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Abstract:  Direct implementation of extended arithmetic operators on fuzzy numbers is

computationally complex.  Implementation of the extension principle is equivalent to solving a

nonlinear programming problem.  To overcome this difficulty many applications limit the

membership functions to certain shapes, usually either triangular fuzzy numbers (TFN) or

trapezoidal fuzzy numbers (TrFN).  Then calculation of the extended operators can be performed

on the parameters defining the fuzzy numbers, thus making the calculations trivial.  Unfortunately

the TFN shape is not closed under multiplication and division.  The result of these operators is a

polynomial membership function and the triangular shape only approximates the actual result.

The linear approximation can be quite poor and may lead to incorrect results when used in

engineering applications.  We analyze this problem and propose six parameters which define

parameterized fuzzy numbers (PFN), of which TFNs are a special case.  We provide the methods

for performing fuzzy arithmetic and show that the PFN representation is closed under the

arithmetic operations.  The new representation in conjunction with the arithmetic operators obeys

many of the same arithmetic properties as TFNs.  The new method has better accuracy and similar



computational speed to using TFNs and appears to have benefits when used in engineering

applications.

Keywords:  Fuzzy arithmetic, triangular fuzzy numbers, membership functions, arithmetic

approximations.

1.  INTRODUCTION

Engineering design and manufacturing problems are usually described in a domain of equations

and other mathematical relationships.  To model the imprecision in these domains we have begun

to explore the use of fuzzy numbers and fuzzy arithmetic.  Triangular fuzzy numbers (TFN) and

trapezoidal fuzzy numbers (TrFN) in particular are attractive to use in fuzzy modeling and

manufacturing [17].  They have an intuitive appeal and are easily specified by experts in

manufacturing.  These manufacturing experts have experience from building simulation models in

specifying the most likely value (modal value of TFN), the lower bound, and the upper bound.

These three parameters define a TFN.  TFNs and TrFNs appear to model many forms of

imprecision well and the arithmetic operations of TFNs based on this triple are trivial.  These

properties make the implementation of TFNs in application systems ideal for modeling problems

in design and manufacturing [22].

The research conducted on fuzzy arithmetic in this paper was investigated during the development

of a fuzzy constraint processing system for design and manufacturing [22].  Fuzzy constraint

processing is computationally intense and the order of operations is not known a priori.

Consequently, it was desirable to provide a compact representation of fuzzy quantities with an

associated set of standard arithmetic operators.  Since, many comparisons (i.e. <, >, = ) are

conducted in fuzzy constraint processing, accurate calculation of the membership functions is

critical to obtaining correct results [12].



TFNs under the nonlinear operations of fuzzy multiplication and fuzzy division are not invariant

[9].  The result of these operators is a polynomial membership function and the triangular shape

only approximates the actual result.  Since many ranking methods and constraint evaluation

techniques operate on the shape of the membership function the adequacy of the approximation is

important.  Unfortunately, it was shown in a previous paper by Giachetti and Young [12] that the

error of this linear approximation for fuzzy multiplication and division is large enough to cause

errors.  This paper will introduce three new parameters which are used to greatly improve the

approximation of the non-linear arithmetic operators.  The new approach maintains the

computational efficacy of performing operations based on a set of parameters.

2.  ORGANIZATION OF PAPER

The paper is organized as follows.  First useful terms relevant to fuzzy arithmetic are defined.

Analytical approaches and discretization approaches to calculate the fuzzy product and fuzzy

quotient are reviewed.  The error of the standard approximation for TFNs is defined and analyzed.

Three new parameters are introduced with the definitions for the arithmetic operations.  The

mathematical properties for the new representation are provided.  An implementation technique

for numeric fuzzy constraint satisfaction and fuzzy mathematics in general is proposed.

Conclusions and recommendations for use of the new approximations are made.

3. FUZZY NUMBERS AND ARITHMETIC

Definition 1.  (Fuzzy Number): A fuzzy number is a fuzzy set on real numbers.  It

represents information such as "about m".  A fuzzy number must have a unique modal value

"m", be convex, and piecewise continuous [23, 8].



This definition is generally too broad for direct implementation.  A common approach is to

limit the shape of the membership functions as defined by LR parametered fuzzy numbers

[6].  TFNs are a special case of LR parametered fuzzy numbers.  The graph of a typical

TFN is shown in Figure 1.  A TFN is defined by a triplet using the following notation.

~ , ,x a b c→ (1)

The membership function for this TFN is defined as:
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The α-cuts of a TFN define a set of closed intervals.  The intervals are:

[(b-a)α+a, (b-c)α+c] ,  ∀  α ∈  ]0, 1] (3)

Limiting the shape of the membership functions to triangular fuzzy numbers allows computation

of the arithmetic operators based on the parameters defined in (1).  The standard arithmetic

operations and their definitions are based on the triplet and are shown in Table 1.  These are

binary operations on real numbers. A binary operation ∗  in ℜ  is called increasing if for x1 > y1 and

x2 > y2,  (x1 ∗  x2 > y1 ∗  y2 ) and is called decreasing if (x1 ∗  x2 < y1 ∗  y2) [23].  The standard

operators ⊕ ⊗, are binary increasing operators. The operators ,  are neither strictly increasing

or decreasing.



