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Abstract

In this paper, w e describe an adaptive controller for automated manufacturing cells. The controller
inputs desired performance targets and job characteristics and outputs task sequences for each piece of
equipment in the cell. It contains an adjustment module to rank performance measures and a collection
of dispatchers to generate the task sequences. The rankings are done dynamically based on the current
cel l status. The task sequences are generated using neural networks. After we describe the controller, we
discuss the results of some simulation studies which show how well it performs.

1. Introduction

The control of an automated manufacturing system is extremely difficult because of the complex
interactions among machines, material transportation devices, and storage buffers (O'Grady and Lee,
1988). Frequently, a hierarchical control system is used to simplify implementation, to reduce functional
responsibility, and to increase local authority. Several architectures for such a hierarchical control system
have been proposed during the last 15 years (Jones, 90) and (Jones and Whitt, 86). While they differ in
the number of levels, and the amount of responsibility and authority given to each level, most
architectures have the notion of a cell level controller which performs detailed production scheduling .
This cell controller determines task sequences for the equipment level controllers to carry out based on the
production and performance requirements it receives from the shop level controller.

The literature on cell controllers can be divided into two classes based on the number of performance
measures. A number of approaches allow only one scheduling performance measure such as Minimize
Makespan. Others use autility function approach to combine multiple objectives for evaluation. In this
paper, we show how a neural network can be used to handle both cases. In addition, we demonstrate
that this approach can adapt to changes in the state of the various pieces of equipment in the cell and to
changes in the performance measures passed down from the shop controller.

This paper utilizes the neural network based scheduling approach defined in (Yih et a1 1994) to define a
collection of dispatchers. These dispacthers form the foundation of our cell controller. The paper is
organized as follows. In Section 2, w e review some pertinent literature related to efforts to design and
build cell controllers and neural network based schedulers. In Section 3, we describe the manufacturing
cell used for the simulation experiments. In Section 4, we provide a description of the internal structure
of the controller and the neural network -based equipment dispatchers. In Section 5, we use the results of
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several experiments originally described in (Yih et a11994) to demonstrate the potential capabilities o f the
cell controller. Finally, some summary comments and conclusions are given in Section 6.

2. Literature Review

I t has been know for a long time, that the ability of dispatching rules to optimize particular performance
measures is highly dependent on the state of the system. Since the mid 1980s, many researchers have
attempted to use a knowledge -based approach to capture these relationships. Under this approach, a
central database contains the dispatching rules for creating and modifying schedules based on the
current performance measure(s) and the current system state. Typically, these relationships are generated
in one of two ways: simulation studies or expert schedulers. Whenever a decision is required, the cell
controller will scan the database to find the condition which matches the current performance measure(s)
and the current system state, choose the associated rule, and pass the results to the equipment controllers.
The major drawback to this approach is the difficulty involved in creating and maintaining a knowledge
base which contains enough rules to cover every possible state. O'Grady and Lee (1988) attempted to
overcome this problem in PLATO -Z, which combined a rule-based expert system with a multi-
blackboard/actor model. This control system was later implemented using an object -oriented
programming technique (O'Grady and Seshadri, 1992).

Wu and Wysk (1988) found a way around this problem in their multi-pass expert system. Under this
system, a fixed set of candidate rules are stored in the knowledge base. Each time a decision is needed,
the performance of each candidate rule is evaluated by a simulation initiated to the current system state.
The ru le giving the best predicted performance is selected to generate the schedules. This eliminates the
need to have a direct relationship between rules and system states. Cho and Wysk (1993) removed the
fixed set requirement by using a neural network to select the candidate rules to be evaluated by the
simulation. However, many of the simulations require a large computational effort. This limits the
applicability of this approach to real -time scheduling.

Several other researachers have tried multi-layer neural networks to deal with scheduling and candidate
rule selection. Chryssolouris et al. (1990) suggested that a multi-layer network could be used as the
inverse function of simulation. This, in turn, could be used to estimate the system parameters needed to
compute performance measures. They showed that neural networks could be trained to learn the inverse
function of simulations used in the design of small manufacturing systems. Potvin e t al. (1992) used this
approach to build a dispatcher for automated vehicles. Rabelo et al. (1993) used neural networks to do
candidate rule selection followed by a genetic algorithm to determine the final sequences.

