existing terminal description. The reason i s that few sequences are
actually mandatory. For instance, relative cursor motion can be simulated with
absolute cursor motion. This one observation alone dramatically simplifies descriptions
because there are often dozens -of relative cursor motions that can be replaced by a
single absolute cursor motion definition. Using a single, albeit more complex,
definition also turns out to be more efficient than many relative cursor motion
operations. The explanation for this efficiency i s described later.

The following code establishes descriptions in both Termcap and Terminfo style
using the ideal terminal type, arbitrarily named ‘tk’. The code succeeds even if
Termcap and Terminfo are not supported on the system. This code actually has to
be executed before the spawn shown earlier in order for the environment variables
to be inherited by the process.

The Termcap and Terminfo definitions are very similar so only the Termcap
definition i s described here. The definition i s made up of several capabilities. Each
capability describes one feature of the terminal. A capability i s expressed in the
form xx=value, where xx i s a capability label and value i s the actual string that
the emulator receives. For instance the up capability moves the cursor up one line.
I t s value i s the sequence: escape, ‘I,, ‘A’. These sequences are not interpreted at all
by Tcl so they may look peculiar. The complicated -looking sequence (can) performs
absolute cursor motion. The row and column are substituted for each %d before it
i s transmitted. The character string ‘\E’ i s replaced with a true escape character. The
remaining capabilities are non-destructive space (nd), clear screen (cl), down one
line (do), begin standout mode (so) and end standout mode (se). The actual
definitions are based on the ANSI terminal definition.’O This is a purely arbitrary
choice.

set env(TERM) ‘‘tk”
set env(TElU4CAP) (tk:

:cm=\EI%d;m:
:up=\E[A:
:nd=\E[C:
:cl=\E [H\E[:J:

:so=\E [7m:
:do= A J:

128 D. LIBES

1

set env(TERMINF0) /tmp
set t ts rc “/tmp/tk. SIC”

set f i le [open $tksrc w]

puts $fi le {tk,
cup=\$I%pl%d:%p2%dH,
cuul=\E[A,
cufl=\$[C,
clear=B C H \ E [a,
ind=\n,
cr=k,
smso=\E [7m,
rmso=\E [m,

1
close $fi le
catch {exec t i c Stksrc)
exec rm Stksrc

A generic standout mode is used for brevity in this paper. Extending it to specific
ones such as underlining and highlighting i s straightforward.

Maintaining and querying the terminal display

The text widget maintains the terminal display internally. Most of the details are
not relevant to this paper and names such as terneinit and t e r n c l e a r should
be intuitively obvious. One procedure wil l be described in more detail to provide a
taste for the implementation and in order to understand some of the problems encoun-
tered.

The term_t!iown procedure moves the cursor down one line. I f the cursor i s
already at the end of the screen, the text widget appears to scroll. This i s accomplished
by deleting the first line and then creating a new one at the end.

proc term-down {I{

global cur-row rows cole term

if {$cur-row < $rows} {

I else {
incur cur-row

already a t l a s t l ine o f term. so s c r o l l screen up
$term delete 1.0 “1.end + 1chars”

recreate l i n e a t end
$term inser t end [fanuat %*s $cols ‘“‘]\a

1
1

There i s no correspondingly complex routine to scroll up because the
Termcap/Terminfo libraries never request it. Instead, they simulate i t with other
capabilities. In fact, the Termcap/Terminfo libraries never request that the cursor

CHARACTER -GRAPHIC PROGRAMS 129

scroll past the bottom line either. However, non-character -graphic programs such as
cat andIS do, so the terminal emulator understands how to handle this case.

The t e r n i n s e r t procedure writes a string to the current location on the screen.
Due to the nature of Tk’s text widgets, the procedure does i t s work by first deleting
the existing characters and then inserting the new characters. This i s a good example
of where TermcapEerminfo fail to have the ability to adequately describe a terminal.
The text widget i s essentially always in ‘insert’ mode but Termcap/Terminfo have
no way of describing this.

One capability of which the script cannot take advantage, i s that TermcapRerminfo
can be told not to write across line boundaries. Again however, programs such as
cat andIS expect to be able to write over line boundaries.

