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 Abstract

It has been difficult to objectively assess the real value or
maturity of the Object Management Group’s Object
Management Architecture (OMA). While experience reports
have appeared in the literature, these have focused more on
the functionality of the end-system than on systematically
exploring the strengths and weaknesses of the OMA, and
providing practical guidelines on the effective use of the
OMA for specific software-engineering problems. In this
paper we describe a case study in the use of the OMA to
integrate legacy software components into a distributed
object system. We assess the OMA in this problem context,
and indicate strengths and weaknesses of the specification
and current implementations. We extrapolate our experience
to a broader class of component-based software systems,
and recommend an architectural strategy for the effective
use of the OMA to this class of systems.

Category: experience, software engineering practice.

1. Introduction

The Object Management Architecture (OMA) [1] contin-
ues to attract attention, with numerous implementations of
the OMA common object request broker architecture
(CORBA)1 emerging in the commercial marketplace. How
does an organization decide whether to embrace this tech-
nology? The stakes are high since the OMA can have a pro-
found influence on the design and implementation of
application software. A technology assessment strategy that
can identify the value-added of a new technology, and simul-
taneously reveal how best to exploit this value added, is
therefore of great potential value.

We have applied one such evaluation technique to the
OMA [2]. We describe the evaluation technique as “situ-
ated” because it describes the technology being evaluated in
terms of peer technologies (in order to identify the new

“value-added” features of a technology, i.e., itsfeature
delta), and then places the feature delta into specific usa
contexts. The technology is thus situated in both the techn
ogy marketplace and in the problem domain in which th
technology is to be evaluated.

There are many ways of evaluating feature deltas. In so
cases it is possible to isolate and benchmark elements of
feature delta, as illustrated by the comparative benchma
ing of CORBA and RPC [3]. However, the lack of a specifi
problem context within which to evaluate the benchmar
can limit the effectiveness of this form of evaluation. T
overcome this limitation, experimentally-focused case stu
ies can be undertaken that apply the feature delta to rep
sentative problems of an application domain. Such ca
studies can be particularly fruitful as in addition to providin
a problem context for evaluating a technology, then can a
provide a wealth of practical experience in how to best app
a feature delta to these problems.

In this paper we describe one experimentally-motivate
case study in the use of the OMA to an increasingly-impo
tant problem domain: the integration of component-bas
systems (systems comprised of stand-alone, independen
executing software packages). Section 2 provides ba
ground information on the engineering problems inherent
component-based systems. Section 3 provides further ba
ground on the manufacturing domain, and on the legacy c
lection of computer-aided design engineering (CADE
components that we modernized into a distributed, obje
based system. Section 4 describes the impact of the OMA
the architecture of the modernized system, and Section
continues the discussion of the impact of OMA at a mo
detailed implementation level. Finally, Section 6 states o
conclusions about the OMA based on this experiment.

2. Background: Component-Based Systems

While all (real) systems are composed of components,
our usagecomponent-basedsystems are comprised of mul-
tiple software components that:

1. We use CORBA to refer to only the message broker
component of the OMA; we use OMA to refer to
CORBA plus additional OMA services.
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• are ready “off-the-shelf,” whether from a commercia
source (COTS) or re-used from another system;

• are self-contained and possibly execute independently;

• will be used “as is” rather than modified;

• must be integrated with other components to achie
required system functionality; and,

• have significant aggregate functionality and complexity.

Examples of component-based systems can be drawn fr
many domains, including: computer-aided software eng
neering (CASE), design engineering (CADE) and manufa
turing engineering (CAME); office automation; workflow
management; command and control, and many others.

2.1 Architectural Mismatch: The Core Issue

In contrast to the development of other kinds of system
where system integration is often the tail-end of an impl
mentation effort, in component-based systems determin
how to integrate components is often the only latitude desig
ers have. In our evaluation we were interested in whether
OMA suggested solutions to the core engineering proble
in the integration of component-based systems:architectural
mismatch[4].