Yih and Jones (1992) proposed to use multi-layer networks to select candidate rules. A multi-layer
network will take the current system status and the desired performance measures to determine a
matching score for each dispatching rule. This matching score provides a convenient mechanism for
replacing natural language rules with numerical values. The rule with the largest matching score willbe
selected to dispatch the jobs. This concept has been adapted for the work presented in this paper.

3. T h e Experimental Manufacturing Cell

3.1 Cell Description

The automated manufacturing cell used to conduct the experiments in this research is shown in Figure 1.
This cell i s typical of many automated cells found in factories around the world. It contains five machines
and a robot which serves as the material handling device. Each machine has its own finite capacity input
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and output buffers. In addition, there is an infinite capacity an input/output buffer for the cell and a
temporary buffer to prevent system deadlock.

Figure 1. Experimental Manufacturing Cell

When a part arrives to this manufacturing cell, it waits in the system input buffer until the robot moves i t
to the input buffer at the first machine initsrouting. In this study, we allow fifteen part routings
through the cell. After visiting all of the machines initsrouting, a part willbe placed in the output buffer
for the cell. Once there, it will eventually leave the cell. Each machine will process the parts waiting in
its input buffer using the active dispatching rule. Once a machine finishes with a part, the completed
part is automatically placed into the machine output buffer to await removal by the robot. The total time
to complete processing at each machine is the sum of machining time plus setup time. In this study, the
machining time for each part is provided with the routing information and does not depend on the order
in which it is selected. The setup time, however, is sequence -dependent.

The robot is responsible for transporting parts from one machine to another and to/from each machine
from/to the buffers for the cell. A part willwait in the cell input buffer or a machine output buffer until
it i s chosen as the next part to be moved. When available, the robot will select the next part to be moved
based on the active dispatching rule. The selection is made from all the parts waiting in the cell. Once
the part to be moved is selected, the robot willmove to its current location, pick the part up, and then
move it to its destination. The destination willbe either the input buffer of the next machine in its process
routing or the output buffer for the cell. No interruption is allowed during a transport cycle.

3.2 Performance Measures and Rules
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In this study, we concentrated on four performance measures: cycle time, average waiting time, average
tardiness, and tardy jobs ratio. The shop controller can input either a specified target (average waiting <
30 seconds) or a true objective function (minimize cycle time) - for our study we used targets. In
computing these measures, two times are used: the time the part enters the cell input buffer and the time
it enters the cell output buffer. That is, the part “arrives” when it enters the cell input buffer, and it
”departs” when i t reaches the cel l output buffer. The time it may spend in the cell output buffer is not
included in any computation.

Rule
FIFO
EDD
SPT
STT

SST
SRT
CR

Several of the most frequently used dispatching rules were used for our experiments. They are listed in
Tables 1and 2.

Description
Operations are selected on first -come -first -serve basis.

The operation with the earliest process due date willbe selected.
The operation with the shortest processing time willbe selected.

The operation with the shortest service time, which includes the processing
time and required setup time, willbe selected.

The operation with the shortest setup time willbe selected.
The operation with the shortest remaining processing time will be selected.
The operation with the smallest CR ratio willbe selected. The CR ratio i s

Table 1. Dispatching Rules for Machines

SLACK The operation with the least SLACK time willbe selected. The SLACK

defined as:
Part Due Date. - Current Tune

Remaining F’rocessing Tm
c R =

time is defined by:
SLACK = Process Due Date - Processing Time - Current Time

4. The Controller

The internal structure for the cel l controller is shown in Figure 2. It contains an adjustment module and
several dispatchers - one for the robot and for each machine in the cell. At each decision point - defined
as the time when a machine needs to select the next part to process or the robot needs to select the next
part to move - this controller picks the dispatching rule to be used to make that selection. This is how it
works.

There are several potential advantages to this control scheme. First, since the the adjustment module
recomputes performance ratios at every decision point, can effectively vary the relative priority of each
performance measure as the system evolves over time. Second, changes in these relative priorities can
have an immediate impact on the decisions because they are taken into account at every decision point.
With this characteristic, the controller is able to quickly respond to the changes in the system state. Third,
the shop contrller can also change the performance targets at any time to reflect changes to global system
which may not be known to this particular cel l controller.