At the very end of t e r n i n s e r t i s a call to temchars -changed. This i s a
user-defined procedure called whenever visible characters have changed. For example,
the following code finds when the string foo appears on line 4 column 7:

if {[s t r ing match foo* [$term get 4.7 4.endl13

The following code tests i f character at row 4 col 5 i s in standout mode

if{-1I=[lsearch [$term tag names 4.51 standout13 l . .
Information can also be retrieved. For example to return the entire screen image:

$term get 1.0 end

The following example code returns indices of the first string on lines 4 to 6 that
i s in standout mode

$term tag nextrange standout 4.0 6.end

The utility procedure ternupdate -cursor i s called to update the visible cursor.
T h i s procedure calls a user-defined procedure, terncursor -changed. A possible
definition might be to test if the cursor i s at some specific location:

if {Scur-row == 1&& $cur -col == 03 ...
A single expect command suffices to read and parse the sequences. The command

has a pattern to match each possible sequence. An abbreviated implementation i s
shown below. For instance, a non-destructive space sequence causes the current
column to be incremented. A carriage -return sets the current column to 0. Notice
how simple the code i s for absolute cursor motion. I t i s basically two assignment
statements. Because it i s so simple, there i s no need to supply TermcapRerminfo with
information on relative cursor motion commands. They cannot be substantially faster.”

expect-background {

- re “A\[A\xOl-bclf]+” { # Text
t e r n i n s e r t $expect -out (0,string)
ternupdate -cursor

set cur- col 0
3 r # (cr,) 00 t o beginning o f line

* The definition for non-destructive space might be seen as a concession to speed, but in fact it is required by some
buggy versions of Termcap that operate incorrectly if the capability not defined. The other relative motion capabilities
are assumed by the terminal driver for non-character -graphic tools such as cat and 1..

130 D. LIBES

ternupdate - cursor

term-down
term_update -cursor

} “A\033\\\[C” {
i nc r cur-col
ternupdate - cursor

1 “A\n” { # (ind,do)Movecursordownoneline

(cuf1,nd) Nondestructive space

{ - re ““\033\\\[(\[0 -91*); (\[0-91*)H” c
(cup,cm) Move t o row y c o l x

set cur-row [expr $expect -out (1,string)+l]
set cur-col $expect -out(2,string)
ternupdate - cursor

1

Bindings define how the emulator should handle user events such as user keystrokes
and mouse motion. For example, the following statement defines a binding that
applies to any keypress event. Upon occurrence of such an event, i ts action sends
the corresponding ASCII character to the process. Keypress events that do not have
an associated ASCII character, such as ‘shift’ and ‘control’, are discarded.

bind S t e m <Any-KeyPrees> {
if{“a”!= “”} {

1
exp-send “%A”

1

The meta key i s simulated by sending an escape character. Most programs
understand this convention, and it i s convenient because it works over te lae t links.

These bindings are the same for any terminal and thus are not defined by explicit
capabilities. Bindings that are unusual do require capabilities. For example, some
terminals have function keys that generate a string of characters, typically unique to
a particular brand of terminal. This behaviour i s described using a capability. For
instance, the capability for function key 1 to send escape, ‘0’ , and ‘P’ could be
described in either of two ways:

:kl=\EOP :
:k f1=\EOP :

The matching binding is:

Termcap -style
Terminfo -style

bind $term <F1> Cexp-send ‘70330P”)

Another event that could be handled i s an X configure event, which is generated
when the user changes the size of the terminal window. For simplicity, the code
shown here does not support this. The actual code i s not significant, however it
requires additional interfaces. For example, the user should be able to choose between
various behaviors such as whether or not characters should be ‘forgotten’ if the
screen i s temporarily shortened and then lengthened.

There are not TermcapNerminfo capabilities to describe this behaviour. There
should be such capabilities, but i t requires a survey of terminal vendors to see what
is actually implemented, The obvious choices are ‘blank fill everything’ or ‘restore

CHARACTER -GRAPHIC PROGRAMS 131

everything’. Yet some tools, such as the ubiquitous xterm program, have mixtures
such as ‘blank fill when widening’ and ‘restore when lengthening’.