The term “architectural mismatch” refers to the proble
that components always embed assumptions about th
intended operational context, and these assumptions o
conflict with assumptions made by other components. F
example, a component that uses a graphical human interf
as the sole means of executing component functions
embedded an assumption that will render it unusable in a s
tem that must run in batch mode—unless this mismatch c
be removed by some form of component adaptation. Sco
of other kinds of mismatches are commonplace involvin
e.g., multi-users support, resource management, and secu

The term “architectural mismatch” implies more than jus
mismatched component assumptions: it also implies that m
matches can arise between components and asoftware archi-
tecture [5]. The general consensus is that softwa
architecture deals with high-level design patterns1 for struc-
turing and expressing system designs. A sense of wha
meant by “high level” is that these patterns are ofte
expressed in terms of components, connectors and coord
tion. Componentsrefer to units of functionality2, connectors
refer to the integration of components, andcoordinationis the
manner in which components interact at run-time. Archite

1. The terms “styles” and “idioms” are synonymous with
patterns.
2. The component-based definition of this term, which is
the one used here, is more a restrictive form than that used
in software architecture literature.
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tural mismatches can arise that inhibit component integ
tion and coordination.

Not all architectural styles are equally-well suited to
specific design problem. Many factors can influence th
selection of a style—functional requirements, qualit
attributes (e.g., modifiability) anda priori design commit-
ments (e.g., distributed system). Thus, a given set of so
ware components may be assembled into a number
architectural styles, and may exhibit different kinds o
architectural mismatches in each architectural setting. T
suggests a reference model for describing the engineer
practices involved in assembling component-based s
tems, as depicted in Figure 1.

The vertical partitions depicted in Figure 1 describe th
central artifact of component-based systems—the comp
nents—in various states:

• Off-the-shelf components have hidden interfaces (usi
a definition of interface that encompasses all potent
interactions among components, not just an applicati
programming interface[6]).

• Qualified components have discovered interfaces so t
possible sources of architecture mismatch have be
identified. This is (by the definition of interface) a partia
discovery: only those interfaces that mismatch a
architectural style or other components are identified.

• Adapted components have had their architectur
mismatches ameliorated. The figure implies a kind
component “wrapping,” but other approaches a
possible (e.g., the use of mediator agents).

• Assembled components have been integrated into
architectural infrastructure. This infrastructure wil
support component assembly and coordination, a
differentiates architectural assembly from ad hoc “glue

? ?

?

Figure 1. Architectural Assembly of Components

off-the-shelf
components

qualified adapted
components

assembled
componentscomponents

qualification to
discover
interface

adaptation to
remove
architectural
mismatch

composition into
a selected
architectural
style
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2.2 A Component-Based System Evaluation Context
for the OMA

Although the reference model depicted in Figure 1 is sim
plistic, it is nonetheless sufficient to suggest the followin
questions for an evaluation of the OMA:

• Are certain architectural styles suggested by the OMA?
yes, does the OMA provide an adequate mechanism
implementing these styles? Are other mechanisms
addition to the OMA (as currently specified) required?

• Does the OMA introduce potential sources of architectur
mismatch beyond those implied by architectural style?
yes, do these result from the OMA specification, o
peculiarities of commercial implementations of the OMA

• Are some kinds of components more readily adaptable
the OMA than others? If yes, what are the characterist
of components that make them more adaptable? W
adaptation mechanisms work best with the OMA?

The case study described in detail, below, provided sign
icant insight in answering these questions.

3. Background on CADE

While the nature of component-based systems provide
needed backdrop for focusing the OMA technology evalu
tion, the problem setting must be completed with requir
ments stemming from an application domain, and tho
stemming from the particular problem being addressed. W
selected the manufacturing domain as a basis for this c
study.

3.1 A Manufacturing Domain of the Future

The manufacturing processes required to move a prod
from concept to realization are many and varied, and oft
require the application of highly-specialized skills and com
puting resources. Job scheduling, shop layout, and manu
turability analysis are examples of such skills that a
supported by software technology. In many cases these s
cialized skills are relatively independent of the underlyin
application domain—manufacturability analysis techniqu
for automotive parts and washing machine parts are qu
similar. Some believe that a breakthrough in manufacturi
efficiency can be achieved if these “horizontal” skills can b
freed from their existing “vertical” market confinements, an
allowed to develop in the free-market.

The challenge is how to re-assemble these horizontal s
cialties intovirtual enterprises, i.e., otherwise independent
manufacturing companies collaborating in vertical manufa
turing enterprises. Virtual enterprises are a means of supp
ing the flexible combination of the skills and tools from man
highly-specialized companies; from this, faster mark
response time, reduced time-to-market, and increased ma
facturing quality can be achieved. However, in addition
-
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regulatory and business-model challenges of virtual ent
prises, additional technology infrastructure is needed th
will support:

• the integration of separately-developed, specialize
computer-aided manufacturing technologies;

• geographical distribution of computing resources, an
support for heterogeneous computing environments;

• fee-for-service brokering of computer-based services
enable competition for specialized tools and skills.

