
N I S T I R 5 8 3 1

An Algorithm for
Computing the
Minimum Covering Sphere
in Any Dimension

Theodore H. Hopp
Charles P. Reeve

U.S. DEPARTMENT OF COMMERCE
Technology Administration
National Institute of Standards and Technology
Manufacturing Engineering Laboratory
Manufacturing Systems Integration Division
Gaithersburg, MD 20899-0001

N I S T I R 5 8 3 1

An Algorithm for
Computing the
Minimum Covering Sphere
in Any Dimension

Theodore H. Hopp
Charles P. Reeve

U.S. DEPARTMENT OF COMMERCE
Technology Administration
National Institute of Standards and Technology
Manufacturing Engineering Laboratory
Manufacturing Systems Integration Division
Gaithersburg, MD 20899-0001

May, 1996

U.S. DEPARTMENT OF COMMERCE
Mickey Kantor, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

min
c

max
i

p i c

Current address: Westinghouse Savannah River Company, Aiken SC 298081

Minimum Covering Sphere 1

An Algorithm for Computing the Minimum Covering Sphere in
Any Dimension

Theodore H. Hopp Charles P. Reeve1

National Institute of Standards and Technology
Gaithersburg, MD 20899-0001

Abstract
An algorithm is presented for computing the minimum covering sphere for a set of n points in d-dimensional space

(0 < n, d <). The steps of the geometric construction can readily be programmed for a computer. In the worst case,
with all the points near the sphere surface, the expected computing time is estimated at O(nd). 2.3

Key words: algorithm; computational geometry; covering sphere; minimax fit; minimum covering sphere; surface fitting

1 Introduction

One tool needed in automated manufacturing work at the National Institute of Standards and Technol-
ogy (NIST) is an algorithm for computing the sphere of minimum radius covering a set of points in
three dimensions. The equivalent problem in two dimensions was first posed by Sylvester [11] in 1857.
Recent publications by Megiddo [6], Dyer [1], and Preparata and Shamos [8] also address the two-
dimensional case. Lawson [5] gives a compact iterative algorithm for solving the three-dimensional
case. It is appealing in its simplicity, but converges too slowly for practical use when many of the
points are near the surface of the sphere. Supowit [10] goes so far as to say “…for d [dimension] 3,
no decent techniques are yet known.” Elzinga and Hearn [2] consider the problem in n dimensions.
They formulate it as a convex programming problem and give a finite decomposition algorithm based
on the simplex method of quadratic programming.

In the above references the terms smallest enclosing circle, smallest enclosing ball, smallest
enclosing sphere, and minimum covering sphere are used in the same context. In this paper we will use
the latter term exclusively.

In searching for an efficient solution to the three-dimensional problem, we developed an algorithm
for geometrically constructing the minimum covering sphere. Later we found that the algorithm
extends easily into higher dimension.

2 The Problem

Let P be the set of n points p , p , …, p in d-dimensional Euclidean space, E . (Vectors will be1 2 n
d

indicated by bold lower case and matrices by bold upper case.) For simplicity the word sphere will
refer to the locus of points a fixed distance r from a given point c, the center of the sphere, regardless
of the dimension. Any sphere that encloses a set of points will be called a covering sphere (CS) for that
set of points. The sphere of smallest radius that encloses a set of points will be called the minimum
covering sphere (MCS) for the set of points. Mathematically the MCS problem is

N
min(n,d 1)

i 2

n!
i!(n i)!

3

Minimum Covering Sphere 2

(1)

where is the Euclidean norm in E . d

Two useful lemmas about the MCS, taken from [2], are re-stated here using our notation:

1) The center of the MCS can be expressed as a convex combination of at most d+1 of the given
points.

2) The MCS exists and is unique.

When n 2 and all the points are distinct, at least two and at most min(n,d+1) of these points define the
MCS for the n points; thus there are

combinations of points to be considered. Although the MCS is unique, the set of points defining the
MCS is not necessarily unique. For example, the eight points (±1, ±1, ±1) all lie on a sphere centered
at the origin with radius . The pair of points (1, 1, 1) and (-1, -1, -1) define the MCS, as do several
other combinations of points. We consider this ambiguity unimportant and seek only the center and
radius of the MCS. Some authors recommend that a first step in computing the MCS be to construct
the convex hull of the n points and delete all points that are interior to the hull. We did not incorporate
that step because we believe that the MCS problem is probably no more complex than the convex hull
problem, and that our algorithm algorithm is as efficient as any convex hull algorithm for arbitrary
dimension.