Table 2. Dispatching Rules for the Robot



DIN / LQL

RSLACK /

Description
The part with shortest transportation time including loading and
doading time will be selected. I f tied, the first-come-first-serve
3asis will be aDDlied.
Parts willbe selected upon the first -come-first -serve basis. The part
In the nearest queue willbe selected to break the ties.
f i e earliest arrival part of the longest queue will be selected. I f tied
In queue length, the part in the nearest queue willbe chosen.
The part which completes all the required operations willbe
selected. I f more than one part is completed or none of them is
finished, the part with shortest remaining process time will be
:hosen.
The part waiting in the system input buffer willbe selected. Ifno
lewcomer waits, the LQL rule willbe applied.
The part with least RSLACK time willbe chosen while the NEARQ
rule will applied to break the ties. The RSLACK is defined by:

Due Date -Remaining Process Time -Current Time

Number of Remaining Operations
RSLACK =

4.1 The Adjustment Module

At each decision point, a dispatcher willnotify the adjustment module that i t i s time to move or machine
a part. The adjustment module will compare the current values of the performance measures to the
targets specified by the shop controller to determine the relative ranking, or priority, at this point in time.
These rankings are determined by the ratio of the current performance level to the specified target. For
our performance measures, the larger this ratio, the more critical the performance measure. This is so
because smaller values are preferred for those performance measures. Whenever this ratio becomes
larger than1, this indicates that the current performance level has exceeded the specified target. This
means that this performance measure should be given the highest priority by the equipment dispatchers
at current decision point. Therefore, the effective range of these importance values is set between 0 and
1. A value of 0 means it has the lowest priority, while a value of 1means it has the highest priority. For
example, consider an average waiting time target of 30. If, at time t,, the average waiting time is 10, then
its ratio i s 1/3. This may correspond to the lowest priortiy at time t,. At some later time t, the avaerage
waiting time maybe 35. Since a value of 35 exceeds the current target of 30, the adjustment module
would give it a ratio of 1and assign average waiting time the highest priority. Based on these priorities
and its current status, the equipment dispatchers will choose a dispatching rule to select the next part to
be processed or moved.

4.2 Equipment Dispatchers

After receiving the relative rankings of performance measures from the adjustment module, the
equipment level dispatchers will select the proper dispatching rule based on these rankings and the
current equipment status. In this paper, we use a neural network to perform this selection. The neural
network will take the attributes describing the current system state and these performance rankings as its
input. It will then provide a ranking for the available dispatching rules as its output. From this output,
the rule with the highest ranking willbe chosen to dispatch the next job. We describe how this works in
the following sections.
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Figure 2. Internal Structure of Cell Controller

4.3 Training Data Sets

To obtain a well-trained network for each equipment dispatcher, we must generate training data sets.
Each training data set consists of the two inputs listed above (system state and performance rankings)
and one output (a prioritized list of the best dispatching rules).

In this study, state includes current queue length, mean and standard deviation of processing time, mean
and standard deviation of slack time, mean and standard deviation of completion percentage, as well as
the optimistic and pessimistic setup times. The optimistic setup time is set to the minimum of the
sequence -dependent setup times for the machines and the shortest travel time between machines for the
robot controller. The pessimistic setup time is chosen to be the longest of these times. The completion
percentage of a part is defined as the ratio of the processing time already completed to the total required
processing time. This can be used to compute how much work still remains for this part.

Single machine simulations are then conducted to determine the impact of different dispatching rules on
the four system performance measures discussed in Section 3.2: cycle time, average waiting time, average
tardiness, and tardy jobs ratio. Since w e are using single machine simulations, i t is not possible to
estimate global performance measures such as cycle time, average tardiness, and tardy jobs ratio directly.
These can only be estimated when the part departs from the system. Instead, we use the following
computations which are based on machine rather than system times:

(1) time at machine/number of machines in routing instead of cycle time

(2) delay measured from an expected machine completion instead of average tardiness
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(3) tardy jobs ratio based on expected machine completion instead of tardy jobs ratio

I t is easy to show that each of these single machine computations have a high positive correlation with the
corresponding global system measure. That is, whenever these single machine measures are low (high)
the corresponding global system measure will also be low (high). Thus, it i s our belief, that in order to
reduce a particular global measure (cycle time) i t is sufficient to train the network to pick a dispatching
ru le which reduces the corresponding single machine measure (time at machine/number of machines in
routing). The process of selecting the best network configuration from the training data we generated
based on this philosophy is described in the next section.