In short, virtual enterprises in an increasingly specia
ized manufacturing world will rely more and more upo
information technology such as supported by distribute
object technology. However, the existing investment
computer-aided technology will need to be preserved, a
adapted, to exploit distributed object technology.

3.2 A Legacy Manufacturing System

We needed a legacy manufacturing system for mode
ization to distributed object technology that would be sim
ple enough to quickly prototype, yet sophisticated enou
to constitute a reasonable test of the OMA. As a doma
model of manufacturing activities suggests [7], there a
many subdomains that might provide for fertile hunting
From this model we determined that thedesign engineering
activity was suitably focused and automated.

Design engineering involves modeling and simulatin
part designs to test the performance of parts under cert
expected real-world use conditions. This analysis can
used to determine the adequacy of a part design for p
forming a function, to optimize a part design, and to lowe
the cost and/or weight of a part while preserving confi
dence in its performance. A diverse range of software co
ponents have been developed that support des
engineering, providing the basis for a OMA case study.

The Sandia National Laboratory Engineering Analys
Code Access System (SEACAS) provided us with a repr
sentative set of design engineering components. SEAC
supports functions such as problem definition, simulatio
analysis, and visualization (see Figure 2). Sandia has dev
oped many components in each functional catego
reflecting both the diversity of analysis problems bein
addressed and the evolving sophistication of design en
neering methods. For our case study, we selected a core
of SEACAS components that could represent a sing
thread through a design engineering scenario.

The general usage scenario for these tools is as show
Figure 3, which uses a process description formalism si
ilar to IDEF-0: the bubbles represent activities; data inp
appears on the left of activities, and data output appears
the right; mechanisms appear on the bottom of activitie
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and, control flow appears on the top of activities. The contr
flow “end-user” which would appear on each activity is omi
ted from Figure 3 for simplicity.

Following Figure 3, an analyst uses FASTQ to produce
discretized1 model of the part to be analyzed. The visualizin
tool BLOT then can be used to produce a graphical repres
tation of the model for inspection by the analyst. Based
that inspection the analyst either re-runs FASTQ to corre
the model or feeds the model to GEN3D to extrude the tw
dimensional model into the third dimension. Another inspe
tion/correction iteration may occur for the resulting three
dimensional model before the model is fed to the analy
tool. One or more analyses may be conducted, with resu
evaluated via the visualization tool or through inspection
other JAS3D output (not illustrated). As suggested by Figu
3, the process can be highly iterative, reflecting a process
convergence on a suitable design.

As Figure 2 points out, many of these tools make use o
common data format (Exodus-II). This is an important pro
erty that greatly simplified the prototyping effort. Howeve
there is more to component integration than data interchan
For example, in the scenario described above end-users
responsible for launching tools (often with personalize
scripts), managing tool output (in private directories), an
preparing the output of one tool for use as input to anoth
(sometimes with manual application of filters since not a
SEACAS tools use the same version of the Exodus data f
mat). In effect, the end-user is the system integrator, contin
ally exposed to all of the low-level details and technolog

1. A two- or three-dimensional mesh that models the con-
tours of a solid.

Figure 2. SEACAS Tool and Data Relationships
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• stress analysis
• shock physics analysis
• structural dynamics analysis

Problem Definition Visualization

Exodus II Data

Simulation/Analysis
l

a

n-
n
t
-
-
-
is
ts
f
re
of

a
-

e.
re

r
l
r-
-

dependencies exhibited by the SEACAS components, a
the environments in which they operate.

3.3 Objectives for OMA-Based Modernization

From the particular requirements of SEACAS, we dete
mined that the case study should evaluate the use of
OMA to integrate a legacy collection of design engineerin
tools in order to:

• present a uniform virtual environment for end-users th
would reflect the nature of the analysis activity and n
the idiosyncrasies of specific SEACAS components;

• support wide-area distribution of SEACAS service
while maintaining control over the software tha
provides these services (some of which conta
classified algorithms);

• deliver reasonable, usable and predictable performan
to end-users who are otherwise accustomed to us
computer services in local area network settings.

