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Introduction

In the United States today, there are approximately 40,000 factories producing metal-fabricated parts. These parts end
up in a wide variety of products sold here and abroad.  These factories employ roughly 2 million people and ship
close to $3 billion worth of products every year.  The vast majority of these factories are what we call "job shops",
meaning that the flow of raw and unfinished goods through them is completely random.  Over the years, the behavior
and performance of these job shops have been the focus of considerable attention in the Operations Research (OR)
literature. Research papers on topics such as factory layout, inventory control, process control, production
scheduling, and resource utilization can be found in almost every issue of every OR journal on the market today.  The
most popular of these topics is production (often referred to as job shop) scheduling.  Job shop scheduling can be
thought of as the allocation of resources over a specified time to perform a predetermined collection of tasks.  Job
shop scheduling has received this large amount of attention, because it has the potential to dramatically decrease
costs and increase throughput, thereby, profits.

A large number of approaches to the modeling and solution of these job shop scheduling problems have been
reported in the OR literature, with varying degrees of success.  These approaches revolve around a series of
technological advances that have occurred over that last 35 years.  These include mathematical programming,
dispatching rules, expert systems, neural networks, genetic algorithms, and inductive learning.  In this article, we
take an evolutionary view in describing how these technologies have been applied to job shop scheduling problems.
To do this, we discuss a few of the most important contributions in each of these technology areas and the most
recent trends.

Mathematical techniques

Mathematical programming has been applied extensively to job shop scheduling problems.  Problems have been
formulated using integer programming (Balas 1965, 1967), mixed-integer programming (Balas 1969, 1970), and dynamic
programming (Srinivasan 1971).   Until recently, the use of these approaches has been limited because scheduling
problems belong to the class of NP-complete problems.  To overcome these deficiencies, a group of researchers
began to decompose the scheduling problem into a number of subproblems, proposing a number of techniques to
solve them.  In addition, new solution techniques, more powerful heuristics,  and the computational power of modern



computers have enabled these approaches to be used on larger problems.  Still, difficulties in the formulation of
material flow constraints as mathematical inequalities and the development of generalized software solutions have
limited the use of these approaches.

Decomposition strategies
Davis and Jones (1988) proposed a methodology based on the decomposition of mathematical programming
problems that used both Benders-type (Benders 1960) and Dantzig/Wolfe-type (Dantzig and Wolfe, 1960)
decompositions.  The methodology was part of closed-loop, real-time, two-level hierarchical shop floor control
system.  The top-level scheduler (i.e., the supremal) specified the earliest start time and the latest finish time for each
job.  The lower level scheduling modules (i.e., the infimals) would refine these limit times for each job by detailed
sequencing of all operations.  A multicriteria objective function was specified that included tardiness, throughput,
and process utilization costs.  The decomposition was achieved by first reordering the constraints of the original
problem to generate a block angular form, then transforming that block angular form into a hierarchical tree structure.
In general, N subproblems would result plus a constraint set that contained partial members of each of the
subproblems.  The latter was termed the "coupling " constraints, and included precedence relations and material
handling.  The supremal unit explicitly considered the coupling constraints, while the infimal units considered their
individual decoupled constraint sets.  The authors pointed out that the inherent stochastic nature of job shops and
the presence of multiple, but often conflicting, objectives made it difficult to express the coupling constraints using
exact mathematical relationships.  This made it almost impossible to develop a general solution methodology.  To
overcome this, a new real-time simulation methodology was proposed in (Davis and Jones, 1988) to solve the
supremal and infimal problems.

Gershwin (1989) used the notion of temporal decomposition to propose a mathematical programming framework for
analysis of production planning and scheduling.  This framework can be characterized as hierarchical and multi-layer.
The problem formulations to control events at higher layers ignored the details of the variations of events occurring
at lower layers.  The problem formulations at the lower layers view the events at the higher layers as static, discrete
events.  Scheduling is actually carried out in bottom three layers so that the production requirements imposed by the
planning layers can be met.  First, a hedging point is found by solving a dynamic programming problem.  This
hedging point is the number of excess goods that should be produced to compensate for future equipment failures.
This hedging point is used to formulate a linear programming problem to determine instantaneous production rates.
These rates are then used to determine the actual schedule (which parts to make and when).  A variety of approaches
are under investigation for generating schedules.