4.4 The Best Network

Since a neural network can only deal with numerical data, the dispatching rules are represented by a
"matching score". The concept of the matching score was introduced by Yih and Jones (1992). The higher
the score, the better the dispatching rule. In this study, the matching score formula was

where
MSjk :Matching Score for rule j compared with rule k
n : total number of performance measures

Rij : the ratio of ith performance of rule j

Because only the highest matching score in the network is of interest, an evaluation criterion (EC) was
used to evaluate different network configurations during the training phase:

EC = /-
where

EC :Evaluation Criterion
N:number of patterns
D :highest matching score in each pattern
AHi : the highest output value in training pattern i

To prevent overfitting problems, the cross validation method (Hansen and Salamon 1990, Levin et al.
1990) was applied. Several network topologies were examined to select a well-trained network for each
equipment level controller. The one with the lowest EC value was chosen for each equipment level
controller.

4.5 Best Dispatching Rule Results

Table 3 provides a matrix of two digit codes that denote the rule applied to machines and the rule
applied to the robot, respectively. From simulation results we were able to determine that code 41,
which applies dispatching rule STT to machines and SDIST to the robot, achieved the best results for
cycle time and average waiting time. Code 23, with EDD for machines and LQL for the robot, obtains the
best result in average tardiness. Code 46, which combines dispatching rule STT for machines and SLACK
for the robot, yielded the lowest tardy job ratio. The obvious conclusion is that there i s no single rule
combination which can dominate, or even do well, in all performance measures.

Table 3. Coding Matrix
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5. Experiments

Cycle
time

We conducted three different sets of simulation experiments in this study. The first was to determine
how well a given dispatching code performed against al l performance measures. The second was to
determine how well the proposed cell controller performed with multiple performance measures. The
third was to show how well the controller responded to changes in performance targets. All simulation
trials were initialized to the same state run for 50,000 time units.

Average Average Tardy
waiting tardiness jobs ratio

5.1 T h e Best Against the Rest

Code 41
Code 23
Code 46

Since i t is not possible to pick a single dispatching code which simultaneously optimizes all performance
measures, we conducted an experiment to see how far from "optimal" things could get. To compare
different performance measures for the same dispatching code, we used something called Performance
Deviation. Performance Deviation (PD) is defined by the percentage of the average difference in each
performance measure from the best dispatching rule, with regard to the range between the best and the
worst ones in this study. A larger PD value indicates worse performance in the associated measurement.
Also, the best single rule in each performance measure will result in a PD value of 0%, while the worst
one willhave a PD value of 100%. Consider, for example, codes 41 and 23 from table 4. Code 41, which
optimizes both cycle t ime and average waiting time, has a PD value of 21.39% for average tardiness. On
the other hand, code 23, which optimizes average tardiness, results in PD values of 45.98% and 42.54% in
cycle time and average waiting time, respectively.

0% 0% 21.39% 1.62%
45.98% 42.54% 0% 56.96%
18.35% 13.26 Yo 13.58% 0%

Table 4. Best Dispatching Rule for Each Performance Measure

time

5.2 Multiple Performance Measures

To handle multiple performance measures, the adjustment module must provide, as we discussed above,
provide the equipment level dispatchers with the relative ranking of all measures. Moreover, it must
reevaluate these rankings at each decision point. Using this ranking together with the current machine
status, the neural network will determine the matching score for each rule and the one with highest score



willbe selected to dispatch the next part. To show how this might work, w e ran several simulation
experiments to look at pairs of performance criterion with equal rank given to each criterion. Then we
conducted aonther analysis to look at all four simultaneously, to determine i f a single code could be used.
The experiments and their associated performance deviations are listed in Table 5. A value in a particular
column indicates that the measure was included in the experiment, a "-" indicates it was not.