These requirements extend and refine those of the und
lying manufacturing application domain (Section 3.1).

4. A Distributed Object Architecture for the
SEACAS Components

The modernization objectives (cited above) can b
thought of asquality attributes—externally-visible system
properties that deal with issues other than functionalit
The significance of quality attributes is that it has bee
demonstrated that the top-level design, or architecture, o
system is the key factor leading to the satisfaction (or lac
of these non-functional requirements [8]. Thus, for ou
evaluation of OMA we needed to determine how well
addressed architecture-level issues inherent to compon
based systems (Section 2.2) as well as how it addres

Figure 3. Components and End-User Scenario
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visualize
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iterate
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display commands
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component-based systems that exhibit these qua
attributes.

In the following discussion it is useful to bear in mind tha
the purpose of the case study was an evaluation of the OM
feature delta. If the design problem is viewed strictly in term
of the four components integrated, then there were undou
edly simpler design solutions to achieving the limited obje
tives outlined in Section 3.3. However, viewing the desig
problem as a representative one in a broader class of probl
led us to design solutions that required a more elaborate
of the OMA, i.e., use of the OMA feature delta.

4.1 Architectural Overview

We quickly discovered that the OMA suggested an arch
tectural approach that makes extensive use of the OMA obj
model and the CORBA interface definition features; we we
pleased to discover that this feature delta beyond the m
primitive form of an RPC interface definition had such signi
icance. This central role for an object model in a compone
based architecture is illustrated in Figure 4, which depicts
top-level view of the prototype architecture.

This architecture can be described in terms of how it su
ports integration—the core design activity in componen
based systems (architectural mismatch is the inhibitor of in
gration). One useful way to think of integration is as arela-
tionship between two integrated entities, where th
relationship has fouraspects: control, data, process and pre
sentation [9][10]:

Figure 4. Architectural Overview

Host 1 Host 2... Host N

remote users

logical
object
layer

physical
component
layer

end-user
layer

corba object

component

relationship

invocation

lightweight graphical
interface & scripting
ty

A

t-
-

ms
se

i-
ct
e
re

t-
a

-
-
-

• Control integration describes how components ma
requests of (or invoke) each other’s services.

• Data integration describes how components make d
available to each other.

• Process integration describes what end-user proces
supported by, or activates, the integration relationship

• Presentation integration describes how end-use
interact with the endpoints of an integration relationshi

The end-user layer addresses presentation and proc
integration through interactive, graphical client interfac
and scripting logic that sequences and controls the exe
tion of remote services. This layer will not be described
detail; we view it as an application layer supported by th
architecture. However, we note that abstraction mi
matches between the scripting language and the obj
model were introduced by our use of TCL/Tk; a mecha
nism such as Java, which is object oriented, would addre
this problem.

The physical component layer addresses the run-tim
aspects of the SEACAS components, and various platfo
dependencies. At this level a number of sometimes sub
interactions between components, operating system a
CORBA implementation arose. These detailed impleme
tation issues are discussed in Section 5.

The logical object layer addresses data and control in
gration. Interestingly, we discovered that the OMA sug
gested an architectural style to address these aspects th
effect blends two different styles: arepositorystyle for data
integration and astructural style for control integration.
The remainder of this section will describe these styles a
how they were realized with the OMA.

4.2 Object Layer as Data Repository

The repository-style architecture is characterized by
central data repository that is used as a principle means
components to coordinate their execution and share resu
Numerous examples of repository-style architectures ha
been seen in the computer-aided software engineer
(CASE) domain [11]; examples in the manufacturin
domain are also emerging [12].

The repository-style architecture is motivated by tw
factors, both of which are relevant to SEACAS:

1. The data artifacts that are manipulated by softwa
components are key assets that must be manag
Mechanisms for access control, versioning, backup a
recovery, transactions, etc., are all important for th
effective management of data assets.

2. The structure of data can be quite complex, wi
different kinds of data related in a complex network o
aggregation and dependency relationships. Mechanis
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for schema definition and evolution, query, and navigatio
are all needed to manage this complexity.

