The Distributed Data System of the
Automated Manufacturing Research Facility
of the National Bureau of Standards

Cita M. Furlani
Don Libes
Edward J. Barkmeyer
Mary J. Mitchell

Factory Automation Systems Division
Center for Manufacturing Engineering
National Bureau of Standards

Presented by:

Mohammad Khatib

COMPCON SPRING '88

Thirty-third IEEE Computer Society International Conference
San Francisco, California

February 29 - March 4, 1988

The Distributed Data System of the
Automated Manufacturing Research Facility
of the National Bureau of Standards

Cita M. Furlani
Don Libes
Edward J. Barkmeyer
Mary J. Mitchell

ABSTRACT: A major facility for manufacturing research exists at
the National Bureau of Standards (NBS), the Automated Manufac-
turing Research Facility (AMRF). The AMRF has been designed as a
"data driven" control system. This permits it to handle a broad
range of parts for automated manufacturing but requires an
effective interface between the data generated in a manufacturing
system and the control modules that use the data. Data resources
are physically distributed across a network of heterogeneous
hardware and software systems acquired from numerous vendors. To
meet these requirements a distributed data system, the Integrated
Manufacturing Data Administration System (IMDAS), has been
developed.

IMDAS is characterized by 1) a common interface to user
programs, 2) a common interface to underlying databases, and 3) a
hierarchical architecture, providing both centralized and
distributed services. It is designed to provide the control
systems of the AMRF access to the data necessary to support the
design, planning, manufacturing, and inspection of parts.
Research has focused on the identification and modeling of
factory data and relationships. Control processes specify
requests for data services in a common data manipulation
language.

KEY WORDS: distributed, data administration, automated
manufacturing, CIM, IMDAS, AMRF.

future components of small-batch manufacturing systems.
Another is to provide a laboratory for the development of
factory-floor metrology in an automated environment, develop-
ing new ways of making precisely machined parts. Commer-
cially available products are used in the facility wherever
possible, in order to expedite transfer of research results
into the private sector.

To provide a real testbed for interface standards, the
AMRF is intentionally composed of manufacturing and computing
equipment from many vendors, thereby making its construction
a major integration effort [1]({2]. Shop floor equipment
types include Computer Numerical Control (CNC) machines, a
coordinate measuring machine, robots, a vision system, robot
carts, automated storage & retrieval systems, cleaning and
deburring devices, and part fixturing and robot gripper
systems. The configuration is structured around several
self-contained workstations, each capable of executing a
well-defined set of manufacturing functions. Each work-
station is able to operate either as an independent manufac-
turing unit under control of a local operator, or as an
element of a multi~workstation manufacturing system under
control of a higher-level process. A typical machining
workstation consists of a CNC machine tool, a robot, a
materials transfer station, and local buffer areas for tools
and workpieces. _

The intelligence structure of each workstation includes
the Robot control system, the Machine Tool control systen,
sophisticated sensor systems and a Workstation control system
to coordinate the activities. Above the workstation level,
batch manufacturing coordinators, or Cells, and a floor
manager, or Shop controller, provide higher levels of
control. The highest level of control, the Facility
controller, implements the "front office" functions that are
typically found in small manufacturing facilities. All of
these control and sensory processes are software systems,
which reside on interconnected computer systems, making the
AMRF a distributed computing network ({3]. Many different
computer languages and types of computer systems make up the
computing environment of the AMRF. In addition to the shop
floor activities, manufacturing data preparation activities,
including part design, geometry modeling, group technology
classification, process planning, and offline control
programming, are performed on "engineering" computer systems
linked into the factory floor network. These types of data
together form the global shared database of the manufacturing
facility (Figure 1).

In the AMRF, as well as in most automated factories,
data resources are physically distributed across a network of
heterogeneous hardware and software systems acquired from
numerous vendors. Such a distributed system requires a
method of transferring information which is fast, accurate,

essqeleq peseys |8aolo i einbi4

Buypuey
|eualeN

|01}UO0D
joqoy

uoioadsuj

UOIIBISHIOM

eseqelep
WvD/avd
pajyesbaju|

subisep

_mtS.mE
\ed

jo g

sue|d

ddiN

$5890.d

avo

Buiuueld
§5990.id

reliable, with consistent representation, and independent of
the actual physical location of the machines.

