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Abstract “value-added” features of a technology, i.e., fsature

e L delta), and then places the feature delta into specific usage
It has been difficult to objectively assess the real value or 3 P P g

maturity of the Object Management Group's Obiject contexts. The technology is thus situated in b_oth the t_echnol-
. ; : ogy marketplace and in the problem domain in which the
Management Architecture (OMA). While experience reportst hnol is 1o b luated
have appeared in the literature, these have focused more ofychinology 1s to be evaluated.
the functionality of the end-system than on systematically There are many ways of evaluating feature deltas. In some
exploring the strengths and weaknesses of the OMA, angases it is possible to isolate and benchmark elements of the
providing practical guidelines on the effective use of thefeature delta, as illustrated by the comparative benchmark-
OMA for specific software-engineering problems. In thising of CORBA and RPC [3]. However, the lack of a specific
paper we describe a case study in the use of the OMA tgroplem context within which to evaluate the benchmarks
integrate legacy software components into a diStribUteOEan limit the effectiveness of this form of evaluation. To
object system. We assess the OMA in this problem contexyercome this limitation, experimentally-focused case stud-
and indicate strengths and weaknesses of the specificatiQ@g ~an be undertaken that apply the feature delta to repre-
and current implementations. We extrapolate ourexperienc%enmtive problems of an application domain. Such case

to a broader class of component-based software SyStemgtudies can be particularly fruitful as in addition to providing

and recommend an architectural strategy for the ef“fectivea roblem context for evaluating a technoloay. then can also
use of the OMA to this class of systems. P 9 9

provide a wealth of practical experience in how to best apply
Category. experience, software engineering practice.  a feature delta to these problems.

1. Introduction In this paper we describe one experimentally-motivated

The Object Management Architecture (OMA) [1] contin- case study in the use of the OMA to an increasingly-impor-

ues to attract attention, with numerous implementations ofant problem domain: th‘? integration of component-based
the OMA common object request broker architecturesyStemS (systems comprised of stand-alone, independently-

(CORBA)l emerging in the commercial marketplace. HOWexecuting software packages). Section 2 provides back-

does an organization decide whether to embrace this tecﬁ;_round information on the engineering problems inherent to

nology? The stakes are high since the OMA can have a proc_omponent—based systems. Section 3 provides further back-

found influence on the design and implementation Ofgrognd onthe manufacfcuring do"_"'ai”’ anq onthe legacy col-
application software. A technology assessmentstrategyth};f'f'Ctlon of computer-aided design engineering (CADE)

can identify the value-added of a new technology, and simuIComPonents that we modernized into a distributed, object-
taneously reveal how best to exploit this value added, igased system. Section 4 describes the impact of the OMA on

therefore of great potential value. the grchnecture_ of thg modermz_ed system, and Section 5

continues the discussion of the impact of OMA at a more

We have applied one such evaluation technique to theletailed implementation level. Finally, Section 6 states our
OMA [2]. We describe the evaluation technique as "situ-conclusions about the OMA based on this experiment.

ated” because it describes the technology being evaluated'ﬁl Background: Component-Based Systems

terms of peer technologies (in order to identify the new

While all (real) systems are composed of components, in
our usageomponent-baseslystems are comprised of mul-
tiple software components that:

1. We use CORBA to refer to only the message broker
component of the OMA; we use OMA to refer to
CORBA plus additional OMA services.



» are ready “off-the-shelf,” whether from a commercial tural mismatches can arise that inhibit component integra-

source (COTS) or re-used from another system;
« are self-contained and possibly execute independently;
» will be used “as is” rather than modified;

tion and coordination.

Not all architectural styles are equally-well suited to a

specific design problem. Many factors can influence the

_ _ ~ selection of a style—functional requirements, quality
« must be integrated with other components to achieve attributes (e.g., modifiability) anal priori design commit-

required system functionality; and,

» have significant aggregate functionality and complexity.

ments (e.g., distributed system). Thus, a given set of soft-
ware components may be assembled into a number of

architectural styles, and may exhibit different kinds of

Examples of component-based systems can be drawn fron

many domains, including: computer-aided software engi-
neering (CASE), design engineering (CADE) and manufac-

architectural mismatches in each architectural setting. This
suggests a reference model for describing the engineering
practices involved in assembling component-based sys-

turing engineering (CAME); office automation; workflow oms as depicted in Figure 1.

management; command and control, and many others.