Enumerative techniques and Lagrangian relaxation
Two popular solution techniques for integer-programming problems are branch-and-bound and Lagrangian
relaxation. Branch-and-bound is an enumerative technique (Agin 1966, Lawler and Wood 1966).  Summarizing Morton
and Pentico (1993), "The basic idea of branching is to conceptualize the problem as a decision tree.  Each decision
choice point - a node - corresponds to a partial solution.  From each node, there grow a number of new branches, one
for each possible decision.  This branching process continues until leaf nodes, that cannot branch any further, are
reached.  These leaf nodes are solutions to the scheduling problem".  Although efficient bounding and pruning
procedures have been developed to speed up the search, this is still a very computational intensive procedure for
solving large scheduling problems.  If the integer constraint is the main problem, then why not remove that
constraint.  A technique called Lagrangian relaxation, which has been used for more than 30 years, does just that
(Shapiro 1979).  Lagrangian relaxation solves integer-programming problems by omitting specific integer-valued
constraints and adding the corresponding costs (due to these omissions and/or relaxations) to the objective
function.  As with branch and bound, Lagrangian relaxation is computationally expensive for large scheduling
problems.

Recent trends
Model-Based Optimization (MBO) is an optimization approach that uses mathematical expressions (e.g., constraints
and inequalities) to model scheduling problems as mixed integer (non) linear programs (MINLP’s) (Zentner et al.,
1994).  A set of methods such as linear programming, branch-and-bound, and decomposition techniques are used to
search the scenario space of solutions. Due to the advances in computer technologies, the computation times are
becoming very practical. According to Subrahmanyam et al. (1996) “For problems of moderate size, solutions of type



D are given.”   Solutions of type D are optimal solutions of the maximum desirability possible within the constraints
of operation. These approaches are being enhanced by the development of English-like “scheduling languages” and
high-level graphical interfaces. The scheduling languages support the developing of the mathematical formulations
with minimum intervention from the user.

Dispatching rules

Dispatching rules have been applied consistently to scheduling problems.  They are procedures designed to provide
good solutions to complex problems in real-time.  The term dispatching rule, scheduling rule, sequencing rule, or
heuristic are often used synonymously (Panwalker and Islander 1977, Blackstone et al., 1982, Baker 1974).
Dispatching rules have been classified mainly according to the performance criteria for which they have been
developed.  Wu (1987) categorized dispatching rules into several classes.  Class 1 contains simple priority rules,
which are based on information related to the jobs.  Sub-classes are  based on the particular piece of information
used.  Example classes include those based on processing times (such as shortest processing time (SPT)), due dates
(such as earliest due date (EDD)), slack (such as minimum slack (MINSLACK)), and arrival times (such as first-in first-
out (FIFO)).  Class 2 consists of combinations of rules from class one.  The particular rule that is implemented can
now depend on the situation that exists on the shop floor.  A typical example of a rule in this class is, for example,
SPT until the queue length exceeds 5, then switch to FIFO.  This prohibits jobs with large processing times from
staying in the queue for long periods.  Class 3 contains rules that are commonly referred to as Weight Priority
Indexes.  The idea here is to use more than one piece of information about the jobs to determine the schedule.  Pieces
of information are assigned weights to reflect their relative importance.  Usually, an objective function f(x) is defined.
For example, f(x) = weight1 * Processing Time of Job(x) + weight2 * (Current Time - Due Date of Job(x)).  Then, any
time new sequence is needed, the function f(x) is evaluated for each job x in the queue.  The jobs are ranked based on
this evaluation.

During the last 30 years, the performance of a large number of these rules has been studied extensively using
simulation techniques (Montazer and Van Wassenhove, 1990).  These studies have been aimed at answering the
question: If you want to optimize a particular performance criterion, which rule should you choose?  Most of the early
work concentrated on the shortest processing time rule (SPT).  Conway and Maxwell (1967) were the first to study the
SPT rule and its variations.  They found that, although some individual jobs could experience prohibitively long flow
times, the SPT rule minimized the mean flow time for all jobs.  They also showed that SPT was the best choice for
optimizing the mean value of other basic measures such as waiting time and system utilization.  Many similar
investigations have been carried out to determine the dispatching rule which optimizes a wide range of job-related
(such as due date and tardiness) and shop-related (such as throughput and utilization) performance measures.  This
problem of selecting the best dispatching rule for a given performance measure continues to be a very active area of
research.  However, the research has been expanded to include the possibility of switching rules to address an
important problem: error recovery.  Two early efforts to address error recovery were conducted by Bean and Birge
(1986) and Saleh (1988).  Both developed heuristic rules to smooth-out disruptions to the original schedule, thereby
creating a match-up with that schedule.  Bean and Birge (1986) based their heuristic on Turnpike Theory (McKenzie
1976) to optimize a generalized cost function.  Saleh showed that he could minimize duration of the disruption by
switching the objective function from mean flow time to makespan based on disjunctive graphs (Adams et al., 1988).