The AMRF uses the concept of computer "mailboxes," areas
of memory on various computers to which all of the machines
in a particular group have access through the network
communications system, subject to strict rules of protocol.
Control processes can leave "messages" for each other and
stop to read their own "mail" at opportune times without
interrupting each other.

Currently, the AMRF communications network, the backbone
of the distributed data system, uses an Applitekl broadband
token bus and a combination of older computer communications
protocols, including RS232 and Ethernet systems. Work is
underway to upgrade the AMRF network to one based on the
principles of the Manufacturing Automation Protocol (MAP)
network proposed by General Motors and others.

Computer integrated manufacturing (CIM) refers to the
integration of diverse systems into an automated production
complex closely coupled to the engineering and administrative
systems that support and drive it. Rarely does the same kind
of computer system perform engineering support, real-time
control and administrative applications. These component
systems range in data management capabilities from simple
shared memory managers to special purpose software which
optimize data access for a particular function to general
purpose database management systems with a full range of
supporting tools. The software system which integrates the
diverse and distributed data resources of the factory
environment must mask the differences inherent to these
conditions. The critical element in such a complex is the
ability of all the associated programs and users to share
data. To quote: "Data--its generation, processing, storage
and use in the implementation and control of the manufac-
turing enterprise--is the essence of CIM, the NBS AMRF, and
the fully automated factory of the future." [4]

DATA IN A DISTRIBUTED ENVIRONMENT

A significant part of the AMRF distributed data system
research has focused on-the identification and modeling of
factory data and relationships. A critical step in
accomplishing integration in an environment of diverse
applications is the definition of a common logical model of
the shared information and meanings. In the CIM environment,
almost all data is significant to more than one application,
but the way in which it is best organized for each applica-
tion area may be different. For example, Production wants to
keep track of component inventories by PART-TYPE and LOCATION
while Purchasing wants to organize the components by
SUPPLIER, SHIPMENT and ORDER and Accounting wants to track
them by PART-TYPE, INVOICE and PRODUCT. Naturally, having
been organized for different applications they have different

3

schemas and often use entirely different database management
systems. Because there are interactions of the data, it
becomes necessary to integrate databases. This almost always
requires an external mechanism to keep them consistent, to
define inter-relationships and to describe their interaction.

Controllers retrieve and modify through views of data
structured to meet the needs of the particular application.
These logical views are relations whose objects and
attributes may or may not coincide directly with the fields
of a physical record. A distributed architecture demands
that a data dictionary and directory system exist at each
communications node to index and define the data sets that
reside at that node. Data include the translation of logical
names associated with data structures and elements and the
definition of actual schemas or physical structures in terms
of the local data management system. The information in the
dictionary and directory system is active, in that data sets
are created and deleted while the test bed is operating. 1In
addition, a common conceptual model of the entire database
complex must be maintained at some generally available
location. This central model contains information on the
distribution and the logical structure of the data sets, as
well as the relationships between records in the data sets
that span multiple nodes or are replicated at thenm.

The researchers within the AMRF have used existing data
modeling methodologies for discovery, concept formation, and
validation of information shared by the shop floor and data
preparation activities. Individual components of the AMRF
are modeled and then merged to develop an integrated data
model. The techniques used, Information Analysis [5] and
IDEF1X [6], emphasize the discovery of the meaning and
relationships between information units, in addition to
recording representation forms and deriving convenient
storage structures.

Commercially available software tools have been used to
support these modeling activities. Analysts use these
products to describe discovered relationships and constraints
in English sentences, such as: "a storage_device has one or
more storage_areas associated with it", "a storage_device is
uniquely identified by an equipment_id and unit_id", and "a
tool is a type of reusable_resource_item". Then the control
system engineers validate and refine the evolving integrated
data model by deciding whether they agree or disagree with
these statements.

The integration data model being used in the AMRF is
SAM*, a semantic data model [7][8]. This approach was
accepted over others because of the model's expressive power
to represent arbitrarily complex objects and constraints.
This model is the heart of the AMRF dictionary system which
makes use of the available semantics to control the
distribution of the data and its complex interrelationships
and constraints.