Definition 2 (Closure Law):  The closure law states that if ~
A  and ~

B  are fuzzy numbers

according to definition 1 then for any binary, increasing (decreasing) function ∗  , ~
A ∗ ~

B  is a fuzzy

number adhering to definition 1 [23].  This law mirrors the case for crisp binary functions [18].

The operators of fuzzy addition and subtraction are closed and the definitions provided in Table 1

are exact.  Fuzzy multiplication and division are not closed; the definitions in Table 1 are only

approximations to the actual results [8, 13].  Using the definition for multiplication in Table 1, the

product of two TFNs,

~
, ,A a b c→ 1 1 1  and 

~
, ,B a b c→ 2 2 2  is,

~ ~ ~
, ,C A B a a b b c c= ⊗ → 1 2 1 2 1 2 (4)

Expression (4) will be called the standard approximation.

The actual result is found by rewriting the membership function to define a set of closed intervals

as in expression (3) [13].  Then the expressions defining the closed intervals are operated on using

interval arithmetic [16].  For two fuzzy numbers,

[ ]~
, , ( ) , ( )A a b c b a a c b c→ → − + − − +1 1 1 1 1 1 1 1 1α α

[ ]~
, , ( ) , ( )B a b c b a a c b c→ → − + − − +2 2 2 2 2 2 2 2 2α α

the product can be calculated,

[ ]

~ ~ ~

(( ) ) (( ) ) , ( ( ) ) ( ( ) )

C A B

b a a b a a c b c c b c

= ⊗

→ − + × − + − − + × − − +1 1 1 2 2 2 1 1 1 2 2 3α α α α

and results in the form for 
~
C  of,
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The multiplication operation of expression (5) results in the actual product and is referred to as

the analytical method for performing fuzzy arithmetic.  Calculations must be made for α ∈  ]0, 1]

to construct a curve representing the actual product.  The standard approximation to the product

and the actual result are shown in Figure 2.  The lines connecting the endpoints are parabolic.

Multiplication of 
~
C  by other TFNs results in higher powers of α.  The highest power of α is

equal to the number of terms multiplied to obtain the actual product.  If there are n terms then the

α-cuts of 
~
C  are defined by a membership function that is an nth order polynomial in α .

Multiplying the result by another TFN produces a higher power of α and more terms.  The

calculation is cumbersome and computationally expensive [21, 12].

This approach relies on the manipulation of symbols, and for multiplication and division of two

TFNs the resulting function is a polynomial.  This analytical approach is not feasible for computer

implementation and it suffers from computational complexity.  It is generally assumed that the

deviation (i.e. error) between the linear approximation of Table 1 and the polynomial shape of

expression (5) is small.  Giachetti and Young [12] have shown that this is not necessarily a good

assumption. They have shown that the approximation error is significant and can grow extremely

fast so as to render any results incorrect.



4. REVIEW OF EXISTING APPROACHES TO PERFORMING FUZZY ARITHMETIC

The arithmetic operations on fuzzy numbers can be defined by the extension principle.

Definition 3 (Extension Principle):  Let f :ℜ × ℜ → ℜ  be a binary operation over real

numbers.  Then it can be extended to the operation over the set ℜ  of fuzzy quantities.  If

we denote for A, B ∈  ℜ  the quantity C = f (A, B), then the membership function µC is

derived from the membership functions µA  and µB  by

[ ]µ µ µC A Bz x y x y z f x y( ) sup min( ( ), ( )) : , , ( , )= ∈ℜ =

for any z ∈  ℜ   [15].

The extension principle can be used to extend the four standard arithmetic operators; addition,

subtraction, multiplication, and division to be used with fuzzy numbers.  Baas and Kwakernaak

[2] have shown that the extension principle applied to arithmetic operators is found by an

unwieldy nonlinear programming problem.  Direct application of the extension principle is

therefore not feasible for real time calculation in applications.

Dong and Wong [5] proposed discretizing the fuzzy numbers in their membership range and then

using interval arithmetic to obtain a discretized solution.  Their method, called the Fuzzy

Weighted Average (FWA), obtains a much more accurate result than what was obtained by

discretizing the support [19].  It also reduces the computational complexity issue of the analytical

approach of expression (5).  This algorithm was modified into a more computationally efficient

form called the Level Interval Approximation (LIA) by Wood and Antonsson [20] to be used

specifically for design calculations.  These two methods perform interval arithmetic at discrete α-

cuts on the fuzzy numbers.  As such they can operate on any membership function.  The approach

is to discretize the membership functions into closed intervals at each α-cut, then perform interval



arithmetic at that α-cut.  The results are combined and the output is a discretized membership

function.  Intermediary values can be interpolated or recalculated.  In this method the accuracy is

greatly improved but the computational complexity is still an issue. Wood et al., [20] determined

the computational complexity of this algorithm.   For N imprecise parameters, and M discrete

levels used, the complexity of the given algorithm is:  H = M2N -1 k  where k is the number of

multiplications and divisions in f(
~
d ), where f(

~
d ) is the function containing all the calculations.

This algorithm is limited to performing calculations in a single expression and was extended to the

ELIA for a system of equations [4].  The complexity is a function of the number of discretized

points.  For example, if n = 30, m = 10, and k = 5, then there are 1.07 × 109 computations in f(
~
d ).