Artificial intelligence (AI) techniques

Starting in the early 80s, a series of new technologies were applied to job shop scheduling problems.  They fall under
the general title of artificial intelligence (AI) techniques and include expert systems, knowledge-based systems, and
several search techniques.  Expert and knowledge-based systems were quite prevalent in the early and mid 1980s.
They have four main advantages.   First, and perhaps most important, they use both quantitative and qualitative
knowledge in the decision-making process.  Second, they are capable of generating heuristics that are significantly
more complex than the simple dispatching rules described above.  Third, the selection of the best heuristic can be
based on information about the entire job shop including the current jobs, expected new jobs, and the current status
of resources, material transporters, inventory, and personnel.  Fourth, they capture complex relationships in elegant
new data structures and contain special techniques for powerful manipulation of the information in these data



structures There are, however, serious disadvantages.  They can be time consuming to build and verify, as well as
difficult to maintain and change.  Moreover, since they generate only feasible solutions, it is rarely possible to tell
how close that solution is to the optimal solution.  Finally, since they are tied directly to the system they were built to
manage, there is no such thing as a generic AI system.

Expert/knowledge-based systems
Expert and knowledge-based systems consist of two parts: a knowledge base, and inference engine to operate on
that knowledge base.  Formalizations of the “knowledge” that human experts use  -- rules, procedures, heuristics, and
other types of abstractions -- are captured in the knowledge base.  Three types of knowledge are usually included:
procedural, declarative, and meta. Procedural knowledge is domain-specific problem solving knowledge. Declarative
knowledge provides the input data defining the problem domain.  Meta knowledge is knowledge about how to use
the procedural and declarative knowledge to actually solve the problem.  Several data structures have been utilized to
represent the knowledge in the knowledge base including semantic nets, frames, scripts, predicate calculus, and
production rules.  The inference engine selects a strategy to apply to the knowledge bases to solve the problem at
hand.  It can be forward chaining (data driven) or backward chaining (goal driven).

ISIS (Fox 1983) was the first major expert system aimed specifically at job shop scheduling problems.  ISIS used a
constraint-directed reasoning approach with three constraint categories: organizational goals, physical limitations
and causal restrictions.  Organizational goals considered objective functions based on due-date and work-in-
progress.  Physical limitations referred to situations where a resource had limited processing capability.  Procedural
constraints and resource requirements were typical examples of the third category.  Several issues with respect to
constraints were considered such as constraints in conflict, importance of a constraint, interactions of constraints,
constraint generation and constraint obligation. ISIS used a three level, hierarchical, constraint-directed search.
Orders were selected at level 1.  A capacity analysis was performed at level 2 to determine the availability of the
resources required by the order.  Detailed scheduling was performed at level 3.  ISIS also provided for the capability
to interactively construct and alter schedules.  In this capacity, ISIS utilized its constraint knowledge to maintain the
consistency of the schedule and to identify scheduling decisions that would result in poorly satisfied constraints.

Wysk et al. (1986) developed an integrated expert system/simulation scheduler called MPECS.  The expert system
used both forward and backward chaining to select a small set of potentially good rules from predefined set of
dispatching rules and other heuristics in the knowledge base. These rules optimized a single performance measure,
although that measure could change from one scheduling period to the next.  The selected rules were then evaluated
one at a time using a deterministic simulation of a laboratory manufacturing system.  After all of the rules were
evaluated, the best rule was implemented on the laboratory system.  Data could be gathered about how the rule
actually performed and used to update the knowledge base off-line.  They were able to show that periodic
rescheduling makes the system more responsive and adaptive to a changing environment.  MPECS was important for
several reasons.  It was the first hybrid system to make decisions based on the actual feedback from the shop floor.
It incorporated some learning into its knowledge base to improve future decisions.  The same systems could be used
to optimize several different performance measures.   Finally, it utilized a new multi-step approach to shop floor
scheduling.

Other examples of expert/knowledge-based scheduling systems developed OPIS (Opportunistic Intelligent Scheduler)
(Smith 1995), and SONIA (Le Pape 1995).

Distributed AI: agents
Due to the limited knowledge and the problem solving ability of a single expert or knowledge based system, these AI
approaches have difficulty solving large scheduling problems as well.  To address this, AI researchers have also
begun to develop distributed scheduling system approaches (Parunak et al., 1985).  They have done this by an
application of their well-known "divide and conquer" approach.  This requires a problem decomposition technique,
such as those described above, and the development of different expert/knowledge-based systems that can
cooperate to solve the overall problem (Zhang and Zhang, 1995). The AI community's answer is the "agent"
paradigm. An agent is a unique software process operating asynchronously with other agents. Agents are complete
knowledge-based systems by themselves. The set of agents in a system may be heterogeneous with respect to long-



term knowledge, solution-evaluation criteria, or goals, as well as languages, algorithms, hardware requirements.
Integrating agents selected from a “library” creates a multi-agent system.