TermcaplTerminfo are missing many important capabilities. Another example i s
whether or not to restore the screen to the way i t looked prior to the application’s
execution. Some terminals do i t one way, some the other. An emulator can do it
either way of course. But because Termcap/Terminfo provide no capability for it,
another interface must be provided.

USING THE TERMINAL EMULATOR FOR TESTING AND AUTOMATION

I t i s possible to use the terminal emulator described in the previous section partly
or fully to automate or test character -graphic applications. For instance, each expect -
like operation could be a loop that repeatedly performs various tests of interest on
the text widget contents. In the following code, the entrance to the loop i s protected
by ‘tkwait var test- pats’. This blocks the loop from proceeding until the
test - pats variable i s changed. The variable i s changed by the
terrechars -changed procedure, invoked whenever the screen changes. Using this
idea, the following code waits for a % prompt anywhere on the first line:

proc te-chars-changed {I{

1

w h i l e 1 {

uplevel #O set test - pats 1

if {!$test - pats) {tkwait var test - pats)
set test-pats 0
if { lregexp ‘I%”[$term get 1.0 l.end111 break

1
Writing a substantial script this way would be clumsy. Furthermore, i t prevents

the use of control flow commands in the actions. One solution i s to create a
procedure that does all of the work handling the semaphore and hiding the wh i l e
loop. Such a procedure i s described in the next section.

Term-expect

term-expect i s a procedure that simplifies the writing of expect -like operations.
term-expect replaces the ubiquitious while loop (see above) and the other control
machinery. The interface of t e r n e x p e c t i s similar to the original expect. Time-
outs, defaults, patterns, and actions are all supported.

A significant difference i s that instead of patterns, the user provides executable
tests. Thus, ternexpect i s written as a series of test-action pairs:

expect -term t e s t 1 action1 tes t2 action2 . . .
Because the tests can be arbitrarily large lists of statements, they are grouped

with braces. For example, the previous test could be written:

expect - term { [regexp “%” [$term get 1.0 l.endl] } {;# no-op)

Any number of test-action pairs can be provided. The action can be omitted if
empty as i s the case here. Actions can contain multiple statements. They can also
involve flow control such as break, continue and return.

132 D. LIBES

Tests can contain multiple statements. Because the tests can be arbitrarily large
lists of statements, they are grouped with braces. Any non-zero test result causes
term-expect to be satisfied, whereupon it executes the associated action. One special
test (“timeout”) i s provided to support timeouts, analogous to expect.

The implementation of te rnexpec t follows the model shown above, using a
loop and waiting to be called back when the screen has been updated. The actual
code i s more complicated because it addresses scoping problems and must handle
flow control and timeouts.

Example of partial automation-Rogue

Rogue i s an adventure game that presents a player with various physical attributes,
such as strength and health. The attributes are displayed using character graphics.
For instance ‘‘str: 16” indicates a strength of 16. This strength value i s the default
but the game randomly provides a much better strength of 18. I t i s provided rarely
however, and quitting the game i s clumsy enough that players do not repeatedly
restart the game in hopes of getting the high strength. In particular, the game is
quit by initially pressing ‘Q’. The game then f i l l s in the word ‘quit’and asks ‘Are
you sure?’. The user must answer ‘y’, wait for the shell prompt to reappear and
then re-enter the name of the game (‘rogue’) to restart it.

One of the earliest examples of Expect was a script that automated th is particular
interaction, allowing users always to be able to start with optimal initial configurations
for the game.” However, because the game uses character graphics, the script could
conceivably miss the patterns for which it i s looking.