MANAGING DATA IN A DISTRIBUTED ENVIRONMENT

As a "data driven" control system, the AMRF is capable
of handling a broad range of parts for automated manufactur-
ing. But an effective interface is required between the data
generated in a manufacturing system and the control modules
that use the data. Control processes and factory personnel
must be able to specify requests for data services in an
environmentally neutral form, a common data manipulation
language (DML). The integrated data service provider must
translate requests in this language into commands that can
execute at the site or sites which manage the data resources.
In addition, individual data units may have to be translated
to resolve the representation differences across hardware
boundaries. The integrated data services system may be
required to assemble results from several sites and to
perform user specified formatting of resultant data.

Finally, a problem which is characteristic of, but not unique
to, the manufacturing floor is real-time access to data.

So we see that a manufacturing facility comprises a
large number of dissimilar computer systems, data systems and
databases. The need for sharing data among these systems
results in overlapping databases with representational
inconsistencies. We have argued that we need to build a
"common data system" to solve the integration problem. This
system would make knowledge about shared data resources
available for all applications to use. 1In addition, we
assert that such a system must support real-time use. How
does one go about constructing such a system? The simplest
approach to development of a common data system is the
centralized system: a single common database on a central
computer system with communication paths to all client
systems. The inherent simplicity of this architecture,
particularly with regard to management and maintenance, makes
it highly desirable if it can be made practical. With
current computer technology, it is possible to create a
central system with sufficient redundancy that a total
failure is extremely unlikely. However, the ability of such
a system to handle all of the database transactions for the
whole manufacturing enterprise without bottlenecks or
unacceptable delays is very questionable. 1In all but the
smallest organizations, performance and cost considerations
will dictate some distribution of function and data.

Another possibility is maintaining distributed over-
lapping databases with conversion of data between them. This
is viable if the number of databases is small and the inter-
actions between them are carefully timed and controlled. The
number of conversion programs will grow proportionally to the
square of the number of databases. Any two databases must be
idle for a certain period of time in order for information to
be transferred between them. Moreover, such databases will

5

normally be inconsistent and be brought into alignment only
at the times of transfer between thenm.

The alternative of modifying programs to access data
from multiple databases can be overwhelming. It avoids the
consistency problems inherent in the database conversion
approach, but it is simply impractical in an environment of
numerous systems and regular changes.

By using a common interface between programs and
databases, this complexity can be avoided. Each new program
has only one interface to all data. A change to the archi-
tecture of one database requires modification of only its
interface to the common service, not to any of the applica-
tions. It is our belief that most enterprises will benefit
from a system of distributed databases with common inter-
faces. This will enable integration of new and existing data
systems and relieve programs and programmers of network,
access and conversion problens.

The remaining choice is whether to provide the common
interface from a single server with interfaces to each of the
distributed databases, or to distribute the common interface
service over several systems with interfaces to each other.
Again, the centrally controlled system is simpler and
currently feasible, but its ability to handle all of the
transactions, even when it can distribute the actual data
manipulations, must be in doubt. It also acts as a single
point of failure. On the other hand, the protocol problems
that result from trying to do distributed data management by
committee has been the subject of much academic discourse and
few, if any, sound solutions.

INTEGRATED MANUFACTURING DATA ADMINISTRATION SYSTEM

Our approach to providing a common interface to
distributed data is the Integrated Manufacturing Data
Administration System (IMDAS)([9]. IMDAS is characterized by
1) a common interface to user programs, 2) a common interface
to underlying databases, and 3) a hierarchical architecture,
providing both centralized and distributed services.

Application, or control, programs communicate with IMDAS
using a standard language, referencing data names from a
common dictionary. The IMDAS Data Manipulation Language
(DML) was closely modeled after ANSI standard SQL [10].
Extensions to SQL were made to allow the projection and
selection of elements in complex objects. The DML also
allows programs to specify files or memory buffers as the
sources and destinations of data.

On the other side, IMDAS has a common interface to
underlying data repositories, such as commercial database
systems. This minimizes the work needed to incorporate new
databases into the common data system while allowing existing
systems to continue operating without change.

This set of common interfaces affords users (AMRF
control processes) a generalized view of data access. They
see data manipulation as operations on information units, not
databases, and are not concerned with what system or machine
has the data. The result is conceptually simple. The user
sees a single common database managed by the IMDAS (Figure
2).