The two OMA services that we found to be most importa
for the SEACAS repository wererelationshipsand persis-
tence. Relationships were used to define links between va
ous kinds of SEACAS artifacts while persistence allowe
networks of object instances to persist beyond user sessi

We used the object-oriented features of the CORBA inte
face definition language (IDL) to model SEACAS artifacts i
a class hierarchy, and used relationships to express the d
vation history from one class of artifact to another. A simpl
fied object model is depicted in Figure 5, which shows th

major object types and their relationships to each other and
the SEACAS components. For example,exodus2d(a two-
dimensional mesh) inherits (and defines its own) operatio
and attributes from theexodusabstract superclass;exodus2d
functionality is implemented byFASTQ; and, it participates
in a 1:many relationship withexodus3dobjects to indicate
that a single two-dimensional mesh can be extruded into s
eral three-dimensional meshes.

The net effect of populating the logical object model laye
with instances of these object types and relationships is
create a distributed object repository of SEACAS objects. O
the surface, this would seem to indicate that the OMA pr
vides a good foundation for repository-style architecture
and in the large this is true. Upon looking deeper, howev
there are limitations to the OMA specification and comme
cial implementations of the OMA that may effect the scal
ability and robustness of OMA-based data repositories.

With respect to commercial implementations, vendors a
not required to implement any of the OMA services beyon
CORBA. The object request broker we used did not supp
the relationship service, and it supported a non-standard p

method
method

string Name
boolean Consistent

exodus
boolean Active
string Diagnostic

method

analysis

method

method

(FASTQ)

(GEN3D)

(JAS3D)

corba object

relationship
attribute
IDL subclass

Figure 5. Object Types and Relationships
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sistence service. These missing services resulted in a s
stantial increase in programming complexity and
decrease in application functionality and robustness. F
example, we implemented relationships as object-valu
attributes (object references); this required addition
encoding of dependency management logic withinexodus
methods, and introduced subtle interactions with the pers
tence mechanism, which itself was quite complex. Als
the bi-directionality, arity and object type constraint check
ing, and compound object operations that would have be
available with OMA relationship services were too expen
sive to implement.

Issues are also raised by the specification of the OM
services. For example, the underlying OMA assumptio
that object services can be separately specified and indiv
ually implemented is a cause for concern. There are,
example, specification and implementation dependenc
between persistence and transactions, naming and secu
and relationships and life cycle. While the OMA specifica
tion is sensitive to some of these dependencies, many m
dependencies exist than can be conveniently specified
even anticipated. The PCTE specification—a quasi-obje
based repository technology, is a broad indication of th
level of complexity involved [13]. Other specification
issues that will inhibit the development of robust OMA
based repositories include: the lack of various data ma
agement services (e.g., schema definition, administrati
object ownership and sharing), and optimistic desig
assumptions about object granularity and network/inte
process communication performance.

However, while the OMA does have limitations regard
ing data management services, component-based syst
might not, in general, require repositories that implemen
full range of database management functionality. For o
case study even simple OMA services—had they be
available—would have sufficed. Thus, we concluded tha

• Object services are both useful and essential f
component-based systems integration; and,

• the OMA provides (barely) sufficient data manageme
services, provided the designer is not over-exuberant

4.3 Object Layer as Structural Architecture

The repository style architecture addresses issues of d
and object management, but it does not address how
functionality of components (such as the SEACAS comp
nents) is mapped to persistent objects, nor how the
objects interact at run-time (the coordination model). The
are two overall approaches to addressing these issues
functional approach and astructural approach.

The functional approach is by far the predominan
approach to component-based systems. This appro
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defines component interfaces in terms of their specific fun
tionality. Functional architectures are good for describin
system functionality and for integrating specific functionalit
but are weak at addressing the run-time properties of a des
e.g., throughput, latency and reliability.

The structural approach has emerged as the study of s
ware architecture has intensified. Rather than defining co
ponent interfaces in terms of functionality, structural style
define interfaces in terms of the role a component plays in
coordination model—a model that describes how the compo
nents interact. A simple illustration of a structural style
UNIX pipes and filters; more sophisticated illustration
include structural models for flight simulators [14], and th
Simplex architecture for evolvable dependable real-time s
tems [15]. The structural approach has become more popu
recently because it yields architectures that, by definitio
support analysis of dynamic system properties.

CORBA IDL supports functional and structural style
equally well. However, we discovered that the structur
approach is particularly well-suited to component-based s
tems; further, it is also suggested by the OMA. This concl
sion can be demonstrated by a discussion of the simplifi
structural architecture depicted in Figure 6, which illustrat
the key coordination interfaces of one type of SEACA
object1. The focus of attention for this discussion is on th
structural model in Figure 6.