Using the t e r n e x p e c t procedure described above, it i s possible to write a
replacement script for Rogue that fully understands the character graphics. For
instance, the first test looks for the shell prompt (‘%’) in either the first or second
line on the screen. After sending ‘rogue’, the script looks for a strength of 16 or
18. If 18 i s found, the break action i s executed causing the loop to break. A strength
of 16 causes the script to terminate the game and restart a new one for examination.
The meaning of the rest of the script should be obvious.

w h i l e 1 {
t e r n e x p e c t {regexp “%” t $term get 1.0 2. end11
exp-send “roguek”
teneexpect {regexp “ S t r r 18” [$term get 24.0 24.endll
break \

{regexp “ S t r : 16” [$term get 24.0 24.endll 11
exp-send “Q”
teneexpect {regexp ‘‘quit”[$term get 1.0 l.end11
exp-send “y”

l

In contrast to the original Rogue script, there i s no interact command at the
end of this one. Because of the bindings, the script i s always listening to the
keyboard! If desired, this implicit interaction can be disabled by removing or
overriding the KeyPreas bindings that appear at the end of the terminal emulator.

CHARACTER -GRAPHIC PROGRAMS

Example of total automation --querying a database

133

The following example connects to the Cornell University Library and makes a
number of queries through i t s menu system. Interestingly, this library expects to
drive a 3270 terminal. A 3270 terminal i s not like a typical serial terminal and
traditional programs such as telnet and rlogin do not support the 3270 interface.
Thus, Expect uses the tn3270 program to convert the 3270 interaction to a Curses-
style character stream, which can then be handled as usual.

First, the shell prompt is waited for and the 3270 emulator i s started.

t e r n e x p e c t €regexp C.*C>%ll[$term get 1.0 3.enUII
exp-send “tn3270 notis.library.cornell.edulr~’

The next step i s to get through the library’s login interaction.

t e r n e x p e c t {regexp “desk” [$term get 19.0 1 9.endl 1 i
exp-send ‘v’

1

Once in the library system, all the menus prompt the same way. This is a common
situation and calls for yet higher-level tools than ternexpect . I t i s difficult to
define such higher -level tools in a way that would be reusable to others. Fortunately,
they are almost always short, so it i s not difficult to write them anew each time.
Here are example utility routines to handle th is repetitive situation for the Cornel1
University Library.

proc waitfornext {I{

global cur - row cur-col term

t e m e x g e c t {expr {$cur-col==15 h& Scur-row == 24 && \
“ NEXT corn: ” _ --- [$term get 24.0
24.16313 C3

3

proc sendcommand {command) {
global cur-col
exp-send $command
te rnexpec t {expr {$cur - col = = 793) {)

Now the interactions with the library are trivial. The remaining commands look
for a book using the keywords ‘sound’ and ‘Scottish’. The first book i s selected
and i ts long form i s displayed. Finally the next page of the long form i s shown.

waitfornext
sendcamand “k=sound and scott ishlr”
wait fornext
sendcoamurd “l\r”
waitfornext
sendcammaand “lon\r”
w a i t f o r next
sendconmaad “forb?

The view of the Tk terminal emulator, after these queries, i s shown in Figure2.

134 D. LIBES

Figure 2. Terminal emulator after several queries to Cornell University Library

Testing

In the automation examples, only the desired outcome was anticipated by the
script. Consider the database query example. If the network was down, the connection
to Cornell would fail. A new release of the tn3270 program might have a bug in
it. Many other problems are possible. Robust scripts must be able to deal with all
of these alternative outcomes.

Handling different outcomes i s possible by adding additional tests to each call of
t e r n e x p e c t command as was done in the Rogue example to check for the strength
of 16 and 18 simultaneously. Conformance testing, which either succeeds or fails,
requires only the desired pattern and the lack of the pattern within a given amount
of time. For example, the following script checks for a shell prompt. If found, it
prints ‘found’. I f not found within 20 seconds, i t prints ‘not found’.

set timeout 20
t e r n e x p e c t {

set line [$ termget 1.0 2.3ndl
regexp “%” $line

puts “found”

puts %ot found”

I {

1 timeout {

The special pattern timeout matches when sufficient time has expired, just as
the expect command does. The associated action i s executed as with any successful
pattern match. Unkike the expect command, a test for end-of-file i s not provided
because a terminal emulator should not exit just because the applications making
use of it do so.