2.1 Architectural Mismatch: The Core Issue

adaptation to
qualification to  remove
discover architectural

composition into
a selected
architectural

In contrast to the development of other kinds of systems
where system integration is often the tail-end of an imple-
mentation effort, in component-based systems determining
how to integrate components is often the only latitude design-
ers have. In our evaluation we were interested in whether the
OMA suggested solutions to the core engineering problems

in the integration of component-based systeanshitectural

mismatch4].

The term “architectural mismatch” refers to the problem
that components always embed assumptions about thei
intended operational context, and these assumptions oftel

interface mismatch style (Y
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off-the-shelf qualified adapted assembled

components components

Figure 1. Architectural Assembly of Components

components components

conflict with assumptions made by other components. For
example, a component that uses a graphical human interfaci

The vertical partitions depicted in Figure 1 describe the

as the sole means of executing component functions ha<entral artifact of component-based systems—the compo-
embedded an assumption that will render it unusable in a sysNeNts—in various states:

tem that must run in batch mode—unless this mismatch can.
be removed by some form of component adaptation. Scores
of other kinds of mismatches are commonplace involving,

e.g., multi-users support, resource management, and security

The term “architectural mismatch” implies more than just «
mismatched component assumptions: it also implies that mis-
matches can arise between components asuftavare archi-
tecture [5]. The general consensus is that software
architecture deals with high-level design pattérus struc-
turing and expressing system designs. A sense of what i<
meant by “high level’ is that these patterns are often °
expressed in terms of components, connectors and coordina
tion. Componentsefer to units of functionality, connectors
refer to the integration of components, aiwbrdinationis the
manner in which components interact at run-time. Architec- «

1. The terms “styles” and “idioms” are synonymous with
patterns.

2. The component-based definition of this term, which is
the one used here, is more a restrictive form than that used
in software architecture literature.

Off-the-shelf components have hidden interfaces (using
a definition of interface that encompasses all potential
interactions among components, not just an application
programming interface[6]).

Qualified components have discovered interfaces so that
possible sources of architecture mismatch have been
identified. This is (by the definition of interface) a partial
discovery: only those interfaces that mismatch an
architectural style or other components are identified.

Adapted components have had their architectural
mismatches ameliorated. The figure implies a kind of
component “wrapping,” but other approaches are
possible (e.g., the use of mediator agents).

Assembled components have been integrated into an
architectural infrastructure. This infrastructure will
support component assembly and coordination, and
differentiates architectural assembly from ad hoc “glue.”



2.2 A Component-Based System Evaluation Context  regulatory and business-model challenges of virtual enter-
for the OMA prises, additional technology infrastructure is needed that

. I .. will support:
Although the reference model depicted in Figure 1 is sim- PP

plistic, it is nonetheless sufficient to suggest the following * the integration of separately-developed, specialized,
questions for an evaluation of the OMA: computer-aided manufacturing technologies;

- Avre certain architectural styles suggested by the OMA? If * geographical distribution of computing resources, and
yes, does the OMA provide an adequate mechanism for support for heterogeneous computing environments;

implementing these styles? Are other mechanisms in. fee-for-service brokering of computer-based services to
addition to the OMA (as currently specified) required? enable competition for specialized tools and skills.

* Does the OMA introduce potential sources of architectural |5 ghort, virtual enterprises in an increasingly special-
mismatch beyond those implied by architectural style? If jzeq manufacturing world will rely more and more upon

yes, do these result from the OMA specification, or jnformation technology such as supported by distributed

« Are some kinds of components more readily adaptable tocomputer-aided technology will need to be preserved, and
the OMA than others? If yes, what are the characteristicsadapted, to exploit distributed object technology.
of components that make them more adaptable? Whaig 5 o Legacy Manufacturing System

adaptation mechanisms work best with the OMA? _
We needed a legacy manufacturing system for modern-

ization to distributed object technology that would be sim-
ple enough to quickly prototype, yet sophisticated enough
3. Background on CADE to constitute a reasonable test of the OMA. As a domain

) _ _model of manufacturing activities suggests [7], there are
While the nature of component-based systems provides &y,n subdomains that might provide for fertile hunting.

needed backdrop for focusing the OMA technology evalua- grom this model we determined that ithesign engineering
tion, the probl_em setting must t_)e qompleted_wnh require- 4ctivity was suitably focused and automated.