For example, one such multi-agent system could involve two types of agents: tasks and resources.  Each task agent
might be responsible for scheduling a certain class of tasks such as material handling, machining, or inspection, on
those resources capable of performing those tasks.  This can be done using any performance measure related to
tasks, such as minimize tardiness, and any solution technique.  Each resource agent might be responsible for a single
resource or a class of resources.  Task agents must send their resource requests to the appropriate resource agent,
along with the set of operations to be performed by that resource (Daouas et al., 1995).  Upon receipt of such a
request, the resource agent must generate a new schedule using its own performance measures, such as maximize
utilization, which includes this request.  The resource agent will use the results to decide whether to accept this new
request or not.  To avoid the situation where no resource will accept a request, coordination mechanisms must be
developed.  There are, now, no general guidelines for the design and implementation of this coordination.  Therefore,
the debates about centralized vs. decentralized approaches to job shop scheduling go on.  The agents’ formalism may
provide an answer to these debates.

Artificial neural networks

Neural networks, also called connectionist or distributed parallel processing models, have been studied for many
years in an attempt to mirror the learning and prediction abilities of human beings. Neural network models are
distinguished by network topology, node characteristics, and training or learning rules. An example of a three-layer,
feed-forward neural network is shown in Figure 1.
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Figure 1. An example of a three-layer, feed-forward neural network

Supervised learning neural networks



Through exposure to historical data, supervised learning neural networks attempt to capture the desired relationships
between inputs and the outputs.  Back-propagation is the most popular and widely used supervised training
procedure. Back-propagation (Rumelhart et al., 1986, Werbos 1995) applies the gradient-descent technique in the
feed-forward network to change a collection of weights so that some cost function can be minimized. The cost
function, which is only dependent on weights (W) and training patterns, is defined by:

C(W) = ½Σ  (Tij- Oij) (1)

where the T is the target value, O is the output of the network, i represents the output nodes, and j represents the
training patterns.

After the network propagates the input values to the output layer, the error between the desired output and actual
output will be "back-propagated" to the previous layer. In the hidden layers, the error for each node is computed by
the weighted sum of errors in the next layer's nodes. In a three-layered network, the next layer means the output layer.
The activation function is usually a sigmoid function with the weights modified according to

∆Wij = η  Xj (1- Xj )(Tj - Xj ) Xi (2)
or

∆Wij = η  Xj (1- Xj ) (Σ  δ kWjk ) Xi (3)

where Wjk is weight from node i to node (e.g., neuron) j, η  is the learning rate, Xj is the output of node j, Tj is the

target value of node j, and δ k is the error function of node k.

If j is in the output layer, Eq. (2) is used.  If j is the hidden layers, Eq. (3) is used. The weights are updated to reduce
the cost function at each step. The process continues until the error between the predicted and the actual outputs is
smaller than some predetermined tolerance.

Rabelo (1990) was the first to use back-propagation neural nets to solve job shop scheduling problems with several
job types, exhibiting different arrival patterns, process plans, precedence sequences and batch sizes.   Training
examples were generated to train the neural network to select the correct characterization of the manufacturing
environments suitable for various scheduling policies and the chosen performance criteria.  In order to generate
training samples, a performance simulation of the dispatching rules available for the manufacturing system was
carried out.  The neural networks were trained for problems involving 3, 4, 5, 8, 10, and 20 machines.  To carry out this
training, a special, input-feature space was developed.  This space contained both job characteristics (such as types,
number of jobs in each type, routings, due dates, and processing times) and shop characteristics (such as number of
machines and their capacities).  The output of the neural network represented the relative ranking of the available
dispatching rules for that specific scheduling problem and the selected performance criteria.  The neural networks
were tested in numerous problems and their performance (in terms of minimizing Mean Tardiness) was always better
than each single dispatching rule (25% to 50%).

Relaxation models
Neural networks based on relaxation models are defined by energy functions. They are pre-assembled systems that
relax from input to output along a predefined energy contour.  Hopfield neural networks (Hopfield and Tank 1985) are
a classical example of a relaxation model that has been used to solve some classic, textbook scheduling problems
(Foo and Takefuji, 1988).   Two-dimensional Hopfield networks were used to  solve 4-job, 3-machine problems and 10-
job, 10-machine problems (Zhou et al., 1990).  They were extended in (Lo and Bavarian, 1991) to 3 dimensions to
represent jobs (i=1,...,I), machines j=1,...,J), and time (m=1,...,M).  In each case, the objective was to minimize the
makespan, total time to complete all jobs, which is defined as

E = Σ Σ Σ  (vijm) (m + Tij - 1)  (4)
 j=1  i=1  m=1



where  vijm is the output (1 or 0) of neuron ijm, and Tij is the time required by jth  resource (e.g., machine) to complete
the ith job.