More sophisticated checking can require the addition of many other tests and
failure modes. For example, consider testing a character -graphic editor such as Vi.
I t i s not sufficient to look for a particular pattern. Rather, the entire screen must be

CHARACTER -GRAPHIC PROGRAMS 135

correct after an interaction. Doing such a test i s straightforward using Tcl’s built-in
string comparison command:

st r ing compare $desired -image t$term get 1.0 24.endl

Because tests may execute arbitrary commands, this can also be done using
algorithms rather than literal patterns. For example, Vi begins with a screen displaying
tildes down the left-most column. The following code tests for this.

fo r {set i1) {$i<=24) {incr i}{

ift“-” != [str ing trimright [$term get S i .0 $i.endlIl {

1
return 1

1
return 0

Other tests may be useful to handle unusual but possible conditions. For example,
when testing Emacs, occasional messages appear such as those relating to garbage
collection. Assuming the status line i s stored in the variable status - line, the
unpredictable messages from Emacs could be detected with the following tests:

str ing match “Garbage collect ing. . .Done” $status - line
string match “Garbage col lect ing. . .” $status - l ine
string match “Auto-saving. . .Done” $status - line
string match “Auto-saving. . .” $status - line

A large body of tests and testing expertise has been constructed using E ~ p e c t . ’ ~ . ’ ~
As in the Rogue example, it i s straightforward to convert expect -style tests to
ternexpect -style tests. In many cases, the ternexpect - s ty le tests are more
robust and it i s likely that some test suites will be rewritten to take advantage of
this additional rigor. However, little actual experience has been collected.

At the same time, expect -term shares with expect one difficulty of constructing
such tests. Namely, there i s a tradition of avoiding formal test specifications for user
interfaces. As an example, POSIX lacks such test specifications. Thus, test implemen-
tation often includes specification of the test as well. For this reason, substantial
time must be allotted to designers of test suites for character -graphic interfaces.

Note that the emulator i s not a tool for testing Termcap, Terminfo, or other
terminal libraries. The emulator defines a very small number of minimal capabilities,
exactly the opposite of what i s needed to test capability libraries. The emulator
necessarily assumes Termcap and/or Terminfo are functioning normally.

ALTERNATIVES

ExpecTerm was earlier work that implemented a universal terminal emulator inside
of Expect i t ~ e 1 f . I ~The emulator was written in C. Access to the terminal emulator
was provided by several additional flags to the spawn and expect commands. For
instance, the following expect command looked for ‘aaaaa’ in the first five columns
of the first row and ‘bbbbb’ in the first five columns of the second row.

expect -rows 0 : l -cole 0:4 “aaaa/nbbbbb”

Expecterm provided access to character attributes (reverse, dim, blink, etc.) and

136 D. LIBES

had a variety of other options. For instance -rrows allowed relative region specifi -
cations and negative integers indexed from the end of the region.

Expecterm suffered exactly the difficulties of a universal terminal emulator men-
tioned earlier. In particular, because it was not possible to invert TermcapRerminfo,
entries had to be handediting. This was not a task for most users. To ameliorate
this, Expecterm came with i t s own Terminfo file for a few particularly popular
terminals. The replacement definitions were subsets guaranteed to be clean of
ambiguities, exactly like the Tk definition shown earlier.

The Expecterm command interface pushed the complexity of the screen modelling
into Expect itself. The primary disadvantage was that i t defined yet a new sub-
language that users had to learn. (Users already had to master Expect’s original sub-
language for expressing patterns in a serial stream.) Because terminal emulator
pattern matching was performed by compiled code, when patterns did not match, i t
could become very difficult for users to figure out what was going wrong. In contast,
the te rnexpec t approach uses the existing Expect pattern -matching sub-language
tied together with existing control flow commands, both of which users are already
familiar with. The ability to use control flow commands in tests permits algorithmic
tests as in the Vi example.

The Expecterm internals and interface have not continued to be maintained and
have not been supported by Expect for four years. However, Expecterm i s not being
ignored. The t e m e w e c t approach described in this paper should merely be
considered an alternative interface4urrently in favour. I t remains to be seen whether
the te rnexpec t procedure i s a desirable user interface. Because it i s modifiable
by the user, it i s likely, however, that th is will more easily serve as a testbed for
better future interfaces.