3 The Algorithm

Our algorithm geometrically constructs the MCS using an iterated two-step procedure. At the
beginning of each iteration, a non-empty set Q P exists such that all points in Q are affinely independ-
ent. Also, a CS for P exists such that each point in Q lies on the surface of the CS. (The CS is not
necessarily the MCS for Q.) Let c be the center of the CS. The iterated steps in constructing the MCS
are:

1) Compute the center t of the MCS for Q, then remove from Q any points which do not constrain the
MCS. (Point t then serves as a target.)

2) Shrink the CS by moving the center c toward t while maintaining all points in Q on the sphere
surface. If the surface of the shrinking CS contacts a point in P but not in Q, fix c and add the new
point to Q.

Initially c may be taken as point p and the set Q simply as the point farthest from p . The MCS for P1 1

has been found when either:

a) Q contains exactly d+1 points at the end of step 1 (in which case c and t will coincide at the start of
step 2), or

b) the center c of the shrinking CS in step 2 reaches target t without the sphere surface contacting a
new point.

INITIALLY

AFTER 3d
ITERATION

AFTER 2d
ITERATION

CS
MCS
CANDIDATE POINT
OTHER POINT

AFTER 1st
ITERATION

t
m

k 1
kqk

m

k 1
k 1

(q j qm) t
q j qm

2
0

t qm

m 1

k 1
k(qk qm).

A b

Ajk (q j qm) (qk qm),

bj Ajj /2

Minimum Covering Sphere 3

Figure 1 An illustration of the algorithm working in
two dimensions.

(2)

(3)

(4)

(5)

(6)

Points in Q before each iteration are called candidate points, and points in Q after the final iteration are
called constraining points.

Figure 1 shows these iterations graphically
for a small set of two-dimensional data. After
each iteration the candidate points are shown as
solid dots. The current CS is shown by the solid
circle, and the MCS for the candidate points is
shown by the broken circle. The algorithm ter-
minates after the third iteration when step 1 ends
with three candidate points.

Step 1 of the algorithm is accomplished as
follows. To avoid double-subscripting the p’s,
let the candidate points currently in Q be desig-
nated q , q , …, q where 0<m d+1. We first1 2 m

compute a point t which is equidistant from each
point in Q and which lies in the affine hull of
those points (see Hilton [4]). This point t, if it
exists, will be unique. We first express t as

Imposing the constraint

forces t to lie in the affine hull of the q’s. The
constraints

for j=1, 2, …, m-1 force t to be equidistant from the q’s. Combining (2) and (3),

Substituting (5) into (4) yields the linear system

where A is an (m-1)×(m-1) matrix with elements

b is an (m-1)-vector with elements

(1 2 m 1)
T.

c i(t c)
q1 p i

2
(q1 p i) 0.

CS for P

MCS for Q

q

p

p

p

p

c

t
c

1

1

4

2

3

3

Minimum Covering Sphere 4

(7)

Figure 2 The geometry used to find the next candi-
date point.

where j=1, 2, …, m-1, and

After (6) is solved for the first m-1 ’s, is computed by (3). Because the points in Q are affinelym

independent, the m-1 vectors q -q (j=1, 2, …, m-1) are linearly independent and (6) always has aj m

unique solution. Because A is symmetric and positive definite, the Cholesky factorization may thus be
used to efficiently solve (6). When d is large a significant savings in computing time can result.

If each of the m ’s is non-negative then the center of the sphere passing through the points is inside
the convex hull of the points; therefore the sphere is the MCS for the points in Q.

If one or more ’s are negative then the center of the sphere is outside the convex hull of the points;
therefore the sphere is not the MCS for the points in Q. It follows that one or more of the points in Q
does not constrain the MCS and, in fact, lies inside it. We were unable to find an analytical method for
identifying such points based solely on the computed ’s. We did, however, discover the following
heuristic which works well: Remove from Q the point corresponding to the most negative , reduce m
by one, and re-solve (6) for the reduced set of ’s. When all ’s are non-negative the center t is
computed by (2), and step 1 is completed. (See Section 5 for a discussion of this heuristic.)