Due to a large number of variables involved in generating a feasible schedule, these approaches tend to be
computationally inefficient and frequently generate infeasible solutions.  Consequently, they have not been used to
solve realistic scheduling problems.

Temporal reinforcement learning
It was noted above that supervised learning neural networks attempt to capture the desired relationships between
inputs and the outputs through exposure to training patterns. However, for some problems, the desired response may
not always be available during the time of learning. When, the desired response is obtained, changes to the neural
network are performed by assessing penalties for the scheduling actions previously decided by the neural network.
As summarized by Tesauro (1992), “In the simplest form of this paradigm, the learning system passively observes a
temporal sequence of input states that eventually leads to a final reinforcement or reward signal (usually a scalar).
The learning system’s task in this case is to predict expected reward given an observation of an input state or
sequence of input states. The system may also be set up so that it can generate control signals that influence the
sequence of states.” For scheduling, the learning task is to produce an scheduling action that will lead to minimizing
(or maximizing) the performance measure (e.g., makespan, tardiness) based on the state of the system (e.g.,
inventories, machine status, routings, due dates, layouts). Several procedures have been developed to train neural
networks when the desired response is not available during the time of learning. Rabelo et al. (1994) utilized a
procedure developed by Watkins (1989), denominated Q-learning, to implement a scheduling system to solve
dynamic job shop scheduling problems. The scheduling system was able to follow trends in the shop floor and select
a dispatching rule that provided the maximum reward according to performance measures based on tardiness and
flow time. On the other hand, Zhang and Dietterich (1996) utilized a procedure developed by Sutton (1988) called
TD(λ) to schedule payload processing of NASA’s space shuttle program.

Neighborhood search methods

Neighborhood search methods are very popular. Neighborhood search methods provide good solutions and offer
possibilities to be enhanced when combined with other heuristics. Wilkerson and Irwin (1971) developed one of the
first neighborhood procedures. This method iteratively added small changes (“perturbations”) to an initial schedule,
which is obtained by any heuristic.  Conceptually similar to hill climbing, these techniques continue to perturb and
evaluate schedules until there is no improvement in the objective function.  When this happens, the procedure is
ended.  Popular techniques that belong to this family include Tabu search, simulated annealing, and genetic
algorithms.  Each of these has its own perturbation methods, stopping rules, and methods for avoiding local
optimum.

Tabu search
The basic idea of Tabu search (Glover 1989, 1990) is to explore the search space of all feasible scheduling solutions
by a sequence of moves. A move from one schedule to another schedule is made by evaluating all candidates and
choosing the best available, just like gradient-based techniques.  Some moves are classified as tabu (i.e., they are
forbidden) because they either trap the search at a local optimum, or they lead to cycling (repeating part of the
search).  These moves are put onto something called the Tabu List, which is built up from the history of moves used
during the search.  These tabu moves force exploration of the search space until the old solution area (e.g., local
optimum) is left behind. Another key element is that of freeing the search by a short term memory function that
provides “strategic forgetting”. Tabu search methods have been evolving to more advanced frameworks that
includes longer term memory mechanisms. These advanced frameworks are sometimes referred as Adaptive Memory
Programming (AMP, Glover 1996).

Tabu search methods have been applied successfully to scheduling problems and as solvers of mixed integer
programming problems. Nowicki and Smutnicki (Glover 1996) implemented tabu search methods for job shop and flow
shop scheduling problems. Vaessens (Glover 1996) showed that tabu search methods (in specific job shop



scheduling cases) are superior over other approaches such as simulated annealing, genetic algorithms, and neural
networks.

Simulated annealing
Simulated annealing is based on the analogy to the physical process of cooling and recrystalization of metals. The
current state of the thermodynamic system is analogous to the current scheduling solution, the energy equation for
the thermodynamic system is analogous to the objective function, and the ground state is analogous to the global
optimum. In addition to the global energy J, there is a global temperature T, which is lowered as the iterations
progress.  Using this analogy, the technique randomly generates new schedules by sampling the probability
distribution of the system (Kirkpatrick et al., 1983):

pj ∝  exp(-T(∆Jbest - ∆Jj)/K) (5)

where Pj represents the probability of making move j from among the neighborhood choices. ∆Jbest represents the
improvement of the objective function for the best choice, and ∆Jj represents the improvement for choice j.  K is a
normalization factor. Since increases of energy can be accepted, the algorithm is able to escape local minima.