ments stemming from an application domain, and those ] ) o . ) )
stemming from the particular problem being addressed. We Design engineering involves modeling and simulating
selected the manufacturing domain as a basis for this casiart designs to test the performance of parts under certain

The case study described in detail, below, provided signif-
icant insight in answering these questions.

study. expected real-world use conditions. This analysis can be
) . used to determine the adequacy of a part design for per-
3.1 A Manufacturing Domain of the Future forming a function, to optimize a part design, and to lower

The manufacturing processes required to move a producithe cost and/or weight of a part while preserving confi-
from concept to realization are many and varied, and oftendence in its performance. A diverse range of software com-
require the application of highly-specialized skills and com- ponents have been developed that support design
puting resources. Job scheduling, shop layout, and manufacengineering, providing the basis for a OMA case study.

turability analysis are examples of such skills that are  The Sandia National Laboratory Engineering Analysis
supported by software technology. In many cases these specode Access System (SEACAS) provided us with a repre-
cialized skills are relatively independent of the underlying gentative set of design engineering components. SEACAS
application domain—manufacturability analysis techniques sypports functions such as problem definition, simulation,
for automotive parts and washing machine parts are quiteanalysis, and visualization (see Figure 2). Sandia has devel-
similar. Some believe that a breakthrough in manufacturing oped many components in each functional category,
efficiency can be achieved if these “horizontal” skills can be reflecting both the diversity of analysis problems being
freed from their existing “vertical” market confinements, and gdqdressed and the evolving sophistication of design engi-
allowed to develop in the free-market. neering methods. For our case study, we selected a core set

The challenge is how to re-assemble these horizontal spe0f SEACAS components that could represent a single
cialties intovirtual enterprisesi.e., otherwise independent thread through a design engineering scenario.

manufacturing companies collaborating in vertical manufac-  The general usage scenario for these tools is as shown in
turing enterprises. Virtual enterprises are a means of supportrigyre 3, which uses a process description formalism sim-
ing the flexible combination of the skills and tools from many 5y to IDEF-0: the bubbles represent activities; data input
highly-specialized companies; from this, faster market appears on the left of activities, and data output appears on

response time, reduced time-to-market, and increased mantine right; mechanisms appear on the bottom of activities;
facturing quality can be achieved. However, in addition to
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dependencies exhibited by the SEACAS components, and
Figure 2. SEACAS Tool and Data Relationships the environments in which they operate.

and, control flow appears on the fop of activifies. The control 3.3 Objectives for OMA-Based Modernization
flow “end-user” which would appear on each activity is omit-
ted from Figure 3 for simplicity.

From the particular requirements of SEACAS, we deter-
mined that the case study should evaluate the use of the
Following Figure 3, an analyst uses FASTQ to produce a OMA to integrate a legacy collection of design engineering

discretized model of the part to be analyzed. The visualizing tools in order to:

tool BLOT then can be used to produce a graphical represen,
tation of the model for inspection by the analyst. Based on
that inspection the analyst either re-runs FASTQ to correct
the model or feeds the model to GEN3D to extrude the two-
dimensional model into the third dimension. Another inspec- * support wide-area distribution of SEACAS services
tion/correction iteration may occur for the resulting three- ~ while maintaining control over the software that
dimensional model before the model is fed to the analysis provides these services (some of which contain
tool. One or more analyses may be conducted, with results classified algorithms);

evaluated via the visualization tool or through inspection of
other JAS3D output (not illustrated). As suggested by Figure
3, the process can be highly iterative, reflecting a process ol
convergence on a suitable design.

present a uniform virtual environment for end-users that
would reflect the nature of the analysis activity and not
the idiosyncrasies of specific SEACAS components;

deliver reasonable, usable and predictable performance
to end-users who are otherwise accustomed to using
computer services in local area network settings.