Step 2 of the algorithm is accomplished as follows. First note that the unique line passing through
the non-identical points c and t has a parametric representation c+ (t-c) where - < < . Points c and t
are represented by =0 and =1 respectively. As noted earlier, the CS shrinks by moving its center
from c to t along this line. For every point p such that (t-c) · (q -p) 0, there is a finite such thati 1 i i

c+ (t-c) is equidistant from q and p ; that is,i 1 i

Figure 2 illustrates, in two dimensions, how
p falls into one of four regions depending on itsi

corresponding value. In higher dimension thei

diameter of the MCS indicated by the dashed
line can be thought of as a hyperplane normal to
the vector t-c. When 0, p is in region 1;i i

when 1, p is in region 2; when 0 < 1, pi i i i

is in region 3; when does not exist, p is ini i

region 4 (the hyperplane containing q and nor-1

mal to t-c). As c moves toward t, the shrinking
CS always includes regions 1, 2, and 4; therefore
only points in region 3 are candidates to con-
strain the shrinking CS. (For instance, the
shrinking CS will “contact” p3 when the center
reaches c3.) Furthermore, the first point that the
CS contacts is the one with the smallest non-
negative value, . When no points are inmin

region 3, the center of the CS is free to move all
the way to t (in effect, =1) and we are done.min

Step 2 can thus be stated:

a) For each p contained in Q set =1. Fori i

each p not in Q computei

di (t c) (q1 p i).

i

q1 p i

2
c

q1 p i

di

c[new] c[old]
min(t c[old]).

Minimum Covering Sphere 5

If d 0 then p cannot be the next candidate point, so set =1. If d > 0 then computei i i i

from (7).

b) Compute = min{ i=1, 2, …, n}. If <1 then the point corresponding to is the nextmin i min min

candidate point and is added to Q. The center of the new CS is computed to be

If =1 then the MCS for the current set Q is the final MCS, centered at t, for all n points.min

Note in Figure 1 that, as the iterations progress, the solid circles get smaller and the broken circles
get larger. This behavior, which occurs regardless of the dimension, is the trademark of our algorithm.
More formally stated, the sequence of radii of the minimum spheres covering set Q is strictly increas-
ing, and the sequence of radii of the covering spheres for set P is strictly decreasing. When the
sequences reach a common value the minimum covering sphere has been found.

4 Timing Test Results

Timing tests were performed on a CDC Cyber 180/855 computer at the National Institute of Standards
and Technology. The computations were done using 14 decimal digit arithmetic. Two types of
artificial data sets were generated using pseudo-random number generators. One type consists of points
uniformly distributed throughout the unit sphere. These data were designated uniform points. The
other type consisted of points uniformly distributed in the spherical shell of width 10 at the surface of-6

the unit sphere. These data were designated surface points. Both types of data were obtained by first
generating uniformly-distributed points on the surface of a d-dimensional unit sphere by the method of
Muller [7]. These points were then scaled to the interval (r,1) by the random variable R=[U+(1-U)r]d 1/d

where U is a random variable with uniform(0,1) distribution. For the uniform points r was 0, and for
the surface points r was 1-10 . The surface points were meant to simulate the most demanding case for-6

the algorithm. In E such points might result from measurements on the surface of a ball with a high-3

precision coordinate measuring machine. The uniform points were analyzed to provide a contrast.
In each case random data sets with selected values of n as high as 1280 and d as high as 32 were

analyzed, keeping track of the central processing unit (CPU) times. In the uniform case the expected
CPU time was estimated to be O(n d), and in the surface case the expected CPU time was estimated1.1 2

to be O(nd). (Estimates of the exponents were obtained by linear least squares using the log of the2.3

model cputime = n d).

Minimum Covering Sphere 6

Table 1 Algorithm performance on two types of data.

Uniform points Surface points

d n Range*

(iterations)
Range*

(CPU sec.)
Range*

(iterations)
Range*

(CPU sec.)

2 10 3-4 .001-.002 3-5 .002-.003

2 100 3-8 .009-.027 6-11 .020-.036

2 1000 4-7 .122-.229 10-15 .336-.501

4 10 3-6 .002-.005 4-9 .003-.011

4 100 7-12 .044-.073 13-17 .079-.104

4 1000 10-169 .527-.884 17-31 .961-1.76

8 10 5-8 .008-.014 6-10 .009-.022

8 100 13-22 .154-.259 25-44 .305-.566

8 1000 19-33 1.87-3.38 40-74 4.22-7.89

16 10 6-10 .016-.037 8-11 .025-.047

16 100 25-35 .622-.921 55-78 1.91-2.75

16 1000 49-72 9.72-14.3 94-118 19.4-24.5

based on ten replications*

For each of the d and n values shown in Table 1, ten replicate data sets were generated and
analyzed. The ranges of observed CPU times and number of iterations are shown. We regret that we
were unable to find published timing data for other algorithms with which to compare our own.