Clearly, this approach is computationally bounded when applied to even small size problems.  An

additional concern is implementation of the discretization algorithms in an application introduces

large memory requirements.  Each discrete point used must be stored internally by the system to

perform the calculations.  In the FWA and the LIA algorithms this storage requirement is 2M for

each fuzzy number.  In a manufacturing problem with 50 variables and a 0.10 discretization or 20

values for each fuzzy number, in total 50*20 = 1000 numbers must be maintained for this small

problem.   The mathematical properties are not explored and the approach lacks an easy

representational form.

Dubois and Prade [6] presented a parametered representation which could be used to perform

fuzzy arithmetic.  The authors noted the expressions for fuzzy multiplication and division are only

approximations.  Giachetti and Young [12] analyzed these approximations and demonstrated that

they can contain large errors, up to 300%.  The main source of error was identified as the

difference between the actual polynomial shape and the straight line approximation.  A polynomial

approximation was suggested for the fuzzy product which had improved accuracy with low

computational complexity.



Arakawa and Yamakawa [1] have also studied this problem and developed a partial differential

calculus expression to obtain the membership function of arithmetic calculations.  The approach

assumes the membership function shape remains unchanged and consequently,  it exhibits errors at

lower α values.

It is desirable to maintain the computational efficacy provided by a compact parameterized

representation.  Two benefits are realized by taking this approach.  First, in an engineering system

the parameters can easily be viewed by the system user.  Second, the parameter representation

greatly reduces the required calculations rather than maintaining internally a large number of

discrete points to reconstruct the membership functions.

5. ERROR ANALYSIS OF TFN ARITHMETIC OPERATORS

Since the Operations shown in Table 1 are widely used [3] it seems appropriate that an analysis of

the approximation errors involved be conducted.  The reason for performing the error analysis is

that first there is no advice or methods to determine when results obtained from the standard

approximations are accurate.  Second, there is no expression to determine what the resulting error

is.  It is difficult to build valid applications employing TFNs and these operators without any

guidelines for determining the accuracy and reliability of the output.

The error is the difference at a given α-level ,between the approximated membership function

of expression (4) and the actual membership function as defined by expression (5) [12].  Each

TFN can be separated into a left and right segment in accordance with the LR parametered

representation [6].  The actual product (5) will have the value x, at a given α defined as TL for

the left segment, and TR for the right segment.  The standard approximation (4) will have value

x, at a given α defined as PL and PR for the left and right segments respectively.  This allows us



to separately analyze the left and right portions of the membership curve.  The left and right

segment error are then,

εL = PL - TL (6a)

and

εR = PR - TR (6b)

Graphically this is the horizontal distance between the two curves as shown in Figure 2.  This

error is the error in the support at a given α-cut.  The error in this form corresponds to the

information most generally sought.  At a given α-cut it specifies the difference between the

actual value and the approximated value.  Alone in this form it has limited use.  The reason is

that the magnitude of the error only has meaning with respect to the magnitude of the fuzzy

number.

A more meaningful  measure of the error can be obtained by taking the absolute percent error.

The absolute percent error with respect to the actual value is defined for the left segment as,

%ε L
L L

L

P T

T
= − ⋅100 (7a)

and for the right segment as,

%ε R
R R

R

P T

T
= − ⋅100 (7b)

These expressions require knowledge of both the approximation and the actual value at every

α-cut to have any utility.  A user who knows the actual value would not use an approximation.



In the next section an expression is developed which can be used to calculate the absolute

percent error without having a priori knowledge of the actual value.

5.1  FUZZY DIVISION

In a previous publication fuzzy multiplication was analyzed [12].  Here, fuzzy division is analyzed

in a similar manner.  The quotient of two fuzzy numbers is defined as the product of the inverse of

the denominator with the numerator [9],

~

~
~

~
A

B
A

B
= ⊗ 1

(8)

The fuzzy inverse is,

1 1 1 1
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~ , ,
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=

the product of the inverse of ~
B  with ~

A  results in the quotient defined in Table 1.  This can be

rewritten in α-cut notation as,
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The later representation of expression (9) will be used in this section because it lends itself to

proper analysis.  Substituting the expressions for the spread ratios (10) introduced in Giachetti

and Young [12],

λ ρi
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i
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= =and (10)

and rearranging terms, the standard division approximation can be rewritten as,
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The subscripts for λ and ρ refer to either TFN1, the numerator, or TFN2, the denominator.

Expression (11) defines the α-cuts of the quotient when using the standard division

approximation.  This is a linear function in α, since all other parameters are constant.

5.2 ACTUAL QUOTIENT

Each α-cut is a crisp interval.  The mathematics of interval arithmetic can be performed on the

expression for the lower and upper boundary of each α-cut [13].  This leads to the actual

quotient.  The actual quotient is obtained by operating on the expressions for the α-cuts of ~
A  and

~
B .  These are,

A b a a c b cα α α= − + − − +(( ) , ( ) )1 1 1 1 1 1

B b a a c b cα α α= − + − − +(( ) , ( ) )2 2 2 2 2 2

The actual quotient for ~ ~
C A= ~

B , is obtained by dividing 
~
Aα  by

~
Bα .  For ~

,
~

A B  > 0,
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Given the relationships for λ and ρ (10), and substituting into expression (12) we can derive the

actual quotient as,
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Expression (13) defines the α-cuts of the actual quotient for two triangular fuzzy numbers.  The

membership functions resulting from expressions (11) and (13) are shown in Figure 2.  It is noted

that the standard division approximation makes a straight line approximation to the polynomial

shape of the actual quotient.