These requirements extend and refine those of the under-

As Figure 2 points out, many of these tools make use of a}ying manufacturing application domain (Section 3.1).

common data format (Exodus-Il). This is an important prop- o ) )
erty that greatly simplified the prototyping effort. However, 4. A Distributed Object Architecture for the
there is more to component integration than data interchangeSEACAS Components

For example, in the scenario described above end-users ar
responsible for launching tools (often with personalized

scripts), managing tool output (in private directories), and

preparing the output of one tool for use as input to another
(sometimes with manual application of filters since not all

SEACAS tools use the same version of the Exodus data for-
mat). In effect, the end-user is the system integrator, continu-
ally exposed to all of the low-level details and technology

The modernization objectives (cited above) can be
thought of agyuality attributes—externally-visible system
properties that deal with issues other than functionality.
The significance of quality attributes is that it has been
demonstrated that the top-level design, or architecture, of a
system is the key factor leading to the satisfaction (or lack)
of these non-functional requirements [8]. Thus, for our
evaluation of OMA we needed to determine how well it
addressed architecture-level issues inherent to component-

1. A two- or three-dimensional mesh that models the con- based systems (Section 2.2) as well as how it addresses
tours of a solid.




component-based systems that exhibit these qualitye

attributes.

In the following discussion it is useful to bear in mind that
the purpose of the case study was an evaluation of the OMA
feature delta. If the design problem is viewed strictly in terms
of the four components integrated, then there were undoubt-
edly simpler design solutions to achieving the limited objec-
tives outlined in Section 3.3. However, viewing the design *
problem as a representative one in a broader class of problem
led us to design solutions that required a more elaborate ust

Control integration describes how components make
requests of (or invoke) each other’s services.

Data integration describes how components make data
available to each other.

Process integration describes what end-user process is
supported by, or activates, the integration relationship.

Presentation integration describes how end-users
interact with the endpoints of an integration relationship.

The end-user layer addresses presentation and process

of the OMA, i.e., use of the OMA feature delta.
4.1 Architectural Overview

integration through interactive, graphical client interface,
and scripting logic that sequences and controls the execu-

) . . tion of remote services. This layer will not be described in
We quickly discovered that the OMA suggested an archi- g5l we view it as an application layer supported by the
tectural approach that makes extensive use of the OMA objeci, . -hitecture. However. we note that abstraction mis-

model and the CORBA interface definition features; we were atches between the scripting language and the object
pleased to discover that this feature delta beyond the more, el were introduced by our use of TCL/Tk; a mecha-

primitive form of an RPC interface definition had such signif- i< such as Java. which is object oriented, would address
icance. This central role for an object model in a component- g problem. ’ '

based architecture is illustrated in Figure 4, which depicts a
top-level view of the prototype architecture.

@ remote users

The physical component layer addresses the run-time
aspects of the SEACAS components, and various platform
dependencies. At this level a number of sometimes subtle
interactions between components, operating system and

- - - CORBA implementation arose. These detailed implemen-
lightweight graphical end-user tation issues are discussed in Section 5.
interface & scripting layer
R The logical object layer addresses data and control inte-
Y . . gration. Interestingly, we discovered that the OMA sug-
: l : logical gested an architectural style to address these aspects that in
: : object effect blends two different stylesrapositorystyle for data
: -~ layer integration and astructural style for control integration.
: ) : The remainder of this section will describe these styles and
L é physical how they were realized with the OMA.
fggfonem 4.2 Object Layer as Data Repository
: : The repository-style architecture is characterized by a

central data repository that is used as a principle means for
components to coordinate their execution and share results.
Numerous examples of repository-style architectures have
been seen in the computer-aided software engineering
(CASE) domain [11]; examples in the manufacturing
domain are also emerging [12].

Host 1 Host2... Host N

—» relationship

/\« invocation

Figure 4. Architectural Overview

The repository-style architecture is motivated by two
factors, both of which are relevant to SEACAS:

This architecture can be described in terms of how it sup-
ports integration—the core design activity in component-
based systems (architectural mismatch is the inhibitor of inte-
gration). One useful way to think of integration is aseta-
tionship between two integrated entities, where the
relationship has fouaspectscontrol, data, process and pre-
sentation [9][10]: 2.

1. The data artifacts that are manipulated by software
components are key assets that must be managed.
Mechanisms for access control, versioning, backup and
recovery, transactions, etc., are all important for the
effective management of data assets.