In our simulations we have rarely encountered endless cycles. We have identified only one
mechanism by which endless cycling occurs. It may happen when two points nearly tie to become the
next candidate point during step 2. The failure occurs as follows. During one iteration, one of the two
points—call it p —is found to be the next candidate point and is added to Q. However, the other pointi

p (not in Q) has a value of only sightly higher than that of p . During the next iteration, after thej i

target center has changed, point p has a negative (but very small magnitude) computed but is not inj

region 1. In consequence, the center must be pulled back from the target (rather than approach it) to
bring p back into the CS. This may then return the configuration to where it was before the firstj

iteration, and the cycle repeats. We have not analyzed this failure completely, but it seems to occur
only when the algorithm has nearly converged, so stopping the iterations and returning the current
covering sphere produces a nearly exact answer.

5 Discussion

We see three areas in which further research might lead to improvements in our algorithm. The first
concerns the heuristic in step 1 for deleting points in Q when negative ’s are obtained. Our initial
thought was to remove all points corresponding to negative ’s in order to reduce the size of linear

Minimum Covering Sphere 7

system (6) as much as possible. This heuristic works in that the algorithm eventually iterates to the
correct answer. However, in many cases points which do indeed define the MCS of the current set Q
are removed from Q. They immediately re-enter Q in step 2, thus increasing the total number of
iterations. After examining many sets of simulated data we came to the conclusion (but did not prove)
that removing the single point with the most negative from Q, and recomputing (6), is the most
efficient heuristic. In none of these test cases did this heuristic remove a point from the current set Q
which actually defined the MCS of that Q. As in the above case, a failure of this heuristic would not
result in a failure of the algorithm.

Another area for possible improvement is the addition of a rule for permanently eliminating non-
constraining points. In two dimensions, for example, points eliminated from Q in step 1 and points in
regions 1 and 2 in step 2 can safely be ignored during the rest of the execution of the algorithm. When
n is large a considerable savings in computing can result, depending on the structure of the data. In
three and higher dimensions, however, neither of these rules is valid. Since computing time increases
much more rapidly with d than n, we decided not to incorporate the special rules for the case d=2. If an
elimination rule can be found which works in any dimension and is easy to implement, it might greatly
enhance the efficiency of the algorithm.

A third area for improvement is in choosing which point in Q should be designated q in step 1.m

Depending on that choice, the condition number of A, and thus the accuracy with which the ’s are
computed, can vary widely. In a brief study we found that letting q be the point nearest the mean ofm

the q’s, in the Euclidean sense, was optimal most of the time. On computer calculations with a
relatively short word length, say six to eight digits, it may be worth the extra computational time to
incorporate this or a similar heuristic. Excellent discussions of matrix condition numbers and the
effects of rounding errors can be found in Golub and Van Loan [3] and in Stewart [9].

6 Conclusion

A simple and efficient algorithm for computing the minimum covering sphere in any dimension has
been presented. The number of points (n) and dimension (d) are bounded above only by computer
storage limitations. In infinite-precision arithmetic the MCS must always be found in at most N
iterations, as given in Equation (1). However, the finite-precision arithmetic of a computer opens the
possibility of endless cycling among several sets of points. To deal with this possibility, any computer
software which performs this algorithm should incorporate an upper bound on the number of iterations.

Source code in FORTRAN or C for our implementation of the algorithm is available from the
authors.

References

[1] M.E. Dyer, Linear Time Algorithms for Two- and Three-variable Linear Programs, SIAM
Journal of Computing 13(1) (1984), pp. 31-45.

[2] D.J. Elzinga and D.W. Hearn, The Minimum Covering Sphere Problem, Management Science
19(1) (1972), pp. 96-104.

[3] G.H. Golub and C.F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, 1985.

[4] P. Hilton, Advanced Topology, An Introductory Course, Courant Institute of Mathematical
Sciences, New York, 1969.

Minimum Covering Sphere 8

[5] C.L. Lawson, The Smallest Covering Cone or Sphere, SIAM Review 7(3) (1965), pp. 415-417.

[6] N. Megiddo, Linear Time Algorithm for Linear Programming in R and Related Problems,3

SIAM Journal of Computing 12(4) (1983), pp. 759-776.

[7] M.E. Muller, A Note on a Method for Generating Points Uniformly on N-Dimensional Spheres,
Communications of the ACM, 2 (1959), pp. 19-20.

[8] F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction, Springer-Verlag,
New York, 1985.

[9] G.W. Stewart, Introduction to Matrix Computations, Academic Press, New York, 1973.

[10] K.J. Supowit, Grid Heuristics for Some Geometric Covering Problems, Advances in Comput-
ing Research: Computational Geometry—Volume 1, JAI Press, Inc., Greenwich, 1983, pp.
228-229.

[11] J.J. Sylvester, On Poncelot’s approximate Linear Valuation of Surd Forms, Philosophical
Magazine, Ser. 4, 20 (1860), pp. 203-222.