DML Operations
User -II = | IMDAS
Data in Report Format

1

Global

Database

Figure 2. IMDAS Concept

The internal architecture of IMDAS is a 4-level hierar-
chy (Figure 3). The levels are distinguished primarily by
scope of responsibility for data management. The higher the
level, the more data is administered. At the bottom level of
the IMDAS are the data repositories, some of which are
commercial DataBase Management Systems (DBMSs). Also includ-
ed are other repositories of sharable information, such as
file systems, common memory, and locally developed, applica-
tion specific, data managers.

Inter-DDAS Query Managenient
Global Data Distribution Dictionary

User Program Interface

BDAS Integration

Data Distribution Dictionary

Query Decomposition and Scheduling

Data Repository Interface

Database Management Systems
File Systems
Common Memory

Master
Data Services

Distributed
Data Services

Basic
Data Services

Data
Repositories

Figure 3. The IMDAS Hierarchy

BDAS - Basic Data Administration System

The Basic Data Administration System (BDAS) resides on
each computer system in the AMRF.
local data repositories into the IMDAS, and with its asso-

Each BDAS integrates its

ciated DBMSs, executes all manipulations on that data.

BDAS must convert the IMDAS internal form of a transaction to
that accepted by the DBMS which has to execute it, pass it to

the DBMS and interpret the status which comes back.

The BDAS must also convert any data involved between the
DBMS dependent form and the IMDAS interchange form.
capabilities and access techniques differ dramatically from

DBMS to DBMS, and can be further complicated by local

operating system conventions, the interface to a particular
DBMS is encapsulated in a separate process called the Command
Translator/Data Translator (CT/DT) for that DBMS (Figure 4).
In addition, the BDAS must access local user data areas and
convert between the declared user representation and the

IMDAS interchange form.

Because

eseqeleQ

sSwea

10a/10

syag 18djdAL ‘¥ einbid

we18AS
elld

10/10

Kiowew
uowwo?d

10/10

eoejely|
NIOMIBN

@A|N08x3
Svas

The BDAS receives commands from and returns status to
the DDAS which supervises it, but it also deals with other
BDASs as network peers for the purpose of delivering data.
In this way, data moves directly between the user and the
data repositories rather than following the IMDAS hierarchy.
This feature is mandatory for achieving the performance
required in a real-time environment.

DDAS - Distributed Data Administration System

At the Distributed Data Administration System (DDAS),
the collection of data repositories managed by a group of
BDASs is logically integrated into a segment of the global
database, using a dictionary describing the distribution of
the data. The DDAS becomes the data manager for that segment
and supervises all manipulations on it. 1In addition, each
DDAS provides the IMDAS interface to some set of the user
programs, as a DDAS is available on each computer system that
is capable of supporting its activities.

User programs issue transactions to the IMDAS, represen-
ted by the DDAS, which accepts them, oversees their execution
and returns status to the user. User transactions are stated
in the DML. These transactions are converted into an IMDAS
standard internal form and then modified to reflect the
differences between the user's external view and the IMDAS
global conceptual view.

The DDAS attempts to map the transaction into a set of
operations on elements of the global database which are
managed by individual DBMSs. 1In order to do this, it
consults a dictionary that describes how data is distributed
over the integrated databases. The result is a set of tasks
to be executed by specific DBMSs. If any of the data is
outside the segment managed by this DDAS, the whole
transaction is sent to the Master Data Administration System
(MDAS) .

MDAS -~ Master Data Administration System

In order to integrate segments managed by separate DDASs
and to execute user transactions that require this level of
integration, a single system is designated the Master Data
Administration System (MDAS). The MDAS is an optional
component of the IMDAS which is made necessary by having more
than one DDAS. So, from our point of view, the issue of
centralized versus distributed control of the distributed
databases does not have to be resolved at the outset. If a
single system can manage all data activity in an enterprise,
one installs the sole DDAS there and makes its controlled
segment the whole global database. But when more than one
DDAS becomes necessary (as we expect must inevitably occur),
rather than trying to solve the crossover problems by
committee, we appoint a Master DAS. The MDAS supervises, in

9