The structure of data can be quite complex, with
different kinds of data related in a complex network of
aggregation and dependency relationships. Mechanisms



for schema definition and evolution, query, and navigation sistence service. These missing services resulted in a sub-
are all needed to manage this complexity. stantial increase in programming complexity and a
decrease in application functionality and robustness. For
example, we implemented relationships as object-valued
attributes (object references); this required additional
encoding of dependency management logic withindus
methods, and introduced subtle interactions with the persis-
tence mechanism, which itself was quite complex. Also,
We used the object-oriented features of the CORBA inter- the bi-directionality, arity and object type constraint check-

face definition language (IDL) to model SEACAS artifacts in jng, and compound object operations that would have been

a class hierarchy, and used relationships to express the derayailable with OMA relationship services were too expen-
vation history from one class of artifact to another. A simpli- sjve to implement.

fied object model is depicted in Figure 5, which shows the

The two OMA services that we found to be most important
for the SEACAS repository wereelationshipsand persis-
tence Relationships were used to define links between vari-
ous kinds of SEACAS artifacts while persistence allowed
networks of object instances to persist beyond user session:

Issues are also raised by the specification of the OMA
string Name services. For example, the underlying OMA assumption
boolean Consistent that object services can be separately specified and individ-

boolean Active ually implemented is a cause for concern. There are, for
string Diagnostic example, specification and implementation dependencies
between persistence and transactions, naming and security,
_ and relationships and life cycle. While the OMA specifica-
analsis tion is sensitive to some of these dependencies, many more
depende.nc.:ies exist than can be c;qnvgniently spegifieq or
(FASTQ)(exodus2d (JAS3D) exoiiu$3d even anticipated. The PCTE specification—a quasi-object
source Quabsts based repository technology, is a broad indication of the
_ ource level of complexity involved [13]. Other specification
Sredfication (G Texodus3a issues that will inhibit the development of robust OMA-
.@ corba object based repositories include: the lack of various data man-
<> relationship agement services (e.g., schema definition, administration,
string —  attribute object ownership and sharing), and optimistic design
Extrusion mel)p DL subclass assumptions about object granularity and network/inter-
Figure 5. Object Types and Relationships process communication performance.

However, while the OMA does have limitations regard-
major object types and their relationships to each other and tcing data management services, component-based systems
the SEACAS components. For exampéxodus2da two- might not, in general, require repositories that implement a
dimensional mesh) inherits (and defines its own) operationsfull range of database management functionality. For our
and attributes from thexodusabstract superclassxodus2d  case study even simple OMA services—had they been
functionality is implemented b¥ASTQ and, it participates  available—would have sufficed. Thus, we concluded that

in a 1:many relationship witlexodus3dobjects to indicate
that a single two-dimensional mesh can be extruded into sev-
eral three-dimensional meshes.

* Object services are both useful and essential for
component-based systems integration; and,

» the OMA provides (barely) sufficient data management

The net effect of populating the logical object model layer g\ icas rovided the designer is not over-exuberant.

with instances of these object types and relationships is to _ _
create a distributed object repository of SEACAS objects. On4.3 Object Layer as Structural Architecture

the surface, this would seem to indicate that the OMA pro-  pg repository style architecture addresses issues of data
vides a good foundation for repository-style architectures, 54 object management, but it does not address how the

and in the large this is true. Upon looking deeper, however, functionality of components (such as the SEACAS compo-
there are limitations to the OMA specification and commer- nents) is mapped to persistent objects, nor how these

cial implementations of the OMA that may effect the scale- ypiacts interact at run-time (the coordination model). There

ability and robustness of OMA-based data repositories. are two overall approaches to addressing these issues—a
With respect to commercial implementations, vendors are functionalapproach and structuralapproach.

not required to implement any of the OMA services beyond

CORBA. The object request broker we used did not support

the relationship service, and it supported a non-standard per

The functional approach is by far the predominant
approach to component-based systems. This approach



defines component interfaces in terms of their specific func-
end-user launches

tionality. Functional architectures are good for describing and monitors operations
system functionality and for integrating specific functionality

but are weak at addressing the run-time properties of a design

e.g., throughput, latency and reliability.

The structural approach has emerged as the study of soft 3 2~ exodus3d_analysis
ware architecture has intensified. Rather than defining com-| 2 object
ponent interfaces in terms of functionality, structural styles | 5 —
define interfaces in terms of the role a component plays ina| = 116000 -
coordination modet-a model that describes how the compo- | 3
nents interact. A simple illustration of a structural style is | ®
UNIX pipes and filters; more sophisticated illustrations
include structural models for flight simulators [14], and the o — mental
Simplex architecture for evolvable dependable real-time sys-| & ﬂD results
tems [15]. The structural approach has become more popula g
recently because it yields architectures that, by definition, | = ggg&g';%fde
support analysis of dynamic system properties.