The essence of the SEACAS coordination model is th
objects are data managers that are either in a consistent o
inconsistent state. A consistent object is one whoseinput
attribute is consistent with the EXODUS data that has bee
derived from this attribute through the execution of
SEACAS component. The input attribute for the SEACA
object depicted in Figure 6 isanalysis, which is a string con-
taining simulation instructions for the finite element analyze
Clients of an object can test whether an object is consist
using theconsistent?probe, and can re-establish consistenc
by using theupdatemethod. Theupdatemethod is non-
blocking; clients can determine if an update is still in progre
by using thedone?probe. Clients can examine the results o
an update in two ways: through aview method on the
SEACAS object (not illustrated), or through an event queu
The view method can only be used on a consistent obje
while the event queue can be used while an update is
progress (an object is not consistent until the update has s
cessfully completed).

Our conclusion that structural styles are particularly we
suited for component-based systems and for the OMA
based on these two observations:

1. The interfaces of other SEACAS objects are nearly
identical.
-
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1. Explicitly representing the coordination model via
object interfaces addresses ambiguous and restrict
run-time semantics inherent in the OMA specification a
described below.

2. Coordination-focused object interfaces help identi
areas of architectural mismatch, and suggest re-usa
adaptation techniques for different kinds of mismatch

The first is discussed here, the second in Section 5.

The decision to makeupdatea non-blocking method
represents a departure from more straightforward use
CORBA features for client-side concurrency. Typically
pure2 clients will use CORBA’s dynamic invocation inter-
face (DII)3 if they do not wish to block on a remote method
alternatively, multi-threaded clients could create a separ
thread for each blocking method. Implementing a no
blocking update method appears to restrict the client’
options—so why do it? There are two reasons.

The first reason is that finite element analysis may co
sume anywhere from a few seconds to several days of w
clock time. Relying on a synchronous connection over
wide-area network for such durations will do violence t
our reliability requirements—a momentary network failur
would cause an update to fail. Making theupdatemethod a
onewaycall—another CORBA mechanism—is inadequa
because this mechanism does not permit clients to be n
fied of the many exceptional circumstances that might ind

2. Pure clients are applications using but not containing
any objects; object implementations can also be clients,
but are not “purely” clients.
3. The DII provides mechanisms for deferred synchro-
nous communication, aka asynchronous polling.

Figure 6. Structural Architecture (Overview)
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cate a problem with the update prior to the actual execution
SEACAS component services. Thus, had the update met
been implemented using default CORBA synchronous log
clients would have been forced to use the DII to achieve t
desired level of system reliability. This is an unfair burden
place on clients because of the additional overhead forced
the client to dynamically build all operation requests; als
the architecture should ensure the reliability regardless of
form of client interface used.

The second reason concerns the way the CORBA ba
object adaptor (BOA) addresses server-side concurrency,
how to achieve concurrent execution of the methods of one
more objects within a server process. Clearly, servers that
exploit thread libraries will have a ready-made mechanis
however, the Object Management Group is loath to bu
implementation dependencies such as this into their spec
cations. Thus, the BOA specifiesactivation policiesthat (in
increasing concurrency) associate a server process with:

• classes of objects (“shared” activation policy);

• individual objects (“un-shared” activation policy); or,

• individual methods (“per-method” activation policy).

By implementingupdateas non-blocking we subverted the
BOA activation policy, since non-blocking semantic
requiresde facto concurrency of object implementations.

However, the un-shared and per-method policies requ
interprocess communication (IPC) for objects to invoke ea
other’s methods. Certainly this kind of coupling is to b
expected where different object types are closely in a cla
hierarchy, as is the case with SEACAS objects (refer to Figu
5). While it is possible to specify multiple sets of interface
for objects—those for clients and “private” interfaces fo
friends, this can require substantial additional coding and
any event does not address the cost of the IPC or the crea
of separate processes, especially in the case of per-met
activation. Also, implementations of CORBA treat activatio
policy as a kind of configuration option for object implemen
tations: different installations of the services may choose d
ferent policies. Again, such important system properti
should be reflected in the architecture of the system, not
implicit coordination semantics and configuration options.