Substituting the standard approximation for the quotient (11) and the actual quotient (13) into

expression (7) and simplifying, we have an expression for the percent absolute error,
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and for the right side,
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These expressions can be used to calculate the percent absolute error of the standard

approximation for division given two TFNs.  The absolute percent error of expressions (14a) and

(14b) is a function of the spread ratios and not the vertices of the underlying fuzzy quantities.

5.3 THE SPREAD RATIOS

The spread ratios play an important role in fuzzy multiplication and division.  Conceptually the

spread ratio is a measure of the imprecision in a fuzzy number when the imprecision is defined

as the distance from the modal value [10, 20].  The left spread ratio λ is in the range [1, ∞).

When λ = 1, there is no support on the left side of the mode.  The imprecision of the left



support is directly proportional to λ.  As λ increases the imprecision on the left side increases.

The right spread ratio ρ is in the range (0, 1].  When ρ = 1, there is no support on the right side

of the mode.  The imprecision on the right side is inversely proportional to ρ.  As ρ decreases

the imprecision of the right support increases.  For ~ , ,x a b c→  when both λ = 1 and  ρ = 1

the triple defines a crisp number.

5.4  EXAMPLE OF SAMPLE CALCULATIONS WITH ASSOCIATED ERROR

Tables 2 and 3 show the actual quotient, the standard approximation to the quotient, and the %ε

at discrete α-cuts.  The results demonstrate that significant errors (up to 31%) can be realized.

This demonstrates the reason for the research conducted to improve arithmetic approximations.

6. AN APPROACH TO EFFICIENTLY AND ACCURATELY APPROXIMATING FUZZY

MULTIPLICATION AND FUZZY DIVISION OF TFNS

It is recognized that the main source of error between the actual and approximated result of fuzzy

multiplication and division is the difference between the polynomial shape and the straight line

approximation.  It is also observed that the polynomial has a consistent shape and the order of the

polynomial is equal to the number of nonlinear operations used to obtain it.  A better

approximation than a straight line approximation is a polynomial approximation.  The approach

taken is to create a generalized polynomial which closely matches the actual results.  The

generalized polynomial is then scaled and added to the linear result.  This provides an improved

approximation with only a slight increase in the number of computations.

The approximation introduced in Giachetti and Young [12] is modified to obey the field

properties and expanded to include fuzzy division.  The approximation is built upon six

parameters which describe a parameterized fuzzy number (PFN).  The representation of a PFN is;



~
, , , , ,A a b c n→ λ ρ (15)

where a, b, and c are the vertices of a TFN.  λ and ρ are the spread ratios as defined by

expression (10) .  The spread ratios are included because, as shown in Section 5, they characterize

the approximation error.  n is the number of terms or alternatively the order of the polynomial

expression for the membership function.  It was shown in [12] that as n increases the order of the

polynomial defining the actual product increases and the error of the standard approximation

increases.  The definitions for using these six parameters to perform fuzzy arithmetic are shown in

Table 4.

The term, n, is the maximum of  n
A
~  and n

B
~  for addition and subtraction because these are linear

operations which do not increase the power of the defining polynomial.  n is additive ( n
A
~ + n

B
~ ) for

multiplication to match the power of the polynomial, and additive plus one ( n
A
~ + n

B
~  +1) for

division.  The plus one accounts for the additional non-linear inverse operation.

Thus, using the expressions defined in Table 4, the vertices, spread ratios, and n can be

determined for the arithmetic operators.  The determination of the α-cuts from the representation

of expression (15) is now developed.

6.1  GENERALIZED POLYNOMIAL AND SCALING EXPRESSION

Giachetti and Young [12] demonstrate an improved approximation is made by storing a

generalized polynomial in [0, 1] and retrieving it based on the parameters α and n.  It is then

scaled to the magnitude of the underlying fuzzy quantity using the spread ratios in a regression

analysis.  The generalized polynomial and the scaling expression are described next.

A polynomial which closely tracks the shape of the polynomial for the actual product and quotient

has the following expression,
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We refer to this expression as the generalized polynomial.  This polynomial is the basis for the

new α-cut approximation.  The first term in (16), ( )
( )

−
− −

α
1 1

2

n

, switches between 1 and − 1

α
 for

even and odd n , respectively.  n is the number of terms multiplied together.  The summation

results in powers of α from 2 to n that alternate between ±  for odd and even n.  The last term,

− − +







( )1 1

2

n

α , alternates between 0 and -α for odd and even n, respectively.   The generalized

polynomial (16) is shown in Table 5 and is zero at {0, 1}.  Since G is independent of any specific

TFN it can be computed once and stored in a table for various combinations of α and n and

retrieved as needed.

An extensive empirical analysis is performed on combinations of n and the spread ratios.  A value

called τ is used to minimize the error for combinations of n and the spread ratios.  A linear fit is

made to this data.  The resulting linear expression scales the generalized polynomial of G based on

the spread ratios and n.  The scaling expressions are for the left,

τ λ λL n n( , ) . . .= + −0568 011 0 859 (17a)

and the right,

τ ρ ρR n n( , ) . . .= − + +185 0144 119 (17b)

The scaling factor times the generalized polynomial is added to the standard approximation to

obtain a new approximation for each α-cut.  For multiplication the α-cut expressions are,



P P G n n b aN(L) L L= + −( , ) ( , )( )α τ λ (18a)

P P G n n c bN(R) R R= + −( , ) ( , )( )α τ ρ (18b)

and for division,

Q D G n n b aN(L) L L= + −( , ) ( , )( )α τ λ (19a)

Q D G n n c bN(R) R R= + −( , ) ( , )( )α τ ρ (19b)

Expressions (18a), (18b), (19a) and (19b) can be used to determine the α-cuts defined by the six

parameters.