CORBA IDL supports functional and structural styles Figure 6. Structural Architecture (Overview)
equally well. However, we discovered that the structural
approach is particularly well-suited to component-based sys-1. Explicitly representing the coordination model via
tems; further, it is also suggested by the OMA. This conclu-  object interfaces addresses ambiguous and restrictive
sion can be demonstrated by a discussion of the simplified run-time semantics inherent in the OMA specification as
structural architecture depicted in Figure 6, which illustrates  described below.

thbe. kgchr:]oo][dlnatlo? [[Ttertfacefs otfh.onoelz' type .Of 'SEACQS 2. Coordination-focused object interfaces help identify
object. 1he focus of attention Tor this discussion IS on e 5635 of architectural mismatch, and suggest re-usable

structural model in Figure 6. adaptation techniques for different kinds of mismatch.

The essence of the SEACAS coordination model is that
objects are data managers that are either in a consistent or a
inconsistent state. A consistent object is one whinpert The decision to makeipdatea non-blocking method
attribute is consistent with the EXODUS data that has been represents a departure from more straightforward use of
derived from this attribute through the execution of a CORBA features for client-side concurrency. Typically,
SEACAS component. The input attribute for the SEACAS puré? clients will use CORBAs dynamic invocation inter-
object depicted in Figure 6 &nalysis which is a string con-  face (DII)? if they do not wish to block on a remote method;
taining simulation instructions for the finite element analyzer. alternatively, multi-threaded clients could create a separate
Clients of an object can test whether an object is consistenithread for each blocking method. Implementing a non-
using theconsistentprobe, and can re-establish consistency blocking update method appears to restrict the client’s
by using theupdate method. Theupdate method is non-  options—so why do it? There are two reasons.

blocking; clients can determine if an update is still in progress  Tne first reason is that finite element analysis may con-
by using thedone?probe. Clients can examine the results of sme anywhere from a few seconds to several days of wall
an update in two ways: through @ew method on the  ¢jock time. Relying on a synchronous connection over a
SEACAS object (not illustrated), or through an event queue. yjige-area network for such durations will do violence to
The view method can only be used on a consistent object, gy reliability requirements—a momentary network failure
while the event queue can be used while an update is inyoyld cause an update to fail. Making thedatemethod a
progress (an object is not consistent until the update has sucyopewaycall—another CORBA mechanism—is inadequate
cessfully completed). because this mechanism does not permit clients to be noti-

Our conclusion that structural styles are particularly well- fied of the many exceptional circumstances that might indi-
suited for component-based systems and for the OMA is
based on these two observations:

The first is discussed here, the second in Section 5.

2. Pure clients are applications using but not containing
any objects; object implementations can also be clients,
but are not “purely” clients.

1. The interfaces of other SEACAS objects are nearly 3. The DIl provides mechanisms for deferred synchro-
identical. nous communication, aka asynchronous polling.




cate a problem with the update prior to the actual execution ofdent in their common interfaces; this would be far less
SEACAS component services. Thus, had the update methocobvious in a functional style.

been implemented using default CORBA synchronous logic, .

clients would have been forced to use the DIl to achieve the5' Component Adaptation Issues

desired level of system reliability. This is an unfair burdento  As illustrated in Figure 6, there are several distinct rela-
place on clients because of the additional overhead forced ortionships between the SEACAS components and the struc-
the client to dynamically build all operation requests; also, tural architecture. Each of the connections between
the architecture should ensure the reliability regardless of thecomponent and structural model indicate an interaction
form of client interface used. between the architecture and a component, and hence an

The second reason concerns the way the CORBA basic3r¢a of potential mismatch.

object adaptor (BOA) addresses server-side concurrency, i.e. For example, from Figure 6, theonsistent?probe
how to achieve concurrent execution of the methods of one orshould return “true” if and only if the SEACAS component
more objects within a server process. Clearly, servers that carexecuted properly. A failure could result from either a
exploit thread libraries will have a ready-made mechanism; semantic fault or a system fault. SEACAS assumes that
however, the Object Management Group is loath to build end-users will determine the success of an operation by
implementation dependencies such as this into their specifi-reading diagnostic output; this does not match with the
cations. Thus, the BOA specifiestivation policiesthat (in structural model, which assumes a more automated
increasing concurrency) associate a server process with:  approach. System faults, such as a component crash, can
also arise. SEACAS assumes such crashes will be evident
since the end-user will have directly invoked the compo-

+ individual objects (“un-shared” activation policy); or, nent; this also does not match with the structural model,

« individual methods (“per-method” activation policy). which hides the component and its invocation.