CONCLUSIONS

A terminal emulator has been described that provides an infrastructure for testing
and automation of character -graphic programs. The tool i s stable and robust. At the
same time, because it i s implemented entirely in interpretive Tcl, it i s accessible
to the user and easily modified should the need for extension or the desire to
experiment arise.

Much of the credit for the features and simplicity are due to the supporting tools
in which the work was implemented. Specifically, Expect, Tcl, and Tk provide a
convenient environment for the implementation of this work. Expect provides a
pseudo-terminal to make applications run as if they were directly connected to a
user at a real terminal. There i s no other tool that provides access to pseudo-
terminals trivially and portably. Expect additionally provides convenient commands
for pattern matching regular expressions from a stream of characters, much in the
style of Lex. This is a good fit to the problem of parsing terminal sequences. Tcl
provides a high-level interface for control. Because Expect was originally designed
to be controlled by Tcl, i t should not be surprising that the combination of the two
works well here. Similarly, Tk extends Tcl, with the ability to display X windows.
This solves the problem of displaying the results of the emulator and providing data
structures for the display. Because there is a well-known tool (Expectk) that provides
Tcl, Tk, and Expect together, the triad was an obvious tool to apply to th is problem.

CHARACTER -GRAPHIC PROGRAMS 137

Availability

The software described in this paper i s freely available. However, the author and
NIST would appreciate credit if this software, documentation, ideas, or portions of
them are used.

The scripts and programs described in this document may be ftp’d as
pub/expect/expect.tar.Z from ftp.cme.nist.gov. The software wil l be mailed to you
if you send the mail message ‘send pub/expect/expect.tar.Z’ (without quotes) to
library@cme.nist .gov.

ACKNOWLEDGMENTS

Much of the development of Expect was funded by the NIST Scientific and Technical
Research Services. The Tk-less implementation was done by Adrian Moriano, Cornell
University. Adrian also wrote the script to interact with the Cornell University
Library. Thanks to Steve Ray, Josh Lubell, Kathy Miles, and several anonymous
reviewers for proofreading this paper.

REFERENCES

1. Portable Operating System Interjace (POSlX)-Parr 2: Shell and Utilities, Federal Information Processing

2. D. Libes, ‘X wrappers for non-graphic interactive programs’, Proc. Xhibition 94, San Jose, California,

3. J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, ISBN 0-201-63337-X, April 1994.
4. D. Libes ‘Expect: scripts for controlling interactive programs’, Computing Systems, 4(2), 99-126,

5. D. Libes, Exploring Expect: A Tcl-based Toolkit for Automating Interactive Programs, O’Reilly and

6. A. Nye, T. OReilly et al. The X Window System Series, O’Reilly and Associates Inc., Sebastopol, CA.
7. L. Lamb, Learning the v i Editor, O’Reilly and Associates Inc., ISBN 0-937175-67-6, October 1990.
8. R. Stallman, GNU Emacs Manual, Free Software Foundation Inc., ISBN 1-88211404 -3, July 1994.
9. B. Goodheart, UN/X Curses Explained, Prentice Hall, 1991.

Standards Publication 189, National Institute of Standards and Technology, October 11, 1994.

20-24 June 1994.

University of California Press Journals, CA, Spring 1991.

Associates Inc., 602 pp. ISBN 1-56592-090-2, January 1995.

10. ANSI X3.64-1979 (R1990)-Additional Controls for Use with the American National Standards Code

II.D. Libes, ‘Expect: curing those uncontrollable f i ts of interaction’, Proc. Summer 1990 USENIX Confer-

12. D. Libes, ‘Regression testing and conformance testing interactive programs’, Proc. Summer 1992 USENIX

13. R. Savoye, ‘The Solution: DejaGnu’, Free Software Report, Mountain View, CA, 3(1).
14. C. J. Matheus and M. D. Weissman, expecTerm, URL:ftp://ftp.aud.alcatel.com/tcl/extensions/

for Information Interchange, ANSI, 1990.

ence, Anaheim, CA, 11-15 June 1990, pp. 183-192.

Conference, San Antonio, TX, 8-12 June 1992.

expecTerm 1.Obeta.tar.gz, May 1992.