6.2  DIVISION ERROR TERM FOR NEW APPROXIMATION

Let QN(L) be the new approximation and QL be the actual quotient where the subscript refers to the

left spread only.  The percent error of expression (7) can be derived for the new approximation of

expression (19a).  The value of the left segment as a function of α in expression (19a) is,
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α α τ λ( , ) ( , ) (20)

Substitute (13) and (20) into the percent error expression (7) and simplify to obtain,
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ε
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α α τ λ

λ α
ρ α
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(21)



Expression (21) is used to determine the percent error of the new approximation (19a) for the left

value.  A similar expression can be derived for the right segment.

( )( )
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α α τ ρ

ρ α
λ α
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RG n n
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(22)

6.3  EXAMPLE OF APPLYING THE NEW APPROXIMATION

Given two TFNs,

~ , , , .43, . ,x → 70 100 130 1 0 77 1

~ , , , . , . ,y → 4 10 16 2 5 0 63 1

To determine the quotient 
~
~
x

y
 the six parameters are derived from Table 4.  The first three

parameters are,

D = =70

16

100

10

130

4
4 38 10 32 5, , . , , . , with the left α-cut defined by, 5.62α+4.38.

 The spread ratio is obtained from Table 4,

( )λ λ
ρ

=








 =x

y

1
1 16

2

3 23 .43 .  = 1.54

The left scaling factor (8-4a) is,

τ L ( , . ) . ( . ) . ( ) .3 154 0 568 154 011 3 0 859= + −



τL = 0.346.

The generalized polynomial for n = 3 in expression (16) is G = α2-α.

The new approximation from expression (18a) is,

Q D G n n b aN L L L( ) = + −( , ) ( , )( )α τ λ

= 5.62α + 4.38 + (α2-α)0.346(10-4.38)

QN L( ) . . .= + +1945 3675 4 382α α

The actual quotient from expression (13) is, 
30 70

6 16

α
α

+
− +

.

The left segment results from the actual quotient, the standard approximation, and the new

approximation are shown in Table 6.  The new approximation leads to noticeably more accurate

results.  The maximum percent error of the left segment is reduced from 10% to 3% and the

maximum percent error of the right segment is reduced from 29% to 8%.

7. MATHEMATICAL PROPERTIES

Theorem 1.  The new approximation defines a fuzzy number according to definition 1, i.e. it is

convex, normal and piecewise continuous.

Proof:

The first two terms of expressions (18a) and (18b) are PL and PR and are defined by the standard

approximation for multiplication.  The approximation is defined by expression (4). and the α-cuts

are



PL = (b-a)α+a

PR = (b-c)α+c

 [PL , PR] define a set of closed intervals for α ∈  [0, 1] which define a fuzzy number according to

definition 1 [14, 23].  There are three possible cases to examine.  When α = 1, α = 0, and 0 < α

<1.

(i)  When α = 1, G(α, n) = 0.  Then PN(L) = PL = PN(R)  = PR.

(ii)  When α = 0, G(α, n) = 0.  Then PN(L) = PL and PN(R)  = PR.

(iii)  When  0 < α < 1 and n > 2 (the conditions when the new approximation is used) then G(α,

n) is a polynomial equation in α.   For a given fuzzy number τL and τR are constants.  Given the

expressions for the standard approximation,

PL = (b-a)α+a

and the generalized polynomial as,

G(α, n) = (αn-αn-1+αn-2 -, ... +, ... ,-α)

The polynomial of the new approximation is,

(b-a)α+a + τL⋅(b-a)⋅(αn-αn-1+αn-2 -, ... +, ... ,-α)

This function is increasing in α.  Likewise, for the right segment,

(b-c)α+c + τR⋅(c-b)⋅(αn-αn-1+αn-2 -, ... +, ... ,-α)

This function is decreasing in α.



Therefore, for α1 < α2 then PN(L)(α1) < PN(L)(α2) and PN(R)(α1) > PN(R)(α2).

Given (i), (ii), and (iii) the convexity condition holds.

When α = 1 there is only one value x which is given by PN(L)(α=1) = PN(R)(α=1).  Therefore, the

normality condition holds.

As previously noted the new approximations are polynomials.  As such they are continuous

functions (i.e. 
∂α
∂P

).  Therefore, the continuity condition holds.  Since the three conditions

defining a fuzzy number hold the new parametization defines a fuzzy number  ■

7.1  Topological Closure

Topological closure is the closure law (definition 2) applied to the membership function.  This

means that any algebraic operation on a TFN will result in a TFN.  We have shown that the

standard operations of multiplication and division of TFNs yield polynomial fuzzy numbers and

therefore topological closure does not hold.  Using the new approximations defined for

multiplication and division does maintain topological closure of parameterized fuzzy numbers as

represented by expression (15).  TFNs are a special case of parameterized fuzzy numbers in which

the order of the polynomial is one.  Consequently, the result of an arithmetic operation using the

new approximation always produces a result which is a fuzzy number that can be operated on

using the arithmetic operators defined in Table 4.

7.2  Field Axioms

In this section the properties of a field are examined for the new representation.