A final point on this topic is that these design and imple
mentation decisions could have been taken even in a fu
tional style, i.e., had the update method been a direct interf
to a specific SEACAS function. However, the structur
approach makes these coordination model decisions exp
in the object interface—there is no mistaking the assumptio
concerning concurrency in the objects described in Figure
Moreover, the structural approach addresses the coordina
model the same way for each SEACAS component, as is e
f
od
,
e
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,
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6.
on
i-

dent in their common interfaces; this would be far les
obvious in a functional style.

5. Component Adaptation Issues

As illustrated in Figure 6, there are several distinct rel
tionships between the SEACAS components and the str
tural architecture. Each of the connections betwe
component and structural model indicate an interacti
between the architecture and a component, and hence
area of potential mismatch.

For example, from Figure 6, theconsistent?probe
should return “true” if and only if the SEACAS componen
executed properly. A failure could result from either
semantic fault or a system fault. SEACAS assumes th
end-users will determine the success of an operation
reading diagnostic output; this does not match with th
structural model, which assumes a more automat
approach. System faults, such as a component crash,
also arise. SEACAS assumes such crashes will be evid
since the end-user will have directly invoked the comp
nent; this also does not match with the structural mod
which hides the component and its invocation.

Removal of these and other kinds of mismatche
requires some form of component adaptation. In the abo
example, the diagnostic output needed to be parsed
determine if, and what kind, of semantic fault arose (if an
since the same output stream was used to report succ
and failure); also, the component process needed to
monitored for exceptional conditions and exit codes. Ea
of the other component-to-architecture connectio
depicted in Figure 6 exhibited such mismatches that need
to be resolved by component adaptation code (the “wra
pers” in Figure 6)—there were other areas of mismatch th
were not depicted in the figure for reasons of clarity.

The term “wrapper” is very misleading—the term
implies that component adaptation is accomplishe
through action taken on the component itself, i.e., encap
lating the component behind a veneer that presents an al
native, translated interface. However, this is just on
approach to removing architectural mismatch. A better w
of thinking of component adaptation is to observe that th
mismatch occurs between two entities, in this case a co
ponent and an architecture, and that adaptation can occu
either or both ends of the relationship, or in the middle v
an intermediary agent.

We do not have a complete model of adaptation tec
niques. However, the structural model did suggest a cate
rization of types of architectural mismatch that could aris
and our implementation provided at least one technique
addressing these mismatches. This confirms our ear
assertion that structural styles help focus attention on k
areas of architectural mismatch. Also, since the structu
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model is quite general—there is little about Figure 6 th
implies dependencies on the manufacturing domain—ther
reason to hope for the development of architecture-spec
adaptation techniques.

Unfortunately, while well motivated, this last hope may b
thwarted by the complexity of the adaptation, especia
where the adaptation involves the architecture-side. We d
covered that architecture-side adaptation is characterized
a thorny tangle of interactions between the coordinati
model, OMA semantics, vendor-specific features of th
object request broker (ORB), operating system primitive
and characteristics of the components themselves. Whil
complete exposition of these issues would require ‘a co
walk-through, a high-level overview of one example ma
reveal the nature of this complexity. We take the accumu
tion of incremental output on an event queue, as illustrated
Figure 6, as our example.

Recall that the decision to make the update method no
blocking in effect mandated that the object server supp
concurrent execution of object services, and that we could
use the BOA per-object or per-method activation policy fo
reasons discussed earlier. To this we add that the ORB imp
mentation we used for the case study did not support mu
threaded servers. As a consequence, we were forced to im
ment our own “homegrown” concurrency service. Thos
familiar with UNIX systems programming will not be sur-
prised by our approach to this problem, and Figure 7 depi
the key elements of our solution.

The core of the solution makes use of UNIX asynchrono
I/O and sockets. The idea is to have the main event loop in
object server “listen” (via theselect()system call) for activity
on any number of socket connections, and when activity
detected on a socket invoke a callback procedure that
appropriate to the kind of activity detected (e.g., data ava

①
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Figure 7. Component Adaptation (Detail)
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able). With this background in mind, the solution works a
enumerated in the figure:

1. A client inititiates connections to objects via socket
These sockets are installed as they are created into
asynchronous event handler so that client requests
object services can be detected and dispatched. T
installation depends upon ORB-vendor connectio
management services that allow the detection of ne
client connections, and the use of sockets.