By implementingupdateas non-blocking we subvertedthe =~ Removal of these and other kinds of mismatches
BOA activation policy, since non-blocking semantics requires some form of component adaptation. In the above

requiresde factoconcurrency of object implementations. ~ €xample, the diagnostic output needed to be parsed to
determine if, and what kind, of semantic fault arose (if any,

since the same output stream was used to report success
and failure); also, the component process needed to be

 classes of objects (“shared” activation policy);

However, the un-shared and per-method policies require
interprocess communication (IPC) for objects to invoke each

other's methods. Certainly this kind of coupling is to be 5hitored for exceptional conditions and exit codes. Each
expected where different object types are closely in a classgt  the  other component-to-architecture  connections

hierarchy, asis the case with SEACAS objects (refer to Figure g sicted in Figure 6 exhibited such mismatches that needed
5). While it is possible to specify multiple sets of interfaces , e resolved by component adaptation code (the “wrap-

for objects—those for clients and “private” interfaces for nars»in Figure 6)—there were other areas of mismatch that
friends, this can require substantial additional coding and in\are not depicted in the figure for reasons of clarity.

any event does not address the cost of the IPC or the creatiol _ _ ]

of separate processes, especially in the case of per-metho The term “wrapper” is very misleading—the term
activation. Also, implementations of CORBA treat activation ImMPplies that component adaptation is accomplished
policy as a kind of configuration option for object implemen- thr_ough action taken on the component itself, i.e., encapsu-
tations: different installations of the services may choose dif- 1ating the component behind a veneer that presents an alter-
ferent policies. Again, such important system properties Native, translated _mterfac_e. Howev_er, this is just one
should be reflected in the architecture of the system, not in@PProach toremoving architectural mismatch. A better way

implicit coordination semantics and configuration options. ~ Of thinking of component adaptation is to observe that the
mismatch occurs between two entities, in this case a com-

ponent and an architecture, and that adaptation can occur at
either or both ends of the relationship, or in the middle via
an intermediary agent.

A final point on this topic is that these design and imple-
mentation decisions could have been taken even in a func-
tional style, i.e., had the update method been a direct interface
to a specific SEACAS function. However, the structural
approach makes these coordination model decisions explici We do not have a complete model of adaptation tech-
in the object interface—there is no mistaking the assumptionsniques. However, the structural model did suggest a catego-
concerning concurrency in the objects described in Figure g.rization of types of architectural mismatch that could arise,
Moreover, the structural approach addresses the coordinatio@nd our implementation provided at least one technique for

model the same way for each SEACAS component, as is evi-addressing these mismatches. This confirms our earlier
assertion that structural styles help focus attention on key

areas of architectural mismatch. Also, since the structural



model is quite general—there is little about Figure 6 that able). With this background in mind, the solution works as
implies dependencies on the manufacturing domain—there isenumerated in the figure:

reason to hope for the development of architecture-specific
adaptation techniques.

Unfortunately, while well motivated, this last hope may be
thwarted by the complexity of the adaptation, especially
where the adaptation involves the architecture-side. We dis-
covered that architecture-side adaptation is characterized b
a thorny tangle of interactions between the coordination
model, OMA semantics, vendor-specific features of the
object request broker (ORB), operating system primitives,
and characteristics of the components themselves. While ¢
complete exposition of these issues would require ‘a code
walk-through, a high-level overview of one example may
reveal the nature of this complexity. We take the accumula-
tion of incremental output on an event queue, as illustrated in
Figure 6, as our example.