Theorem 2.  The commutative property, ~ ~ ~ ~A B B A∗ = ∗  with PFNs holds for { }∗∈ ⊕ ⊗ , .



Proof:  For ∗= ⊕ , given two PFNs

~ , , , , ,A a b c n→ 1 1 1 1 1 1λ ρ

~ , , , , ,B a b c n→ 2 2 2 2 2 2λ ρ

~ ~
, , , , , max( , )max( , ) max( , )A B a a b b c c n nn nn n n nn n⊕ → + + +1 2 1 2 1 2 1 2 1 2 1 2

1 21 2 1 21 2λ λ ρ ρ

~ ~
, , , , , max( , )max( , ) max( , )B A a a b b c c n nn nn n n nn n⊕ → + + +2 1 2 1 2 1 2 1 2 1 2 1

2 12 1 2 12 1λ λ ρ ρ

They are identical, therefore commutative property holds for ∗= ⊕ .  ■

For ∗= ⊗

~ ~
, , , , ,A B a a b b c c n nn nn n n nn n⊗ → ++ +

1 2 1 2 1 2 1 2 1 2 1 2
1 21 2 1 21 2λ λ ρ ρ

~ ~
, , , , ,B A a a b b c c n nn nn n n nn n⊗ → ++ +

2 1 2 1 2 1 2 1 2 1 2 1
2 12 1 2 12 1λ λ ρ ρ

They are identical, therefore commutative property holds for ∗= ⊗ .  ■

Theorem 3.  The associative property, ( )~ ~ ~
A B C∗ ∗  = ( )~ ~ ~

A B C∗ ∗  with PFNs holds for  { }∗∈ ⊕ ⊗ , .

Proof:  For ∗= ⊕  and

~ , , , , ,A a b c n→ 1 1 1 1 1 1λ ρ

~ , , , , ,B a b c n→ 2 2 2 2 2 2λ ρ

~
, , , , ,C a b c n→ 3 3 3 3 3 3λ ρ  then,

( )~ ~ ~
A B C+ + →〈 ( ) ( ) ( )a a a b b b c c c1 2 3 1 2 3 1 2 3+ + + + + +, , ,



λ λ λ1 2 3
1 1 32 3

2 3
1 2 3 n n nn n

n n
n n n max( , )

max( , )
max( , max( , )) 





ρ ρ ρ1 2 3 1 2 3
1 2 32 3

2 3
1 2 3 n n nn n

n n
n n n n n nmax( , )

max( , )
max( , max( , )) , max( ,max( , ))



 〉

( )~ ~ ~A B C+ + → 〈 ( ) ( ) ( )a a a b b b c c c1 2 3 1 2 3 1 2 3+ + + + + +, , ,

λ λ λ2 2 3
1 21 2

1 2
31 2 3 n nn n

n n
nn n n max( , )

max( , )
max(max( , ), ) 





ρ ρ ρ1 2 3 1 2 3
1 21 2

1 2
31 2 3 n nn n

n n
nn n n n n nmax( , )

max( , )
max(max( , ), ) , max(max( , ) )



 〉

The first three terms are real numbers and associative [18].  The fourth and fifth terms are

identical.  This is shown by canceling the root max(n2, n3) with the power of the radical.  The

same cancellation can be performed with max(n1, n2) for the second expression.  The sixth terms

are also identical since the maximum operation is associative.  Since the six terms are identical

then for ∗= ⊕  the new approximation is associative. ■

For ∗= ⊗

( )~ ~ ~
A B C⊗ ⊗ →  〈 ( ) ( ) ( )a a a b b b c c c n n nn n

n n
n n n

1 2 3 1 2 3 1 2 3 1 2 3
1 1 32 3

2 3
1 2 3, , , ,λ λ λ+

+
+ + 





ρ ρ ρ1 2 3 1 2 3
1 2 32 3

2 3
1 2 3 n n nn n

n n
n n n n n n+

+
+ + 



 + +, 〉

( )~ ~ ~
A B C⊗ ⊗ →  〈 ( ) ( ) ( )a a a b b b c c c n nn n

n n
nn n n

1 2 3 1 2 3 1 2 3 2 2 3
1 21 2

1 2
31 2 3, , , ,λ λ λ+

+
+ + 







ρ ρ ρ1 2 3 1 2 3
1 21 2

2
31 2 3 n nn n

n n
nn n n n n n+

+
+ + 



 + +, 〉

The six terms can be reduced as was shown for addition.  Since the expressions are identical then

for ∗= ⊗  the new approximation is associative. ■

Theorem 4.  The identity property,
~ ~
M M⊗ =1  holds for PFNs.