2. A client request for anupdateis detected as activity on
the client socket. The callback routine registered
handle this activity calls the ORB-vendor’s
implementation of the standard BOA object even
handling method; this is portable across ORBs, provid
the ORB allows server developers to access the
routines (which is not true of one ORB we have used

3. In response to theupdate request the SEACAS
component is launched (viafork() andexec()). Different
kinds of components may require different approach
to this step, for example the component could be a serv
that must be connected-to rather than launched. T
process identifier of the launched tool is installed in th
process harvester, and signal handlers are establishe
monitor the state changes of the process.

4. The component will begin writing its incremental outpu
to a data file; component-side adaptation ensured t
the file name was unique to each invocation. A monito
process is launched to detect state changes to the ou
file and report them to a socket established in step 3
this purpose; this requires delicate timing logic becau
the data file will appear an indeterminate time after th
SEACAS component is launched.

5. Incremental output is detected on the data harves
socket. A callback procedure is invoked by the eve
manager to parse the data, since only portions of the d
file that are being generated by the SEACAS compone
are of interest for the purposes of observing the progre
of the finite element analysis. The parsed data
enqueued on an event channel.

6. The process harvester detects the termination of
SEACAS component, and determines whether th
termination was normal or exceptional (needed
determine if the object is in a consistent state). Upo
termination of the SEACAS component, the dat
monitoring process is terminated, sockets are close
and I/O callbacks removed from the event handler.

This illustration, while gory in detail, serves to highligh
a number of important points. First, adapting architectur
mismatch may require low-level, intricate code. Tech
niques for making this process rational and repeatable w



s
i-
o
o
v
x
n
r
e
a
c

h
s

a
l
t

o
-
o
o

n
—
e
e

u
a
o
ifi
it

n
o
n
e

ri
t
o
e
e

h
e

n
e

er,
-
ard
s-

ro-
m

0
t
,

,

f
e

,

d

n
,

:

l

.
g

r
f

or

l
g

e
.,
,
n

contribute greatly both to programmer productivity and sy
tem reliability: most of the problems our prototype exper
enced involved low-level adaptation code. Second, vend
specific ORB features have an overwhelming influence
adaptation techniques. Another commercial ORB we ha
used requires completely different, but not less comple
adaptation approaches. Last, the possibility of developi
architecture-specific adaptation techniques may be hampe
by intricate ORB, tool, and operating system dependenci
However, this is only an issue if portable object implement
tions is desired—and the OMA does not support obje
implementation portability in any event.

6. Conclusions about the OMA

In Section 2.2 we posed a specific range of questions t
the OMA evaluation would answer. First, the OMA doe
indeed suggest a particular architectural style, which w
referred to as a repository style in this paper. However, we
skeptical that the key OMA services (e.g., persistence, re
tionship, transactions and relocation services, to name jus
few) will be sufficiently well-integrated and functional to
implement robust distributed database management functi
ality. Despite this skepticism, we found the OMA to be suffi
ciently flexible and expressive to describe a wide range
other styles, including hybrid styles that make selective use
OMA distributed object management services.

Second, we found that the OMA does introduce its ow
forms of architectural mismatch. This is to be expected
most legacy components will not have been designed to op
ate within the context of a distributed object model. On th
other hand, we were surprised at how sensitive our comp
nent adaptation tactics were to specific ORB features. In o
prototype, vendor-specific features played a key role, in p
because the vendor did not provide standard implementati
of needed OMA services (e.g., persistence). Vendor-spec
features also played a role in low-level code that dealt w
mapping between the operating system process model and
OMA object model.

Last, although we were not able to identify compone
characteristics that are useful for OMA-based integrati
beyond the usual characteristics of integrable compone
(open interfaces, etc.), we can state categorically that dev
opers should be prepared to write low-level, and often int
cate code to enable the ORB to launch and manage
execution of legacy components. Not only must the comp
nent’s implicit coordination model be reconciled with th
OMA object model and the application architecture, but th
mapping of the operating system process model (and ot
platform-specific resource models) to the OMA object mod
must also be addressed.

Despite the somewhat negative tone of these conclusio
we are overall quite impressed with the applicability of th
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OMA to distributed component-based systems. Howev
while the OMA does make the building of distributed com
ponent-based systems easier, it does not make the h
design and implementation decisions involved in such sy
tems disappear. Nevertheless, we believe the OMA p
vides sufficient mechanisms and latitude for syste
designers to address many of these difficult challenges.
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