Recall that the decision to make the update method non-
blocking in effect mandated that the object server support
concurrent execution of object services, and that we could not
use the BOA per-object or per-method activation policy for
reasons discussed earlier. To this we add that the ORB imple:
mentation we used for the case study did not support multi-
threaded servers. As a consequence, we were forced to imple
ment our own “homegrown” concurrency service. Those
familiar with UNIX systems programming will not be sur-
prised by our approach to this problem, and Figure 7 depicts
the key elements of our solution.
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Figure 7. Component Adaptation (Detail)

~ ' UNIX process

The core of the solution makes use of UNIX asynchronous
I/0 and sockets. The idea is to have the main event loop in the
object server “listen” (via theelect()system call) for activity
on any number of socket connections, and when activity is
detected on a socket invoke a callback procedure that is
appropriate to the kind of activity detected (e.g., data avail-

4,

1. A client inititiates connections to objects via sockets.

These sockets are installed as they are created into the
asynchronous event handler so that client requests for
object services can be detected and dispatched. This
installation depends upon ORB-vendor connection
management services that allow the detection of new
client connections, and the use of sockets.

2. A client request for anpdateis detected as activity on

the client socket. The callback routine registered to
handle this activity calls the ORB-vendor’'s
implementation of the standard BOA object event
handling method; this is portable across ORBs, provided
the ORB allows server developers to access these
routines (which is not true of one ORB we have used).

3.In response to theupdate request the SEACAS

component is launched (vfark() andexec(). Different

kinds of components may require different approaches
to this step, for example the component could be a server
that must be connected-to rather than launched. The
process identifier of the launched tool is installed in the
process harvester, and signal handlers are established to
monitor the state changes of the process.

The component will begin writing its incremental output

to a data file; component-side adaptation ensured that
the file name was unigue to each invocation. A monitor
process is launched to detect state changes to the output
file and report them to a socket established in step 3 for
this purpose; this requires delicate timing logic because
the data file will appear an indeterminate time after the
SEACAS component is launched.

. Incremental output is detected on the data harvester
socket. A callback procedure is invoked by the event
manager to parse the data, since only portions of the data
file that are being generated by the SEACAS component
are of interest for the purposes of observing the progress
of the finite element analysis. The parsed data is
enqueued on an event channel.

. The process harvester detects the termination of the
SEACAS component, and determines whether the
termination was normal or exceptional (needed to

determine if the object is in a consistent state). Upon

termination of the SEACAS component, the data

monitoring process is terminated, sockets are closed,
and I/O callbacks removed from the event handler.

This illustration, while gory in detail, serves to highlight
a number of important points. First, adapting architectural
mismatch may require low-level, intricate code. Tech-
nigques for making this process rational and repeatable will



contribute greatly both to programmer productivity and sys- OMA to distributed component-based systems. However,
tem reliability: most of the problems our prototype experi- while the OMA does make the building of distributed com-
enced involved low-level adaptation code. Second, vendor-ponent-based systems easier, it does not make the hard
specific ORB features have an overwhelming influence ondesign and implementation decisions involved in such sys-
adaptation techniques. Another commercial ORB we havetems disappear. Nevertheless, we believe the OMA pro-
used requires completely different, but not less complex, vides sufficient mechanisms and latitude for system

adaptation approaches. Last, the possibility of developingdesigners to address many of these difficult challenges.

architecture-specific adaptation techniques may be hampere:
by intricate ORB, tool, and operating system dependencies.
However, this is only an issue if portable object implementa- [1]
tions is desired—and the OMA does not support object
implementation portability in any event.

6. Conclusions about the OMA

In Section 2.2 we posed a specific range of questions that
the OMA evaluation would answer. First, the OMA does [3]
indeed suggest a particular architectural style, which we
referred to as a repository style in this paper. However, we are
skeptical that the key OMA services (e.g., persistence, rela-[4
tionship, transactions and relocation services, to hame just ¢
few) will be sufficiently well-integrated and functional to
implement robust distributed database management function[S]
ality. Despite this skepticism, we found the OMA to be suffi-
ciently flexible and expressive to describe a wide range of
other styles, including hybrid styles that make selective use of(g]
OMA distributed object management services.

(2]

Second, we found that the OMA does introduce its own -,
forms of architectural mismatch. This is to be expected—
most legacy components will not have been designed to operg]
ate within the context of a distributed object model. On the
other hand, we were surprised at how sensitive our compo-
nent adaptation tactics were to specific ORB features. In our[g]
prototype, vendor-specific features played a key role, in part
because the vendor did not provide standard implementation:[lo
of needed OMA services (e.g., persistence). Vendor-specific
features also played a role in low-level code that dealt with
mapping between the operating system process model and th
OMA object model.
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