Proof:  In Table 2 the definition of scalar multiplication is given as,

kA ka kb kc n
~

, , , , ,→ 1 1 1 1 1 1λ ρ .  If k = 1 then ka, kb, and kc are unchanged since real numbers obey

the identity property.  Since the six terms are unchanged, the identity property is maintained. ■

A weak distributivity of ⊗  over ⊕  exists for fuzzy quantities and is valid when 
~
A is either a

positive or a negative fuzzy number and 
~
B  and 

~
C are both either positive or negative fuzzy

numbers [7].  A positive fuzzy number is when µ ~ ( )
Q

x x= ∀ <0 0 .  This is termed the restricted

distributive property and can be restated as, ( ) ( ) ( )~ ~ ~ ~ ~ ~ ~
A B C A B A C⊗ ⊕ ⊆ ⊗ ⊕ ⊗ .  The restricted

distributive property does not hold for PFNs.  Let 
~ ~

(
~ ~

)P A B C1 = ⊗ ⊕  and

( ) ( )~ ~ ~ ~ ~
P A B A C2 = ⊗ ⊕ ⊗ .  The first three terms of expression (15) for 

~
P1  and 

~
P2  are identical

since a, b, and c are real numbers and real numbers are distributive [18].  The spread ratio terms
are not identical.  This is shown by examining the spread ratio λ for 

~
P1 .  The spread ratio λ ~

P1
 is,

λ λ λ1 2 3
1 2 32 3

2 3
1 2 3 n n nn n

n n
n n n max( , )

max( , )
max( , ) 





+

simplify this to obtain,

λ λ λ1 2 3
1 2 31 2 3 n n nn n n+max( , ) .

The spread ratio term λ for 
~
P2  is,



λ λ λ λ1 2 1 3
1 21 2

1 2
1 31 3

1 3
1 2 1 3 n nn n

n n
n nn n

n n
n n n n +

+
+

+
+ + 











max( , )

simplify this to obtain,

λ λ λ1
2

2 3
1 2 31 2 3 n n nn n n+max( , ) .

Consequently, λ ~
P1

< λ ~
P2

 and it can also be shown that ρ ~
P1

> ρ ~
P2

.  Since 
~
A appears twice in

~
P2  its spread ratio also appears twice.  The last term n can be shown to be identical in 

~
P1  and

~
P2 .  The vertices a, b, and c of the PFN are distributive but the spread ratios are not.  The

membership function of 
~
P2  will have the same vertices as 

~
P1  but for α ∈  ]0, 1[ will be shifted to

the left.  Preliminary investigation indicates this shift appears to be inconsequential but caution

should be used when using the distributive property in applications.

An inverse element does not exist for the standard mathematical operators in fuzzy set arithmetic,

that is, 
~ ~
M M⊗ ≠−1 1 [8].  PFNs do not have this property either.

7.3 A COMPLETE SET OF THE BASIC ARITHMETIC OPERATORS

This section shows that PFNs maintain the important mathematical properties of commutative and

associative.  Although the distributive property does not remain the vertices of the PFN are

distributive.  These properties are important when used in engineering applications.  Using PFNs

in a system, the order of operations is not known a priori and complex expressions can be

constructed using the basic arithmetic operators defined in Table 4.  A significant result is that the

new approximation has topological closure under these operators.



8. IMPLEMENTATION SCHEME

The generalized polynomial of expression (16) is stored in a database table for combinations of α

and n.  The expressions of Table 4 are used to determine the parameters for each of the arithmetic

operations.  When an evaluation needs to take place then expressions (18a), (18b), (19a), and

(19b) are used to determine the α-cuts.

Note that the complexity of the determining the parameters of the fuzzy numbers from Table 4 is

trivial.  Only when an evaluation is necessary are the α-cuts determined.  This strategy greatly

reduces the computational complexity since the calculations are only conducted when necessary.

The α-cut calculation is of the order O(n) where n equals the number of terms.  This is a

fundamental difference from the discretization approaches where all the discrete points are always

calculated [21].

8. RANGE OF APPLICABILITY

The approximation errors are a function of only the spread ratios, n, and α.  The range of errors

which are less than 10% is when λ < 3.33 and ρ > 0.50.  Outside of this range, the approximation

error at any given α level is sufficiently significant (> 10%) that careful attention must be paid to

any derived results.  The standard approximation yields acceptable results in the range of λ < 1.67

and ρ > 0.71.  Consequently, the new approximation can be applied to a greater range of fuzzy

numbers.

9. RELATION TO TYPE-II FUZZY SETS

Generally, exact values for membership in a set are not realistic and only approximate values

provided as a lower and upper bound can be provided.  This generalization of ordinary fuzzy sets

is called a type-2 fuzzy set where the membership function is fuzzy [14].



The approximation used here has an interval or percent error associated with each α-cut and

consequently it is related to type-2 fuzzy sets.

10. CONCLUSIONS

We have found that engineers will easily accept using TFNs in models.  They are more tractable

than performing fuzzy arithmetic on non-standard membership functions.  While some researchers

have approached the problem from the perspective of discretization we feel the simple operations

on the parameters are more straight forward and easily understood by users.  Furthermore, the

computational complexity issue of discretization and the prospect of storing a large number of

discrete points to represent a fuzzy number is an imposing computational task considering the size

of most applications.

Commonly used approximations for the standard operators for TFNs [13] showed that incorrect

results could be obtained [12].  The discretization approaches [5, 20] were not a suitable

alternative since they did not have a concise representation, required internal storage of many

discrete points to reconstruct membership functions, and suffered from computational complexity.