Simulated annealing has been applied effectively to job shop scheduling problems. Vakharia and Chang (1990)
developed a scheduling system based on simulated annealing for manufacturing cells. Jeffcoat and Bulfin (1993)
applied simulated annealing to a resource-constrained scheduling problem. Their computational results indicated that
the simulated annealing procedure provided the best results in comparison with other neighborhood search
procedures.

Genetic algorithms
Genetic algorithms (GA) are an optimization methodology based on a direct analogy to Darwinian natural selection
and mutations in biological reproduction.  In principle, genetic algorithms encode a parallel search through concept
space, with each process attempting coarse-grain hill climbing (Goldberg 1988). Instances of a concept correspond to
individuals of a species.  Induced changes and recombinations of these concepts are tested against an evaluation
function to see which ones will survive to the next generation.  The use of genetic algorithms requires five
components:

1. A way of encoding solutions to the problem -- fixed length string of symbols.
2. An evaluation function that returns a rating for each solution.
3. A way of initializing the population of solutions.
4. Operators that may be applied to parents when they reproduce to alter their genetic composition such as

crossover (i.e., exchanging a randomly selected segment between parents),  mutation (i.e., gene
modification), and other domain specific operators.

5. Parameter setting for the algorithm, the operators, and so forth.

A number of approaches have been utilized in the application of genetic algorithms (GA) to job shop scheduling
problems (Davis 1985, Goldberg and Lingle 1985, Starkweather et al., 1992):

1. Genetic algorithms with blind recombination operators have been utilized in job shop scheduling. Their
emphasis on relative ordering schema, absolute ordering schema, cycles, and edges in the 
offsprings will arise differences in such blind recombination operators.

2. Sequencing problems have been addressed by mapping their constraints to a Boolean satisfiability
problem using partial payoff schemes.  This scheme has produced good results for very simple
problems.

3.  Heuristic genetic algorithms have been applied to job shop scheduling.  In these genetic schemes,
problem specific heuristics are incorporated in the recombination operators (such as optimization
operators based).



Starkweather et al. (1993) were the first to use genetic algorithms to solve a dual -criteria job shop scheduling problem
in a real production facility.  Those criteria were the minimization of average inventory in the plant and the
minimization of the average waiting time for an order to be selected.  These criteria are negatively correlated (The
larger the inventory, the shorter the wait; the smaller the inventory, the longer the wait.).  To represent the
production/shipping optimization problem, a symbolic coding was used for each member (chromosome) of the
population.  In this scheme, customer orders are represented by discrete integers.  Therefore, each member of the
population is a permutation of customer orders.  The Genetic Algorithm used to solve this problem was based on
blind recombinant operators.  This recombination operator emphasizes information about the relative order of the
elements in the permutation, because this impacts both inventory and waiting time.  A single evaluation function (a
weighted sum of the two criteria) was utilized to rank each member of the population.  That ranking was based on an
on-line simulation of the plant operations.  This approach generated schedules that produced inventory levels and
waiting times that were acceptable to the plant manager.  In addition, the integration of the genetic algorithm with the
on-line simulation made it possible to react to system dynamics.

These applications have emphasized the utilization of genetic algorithms as a "solo" technique.  This has limited the
level of complexity of the problems solved and their success.   Recent research publications have demonstrated the
sensitivity of genetic algorithms to the initial population.   When the initial population is generated randomly, genetic
algorithms are shown to be less efficient that the annealing-type algorithms, but better than the heuristic methods
alone.  However, if the initial population is generated by a heuristic, the genetic algorithms become as good as, or
better than the annealing-type algorithms.  In addition, integration with other search procedures (e.g., tabu search)
has enhanced the capabilities of both.  This result is not surprising, as it is consistent with results from non-linear
optimization.  Simply stated, if you begin the search close to the optimal solution you are much more likely to get the
optimum than if you begin the search far away.