For the pairs-anaylsis, each experiment consisted of two parts. First we ran the entire simulation using
only the best dispatching rule. Then, we ran the simulation again and allowed the controller to change
dispatching rules at each decision point in the simulation. At the end of the run, we computed the
various performance measures and their associated PD values. The results are shown in Table 5. A
negative PD value indicates that the controller performed better than the best dispatching rule. A
positive sign indicates that the dispatching rule performed better. In either case, the magnitude of the
number indicates how much better. For example, in Ex 1 and Ex 5, the controller did better than the
dispatching rules in both criteria concerned. In experiments Ex 3, the controller did better in one measure
cycle time (PD value of -1.18%) but did worse for tardy job ratio (PD value of 5.83%). Similar results were
obtained for Ex 4. In experiments Ex 2 and Ex 6, the controller actually did worse, to varying degrees, in
both performance measures.

Table 5. Simulation Results - PD Values

We showed in Table 4, that i t is not possible to optimize all of our global performance measures simultaneously
by picking a single code in advance and using it for the entire simulation. In fact, choosing anything but the best
code can lead to very poor performance. We ran another experiment (Ex 7) to determine if the cell controller
could improve on these results. We can see from the last line in Table 5 that, while it did poorly for average
tardiness, the controller surpassed the best dispatching ru le for the other three performance measures.

5.3 Changing Performance Targets

In the previous experiments, we kept the targets for the performance measures constant during all
simulation runs and allowed the controller to select dispatching rules based on the changing state of the
system. We also conducted an experiment to determine how well the controller responded when the
targets changed. We chose the combination of average tardiness and average waiting time because the
controller did well for one but not the other (see Table 5). The change performance targets is shown
below:

l At time 0, the initial target vector was [14,160,20,0.5] for cycle time,

l At simulation time 15,000, the objective vector changed to [14,120,60, OS] .
l At simulation time 35,000, the objective vector became [14,120,20,0.5].

average waiting time, average tardiness, and tardy jobs ratio, respectively.
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The simulation results are illustrated inFigure 3 for the average waiting time and average tardiness. until
about time 5,000 both performance measures are above their target values. At around time 5,000 the
waiting time is below 160, but the tardiness is still above 20 indicating that the controller willcontinue to
give it top priority. As the simulation approaches time 15,000 the waiting time is still below 160 and the
tardiness is still above 20, but decreasing. I f we follow trajectory 1, we can see that the tardiness will
eventually reach the target. At time 15,000 the waiting time target is decreased to 120 and the tardiness
target is increased to 60. Now, the controller will switch priorities because tardiness is now below target,
but the waiting time is above target.

By looking at the graphs, we can see the impact of the controller’s decisions. In the top graph, the
trajectory changes from 1 to 2, indicating a gradual reduction in waiting time. In the bottom graph, a
similar change takes place. However, in this case we see a gradual increase in the tardiness. As the
simulation time approaches 35,000 we can see that both performance measures are decreasing. Waiting
time is still not below target, but i f we continue to follow trajectory 2, we can see that it will cross the
target threshold at about time 37,000.

At time 35,000 the controller must react to a change in the average tardiness target. Both graphs begin a
new trajectory along 3. As expected, waiting time begins to degrade slightly, but tardiness begins to
improve slightly. These results indicate that the controller can adapt quickly to changes inperformance
targets. They also show that the controller can effect positive changes in individual performance targets.
But, just as we saw in table 5, i t can not always improve multiple performance measures simultaneously.

6. Summary and Conclusions

A neural network based cell controller, consisting of an adjustment module and one dispatcher for each
piece of equipment, was proposed for scheduling and controlling a sample manufacturing cell. The
adjustment module uses specified targets for several performance measures from the shop controller and
the current performance estimates to determine the relative ranking of those performance measures. This
ranking indicates the relative importance of these perfromance measures at each decision point. Based on
these rankings and current equipment status, the equipment dispatchers will select a dispatching rule.
This dispatching ru le willbe used to generate task sequences for machines and robots, which willbe used
until the next decision point. Each of these dispatchers was implemented using a neural network.

A simulation model of the sample manufacturing cell was constructed to evaluate the performance of the
proposed controller. The initial simulation results were used to 1) determine the best of the available
dispatching rules for each performance measure, and 2) train the neural network dispatchers. After this,
two additional sets of experiments were run to determine how well the cel l controller performed when
given multiple performance targets, and when the targets changed during the simulation. The results
show that the controller performs well under some combinations of performance measures and poorly
under others. We also showed that the controller is able to respond quickly to changes in performance
measure targets on an individual basis.
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Figure 3. Simulation Results for Changing Performance Targets
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