The representation and operator set developed here has been successfully used to solve a problem

in structural engineering using the constraint satisfaction approach [11].  It appears the parametric

representation is easily understood by practitioners in engineering and accurate approximations

can be made from it.
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Figure 1.  Triangular Fuzzy Number ~x →→ 〈〈 3, 4, 5〉〉



Table 1.  Arithmetic Operations on TFNs and Their Definition

Arithmetic Operation Definition

~ ~
A B⊕ = a a b b c c1 2 1 2 1 2+ + +, ,

~
A

~
B = a c b b c a1 2 1 2 1 2− − −, ,

~ ~
A B⊗ = a a b b c c1 2 1 2 1 2⋅ ⋅ ⋅, ,

~
A

~
B =

a

c

b

b

c

a
1

2

1

2

1

2
, ,
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Figure 2.  Error At an αα-cut



Table 2  Results for 〈〈 25, 40, 55〉〉   〈〈 4, 10, 16〉〉  λλN = 1.6 , ρρN =

0.73 and λλD = 2.5, ρρD = 0.625

Actual

Quotient

Standard

Approximation

% Error

alpha Left Right Left Right Left Right

1 4.0 4.0 4.0 4.0 0% 0%

0.9 3.6 4.4 3.8 5.0 3% 13%

0.8 3.3 4.9 3.5 6.0 6% 22%

0.7 3.0 5.4 3.3 6.9 9% 28%

0.6 2.7 6.1 3.0 7.9 10% 31%

0.5 2.5 6.8 2.8 8.9 11% 31%

0.4 2.3 7.7 2.5 9.9 11% 29%

0.3 2.1 8.7 2.3 10.8 10% 24%

0.2 1.9 10.0 2.1 11.8 8% 18%

0.1 1.9 11.6 1.8 12.8 5% 10%

0 1.6 13.8 1.6 13.8 0% 0%



Table 3  Results for 〈〈 1, 4, 9〉〉   〈〈 1, 2, 3〉〉  λλN = 4, ρρN =  0.44 and λλD

= 2, ρρD = 0.66

Actual

Quotient

Standard

Approximation

% Error

alpha Left Right Left Right Left Right

1 2.0 2.0 2.0 2.0 0% 0%

0.9 1.8 2.4 1.8 2.7 4% 14%

0.8 1.5 2.8 1.7 3.4 8% 22%

0.7 1.3 3.2 1.5 4.1 11% 27%

0.6 1.2 3.8 1.3 4.8 14% 28%

0.5 1.0 4.3 1.2 5.5 17% 27%

0.4 0.8 5.0 1.0 6.2 18% 24%

0.3 0.7 5.8 0.8 6.9 18% 20%

0.2 0.6 6.7 0.7 7.6 17% 14%

0.1 0.4 7.7 0.5 8.3 12% 7%

0 0.3 9.0 0.3 9.0 0% 0%



Table 4  Fuzzy Arithmetic with Parameterized Fuzzy Numbers

Arithmetic

Operation

Definition

Scalar Summation

k A+ =~

k a k b k c n+ + +, , , , ,λ ρ

Scalar

Multiplication

kA
~ =

ka kb kc n, , , , ,λ ρ

Fuzzy Summation

~ ~
A B⊕ =

a a b b c c n nn nn n n nn n
1 2 1 2 1 2 1 2 1 2 1 2

1 21 2 1 21 2+ + +, , , , , max( , )max( , ) max( , )λ λ ρ ρ

Fuzzy Subtraction

~
A

~
B =

a c b b c a n nn
nn n

n
nn n1 2 1 2 1 2 1

2
1

2
1 2

1
2

1 2
1

2
1 2

1 1− − −, , , , , max( , )max( , ) max( , )λ
ρ

ρ
λ

Fuzzy

Multiplication

~ ~
A B⊗ =

a a b b c c n nn nn n n nn n
1 2 1 2 1 2 1 2 1 2 1 2

1 21 2 1 21 2, , , , ,λ λ ρ ρ+ + +

Fuzzy Division

~
A

~
B

a

c

b

b

c

a
n nn n

n n n
n

n n1

2

1

2

1

2
1 2

1
1

1 2

1
1

1 2
1

2
1 2 1

2
1 21 1 1, , , , ,λ ρ ρ λ











 + +

+
+ +

+
+ +



Table 5 Polynomials for the Correction Term

for n= 2, 3, 4, 5, and 6.

n Correction Term

Polynomial

2 (α2-α)

3 (α2-α)

4 (α4-α3+α2-α)

5 (α4-α3+α2-α)

6 (α6-α5+α4-α3+α2-α)



Table 6  The Percent Error for the Standard and New

Approximation for 
~
~
x

y

Actual

Quotient

Standard

Approximation

New

Approximation

% Error of

Standard

% Error of

New

Approximation

alpha Left Right Left Right Left Right Left Right Left Right

1 10.0 10.0 10.0 10.0 10.0 10.0 0% 0% 0% 0%

0.9 9.2 11.0 9.4 12.3 9.3 10.9 3% 12% 1% 1%

0.8 8.4 12.0 8.9 14.5 8.6 12.0 6% 20% 2% 0%

0.7 7.7 13.3 8.3 16.8 7.9 13.5 8% 26% 2% 1%

0.6 7.1 14.7 7.8 19.0 7.3 15.3 9% 29% 3% 4%

0.5 6.5 16.4 7.2 21.3 6.7 17.4 10% 29% 2% 6%

0.4 6.0 18.4 6.6 23.5 6.2 19.8 10% 27% 2% 7%

0.3 5.6 20.9 6.1 25.8 5.7 22.5 9% 23% 2% 8%

0.2 5.1 23.8 5.5 28.0 5.2 25.5 7% 17% 1% 7%

0.1 4.7 27.6 4.9 30.3 4.8 28.9 4% 10% 0% 5%

0 4.4 32.5 4.4 32.5 4.4 32.5 0% 0% 0% 0%