Fuzzy logic

Fuzzy set theory has been utilized to develop hybrid  scheduling approaches.  Fuzzy set theory can be useful in
modeling and solving job shop scheduling problems with uncertain processing times, constraints, and set-up times.
These uncertainties can be represented by fuzzy numbers that are described by using the concept of an interval of
confidence.  These approaches usually are integrated with other methodologies (e.g., search procedures, constraint
relaxation).  For example, Slany (1994) stresses the imprecision of straight-forward methods presented in the
mathematical approaches and introduces a method known as fuzzy constraint relaxation, which is integrated with a
knowledge-based scheduling system. His system was applied to a steel manufacturing plant. Grabot and Geneste
(1994) use fuzzy logic principles to combine dispatching rules for multi-criteria problems. On the other hand, Krucky
(1994) addresses the problem of minimizing setup times of a medium-to-high product mix production line using fuzzy
logic.  The heuristic, fuzzy logic based algorithm described helps determine how to minimize setup time by clustering
assemblies into families of products that share the same setup by balancing a product’s placement time between
multiple-high-speed placement process steps. Tsujimura et al. (1993) presented a hybrid system, which uses fuzzy set
theory to model the processing times of a flow shop scheduling facility. Triangular Fuzzy Numbers (TFNs) are used
to represent these processing times. Each job is defined by two TFNs, a lower bound and an upper bound. A branch
and bound procedure is utilized to minimize makespan.

Reactive Scheduling

Reactive scheduling is generally defined as the ability to revise or repair a complete schedule that has been
"overtaken" by events on the shop floor  (Zweben et al., 1995).  Such events include rush orders, excessive delays,
and broken resources.  There are two approaches: reactive repair and the proactive adjustment.  In reactive repair, the
scheduling system waits until an event has occurred before it attempts to recover from that event.  The match-up
techniques described in section 3 fall into this category.  Proactive adjustment requires a capability to monitor the
system continuously, predict the future evolution of the system, do contingency planning for likely events, and
generate new schedules, all during the execution time of the current schedule.  The work of Wysk et al. (1986) and
Davis and Jones  (1988) fall into this category.  Approaches that are more recent utilize artificial intelligence and
knowledge-based methodologies (Smith 1995).  Still most of the AI approaches propose a quasi-deterministic view of



the system, i.e., a stochastic system featuring implicit and/or explicit causal rules.  The problem formulation used does
not recognize the physical environment of the shop floor domain where interference not only leads to readjustment of
schedules but also imposes physical actions to minimize them.

Learning in Scheduling

The first step in developing a knowledge base is knowledge acquisition.  This in itself is a two step process: get the
knowledge from knowledge sources and store that knowledge in digital form.  Much work has been done in the area
of knowledge acquisition, such as protocol analysis and interactive editing (Shaw et al., 1992).  Knowledge sources
may be human experts, simulation data, experimental data, databases, and text.  In scheduling problems, the
knowledge sources are likely to be human experts or simulation data.  To extract knowledge from these two sources,
the machine learning technique that learns from examples (data) becomes a promising tool.  Inductive learning is a
state classification process.  If we view the state space as a hyperplane, the training data (consisting of conditions
and decisions) can be represented as points on the hyperplane.  The inductive learning algorithm seeks  to draw lines
on the hyperplane based on the training data to divide the plane into several areas within which the same decision
(conclusion) will be made.

One algorithm that has been implemented in inductive aids and expert system shells is that developed by Quinlan
(1986), called Iterative Dichotomister 3 or ID3. ID3 uses examples to induce production rules (e.g. IF ... THEN ...),
which form a simple decision tree.  Decision trees are one way to represent knowledge for the purpose of
classification.  The nodes in a decision tree correspond to attributes of the objects to be classified, and the arcs are
alternative values for these attributes.  The end nodes of the tree (leaves) indicate classes to which groups of objects
belong.  Each example is described by attributes and a resulting decision. To determine a good attribute to partition
the objects into classes, entropy is employed to measure the information content of each attribute, and then rules are
derived through a repetitive decomposition process that minimizes the overall entropy.  The entropy value of
attribute Ak can be defined as

              Mk     N

H(Ak) = Σ  P(akj) {- Σ  P(ci|akj)log2 P(ci|akj)} (6)
j=1                i=1

where H(Ak) is the entropy value of attribute Ak, P(akj) is the probability of attribute k being at its jth value, P(ci|akj) is
the  probability that the class value is  ci when attribute k is at its jth value, Mk  is the total number of values for
attribute Ak, and N is the total number of different classes (outcomes).

The attribute with the minimum entropy value will be selected as a node in the decision tree  to partition the objects.
The arcs out of this node represent different values of this attribute. If all the objects in an arc belong to one class,
the partition process stops.  Otherwise, another attribute will be identified using entropy values to further partition
the objects that belong to this arc.  This partition process continues until all the objects in an arc are in the same
class.  Before applying this algorithm, all attributes that have continuous values need to be transformed to discrete
values.

In the context of job shop scheduling, the attributes represent system status and the classes represent the
dispatching rules.  Very often, the attribute values are continuous.  Yih (1988) proposed a trace-driven knowledge
acquisition (TDKA) methodology to deal with continuous data and to avoid the problems occurring in verbally
interviewing human experts.  TDKA learns scheduling knowledge from expert schedulers without a dialogue with
them.  There are three steps in this approach.  In Step 1, an interactive simulator is developed to mimic the system of
interest.  The expert will interact with this simulator and make decisions.  The entire decision making process will be
recorded in the simulator and can be repeated for later analysis.  The series of system information and the
corresponding decision collected is called a "trace."  Step 2 analyzes the "trace" and forms classification rules to
partition the trace into groups.  The partition process stops when most of the cases in each group use the same
dispatching rule (error rate is below the threshold defined by the knowledge engineer).  Then, the decision rules are
formed.  The last step is to verify the generated rules.  The resulting rule base is used to schedule jobs in the



simulator. If it performs as well as or better than the expert, the process stops.  Otherwise, the threshold value is
increased, and the process returns to Step 2.

As the job shop operates over time, it is important to be able to modify the knowledge contained in these rule bases.
Chiu (1994) looks at knowledge modification for job shop scheduling problems by a framework of dynamic
scheduling schemes that explores routing flexibility and handles uncertainties. The proposed methodology includes
three modules: discrete-event simulation, instance generation, and incremental induction.  First, a simulation module
is developed to implement the dynamic scheduling scheme, to generate training examples, and to evaluate the
methodology.  Second, in an instance-generation module, the searching of good training examples is successfully
fulfilled by a genetic algorithm.  Finally, in an incremental-induction module, a tolerance-based incremental learning
algorithm is proposed to allow continuous learning and facilitate knowledge modification.  This algorithm uses
entropy values to select attributes to partition the examples where the attribute values are continuous.  The tolerance
is used to maintain the stability of the existing knowledge while the new example is introduced. The decision tree will
not be reconstructed unless there is enough momentum from the new data, that is, the change of the entropy value
becomes significant.  The experimental results showed that the tolerance-based incremental learning algorithm cannot
only reduce the frequency of modifications, but also enhances the generalization ability of the resulting decision tree
in a distributed job shop environment.

Theory of Constraints

The Theory of Constraints (TOC) developed by Eliyahu Goldratt (1990, 1992) is the underlying philosophy for
synchronized manufacturing. Goldratt (1990) defined synchronized manufacturing as any systematic method that
attempts to move material quickly and smoothly through the production process in concert with market demand. A
core concept to TOC is the idea that a few critical constraints exist.  Goldratt contends that there is only one
constraint in a system at any given time. As defined by Dettmer (1997), a constraint is “any element of a system or its
environment that limits the output of the system”. A constraint will prevent increases in throughput regardless of
improvements made to the system. The best schedule is obtained by focusing on the planning and scheduling of
these constraint operations. In essence, the constraint operations become the basis from which the entire schedule is
derived. TOC has several important concepts and principles. Among them (Goldratt 1990,1992):

1. Systems function like chains.
2. The system optimum is not the sum of the local optima.
3. The effect-cause-effect method identifies constraints.
4. System constraints can be either physically or policy.
5. Inertia is the worst enemy of a process of ongoing improvement.
6. Throughput is the rate at which the entire system generates money through sales.
7. Inventory is all the money the system invests in things it intends to sell.
8. Operating expense is all the money the system spends turning inventory into throughput.

The general process of TOC is as follows (Goldratt 1990):

1. Identify the systems’ constraints.
2. Decide how to exploit the system’s constraints.
3. Subordinate everything else to the above decision.
4. Elevate the system’s constraints.
5. If in the previous steps a constraint have been broken, go back to Step1, but do not allow inertia to 

cause a system constraint.

TOC has been successfully applied to scheduling problems (Academic and Industrial) (Advanced Manufacturing
Research, Inc. 1996). Its tools that comprised five distinct logic trees (explained extensively in (Dettmer1997)) are the
Current Reality Tree, the Evaporating Cloud Diagram, the Future Reality Tree, the Prerequisite Tree, and the
Transition Tree. These trees are tied to the Categories of Legitimate Reservation (that provide the logic to guide the



construction of the trees). These tools have not only been used in production scheduling but also in other enterprise
functions such as marketing and sales.

Summary and conclusions

Since job shop scheduling problems fall into the class of NP-complete problems, they are among the most difficult to
formulate and solve.  Operations Research analysts and engineers have been pursuing solutions to these problems
for more than 35 years, with varying degrees of success.

While they are difficult to solve, job shop scheduling problems are among the most important because they impact
the ability of manufacturers to meet customer demands and make a profit. They also impact the ability of autonomous
systems to optimize their operations, the deployment of intelligent systems, and the optimizations of communications
systems.  For this reason, operations research analysts and engineers will continue this pursuit well into the next
century.
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