
Generalized Message Passing in a Virtual Reality Application

David Flater

February ��� ����

Abstract

The message passing semantics of an object�oriented programming language is one of the

factors that determines how powerful the language is� Whether it is referred to as a �method

invocation�� a �dispatching call�� an �event�� a �signal�� or something else� each object�oriented

programming language supports some operation that is similar in e�ect to �message passing��

What di�ers from language to language is the semantics of that message passing� These seman�

tics largely determine the degree to which an object�oriented language supports polymorphism�

overloading� type checking� and abstraction�

Although it is theoretically possible to implement any given application in any computa�

tionally complete language� the �exibility of the language that is used will� in practice� have a

great in�uence over the shape of the �nal product� Those features that are extremely di�cult

to implement in the language being used are less likely to be implemented� If the project is

one where the choice of programming language is not as important as the quality of the �nal

product� such as in a research environment� then it is wise to investigate the alternatives�

Virtual reality is one research application that can easily be hampered by the limitations

inherent in a programming language� We de�ne the concepts of recipient resolution and action

resolution� discuss their application to virtual reality� and suggest an approach for extending

Objective C to support them�

� Introduction

It is generally considered to be desirable for a programmer to be able to concentrate on the high�level
structure of a program separate from the messy implementation details� Object�oriented program�
ming languages o�er ways of structuring programs that help to achieve that goal� By supporting
polymorphism� dynamic binding� and dynamic type checking� they give the programmer the ability
to state more concisely the high�level behavior of the program�

One may think of routines in a program as having a kind of signal�to�noise ratio that is the
number of statements that say what needs to be done divided by the number of statements that
say how to do it� Code with a high signal�to�noise ratio is readable and intuitive� code with a low
signal�to�noise ratio is cryptic� A statement that is part of the signal of a given subroutine may
become noise if it is moved up into the main program� since it �belongs� in the subroutine�

As the �exibility of the programming language decreases� the signal�to�noise ratio of programs
written in that language tends to decrease as well� For example� consider the case of translating
a C�� virtual function call into C� The programmer must either set up pointers to the correct
functions and make the function call via a pointer� or code up a decision tree at the point of call to
select among the possible functions� Either way� the added code is pure noise�

Our goal is to improve the signal�to�noise ratio of programs� with particular attention to the vir�
tual reality 	VR
 class of applications� To do that� we make the programming language more �exible
and provide greater support for encapsulating code in the object to which it pertains� However� we
must �rst examine the various levels of �exibility supported by existing programming languages in
order to better understand the extensions that can be made�

�



� Types of Dispatching

Each programming language comes with its own vocabulary and set of concepts� When one person
thinks of sending a message� another thinks of invoking a method� In this paper we will concentrate
on the message passing paradigm� since our generalized semantics are most naturally expressed in
that paradigm�

The generality of the message passing semantics� which corresponds to how �exible the message
passing is when it is used by a programmer� is limited by how the compiler and run�time environment
dispatch 	deliver
 messages to their recipients� Existing programming languages support di�erent
kinds of dispatching� but the di�erences are not always obvious when terms such as �dynamic
binding� are used loosely� In order to avoid ambiguities in terminology� we make the following
de�nitions

�� Non�Dispatching

Non�dispatching languages have static type checking� and static binding����� The message and
the speci�c class of the recipient 	the receiving object
 must both be known at compile time�
These languages are not very interesting for object�oriented programming since only the most
basic forms of polymorphism 	e�g� function name overloading
 can be supported� C is an
example of a non�dispatching language�

�� Subclass Dispatching

Subclass dispatching is static type checking with dynamic binding� A message can be sent
to an object without knowing the speci�c class of that object� provided that it is known to
be derived from or identical to a parent class that is speci�ed at compile time� The message
handler 	the function that is invoked when the message is received� sometimes called a method

or a member function
 is determined at run time since subclasses can override the message
handlers of their parents� C�� supports subclass dispatching�

�� Classless Dispatching

Classless dispatching requires dynamic type checking 	if any type checking is done
 and dy�
namic binding� It is possible to operate generically over all objects and all messages� A message
can be sent without knowing the name of the message or the identity or class of the recipient
at compile time� The compiler can no longer guarantee that the recipient of a message will
be able to handle it� so run�time failures are possible� However� there are fewer restrictions
on how the programmer must construct the class hierarchy for a given program� Objective C
supports classless dispatching�

It is important to understand the di�erence between supporting an application and merely en�
abling it� Since all the programming languages mentioned below are computationally complete� they
all enable the same set of programs to be written� However� writing VR applications in a language
that has restrictive message passing semantics is substantially more di�cult than writing them in
a more �exible language� Where the user of a language with classless dispatching simply performs
a single function call� the user of a statically bound language might need to write pages of code to
achieve the same e�ect� Those features that are extremely di�cult to implement in the language
being used are less likely to be implemented� so it is better to use a language that provides support
for the desired application�

With its ���� revision� Ada���� now supports subclass dispatching� Tagged types provide the
functionality of subclasses� and a dispatching call is similar in e�ect to sending a message to an
object without knowing its speci�c class� The parent class must still be speci�ed at compile time�
The �rst Ada standard��� was non�dispatching�

�Dynamic type checking requires each object to have a �tag� that tells the run�time environment what its type is�

Statically typed languages determine all types at compile time� so the types are implicit at run time�
�Static binding implies that a function invocation in the source code maps to exactly one function� With dynamic

binding� there may be several candidate functions� and one of them is selected when the invocation is executed�
�Ada is a registered trademark of the U�S� Government� Ada Joint Program O�ce�

�



C����� supports subclass dispatching that is the same as Ada�s� only the syntax and the termi�
nology are di�erent� A virtual function call in C�� is the same as a dispatching call in Ada�

Objective C supports classless dispatching� The data type �id� indicates an object in the generic
sense� it is not necessary to specify the class of the recipient of a message at compile time� The
�perform� message is used to achieve the e�ect of sending a message whose name is not known
until run time� The following sample� written in the GNU� dialect of Objective C� demonstrates
the sending of a message that is speci�ed at run time to an object whose class is unspeci�ed 	in the
function send�some�message�to�some�object


�include �stdio�h�

�include �objc�Object�h�

�implementation Thing�� Object

� 	void
 mess�

�

puts 	�Thing� instance got mess��


�

�end

�implementation Thing�� Object

� 	void
 mess�

�

puts 	�Thing� instance got mess��


�

�end

void

send�some�message�to�some�object

	id recipient� char �message


�

�� The perform message and the

�� sel�get�any�uid function are both

�� defined by the compiler�

�recipient perform�

sel�get�any�uid 	message
�

�

main 	


�

char messname����

int choice

id something�or�other

puts 	�Enter name of message��


gets 	messname


puts 	�Enter number of object��


scanf 	��d�� �choice


if 	choice �� �


something�or�other � �Thing� new�

else

something�or�other � �Thing� new�

send�some�message�to�some�object

	something�or�other� messname


exit 	�


�Certain software packages are identi�ed in this paper to foster understanding� Such identi�cation does not imply

recommendation or endorsement by the National Institute of Standards and Technology� nor does it imply that the

packages identi�ed are necessarily the best available for the purpose�

�



�

Here is a sample run of the above program

Enter name of message�

mess�

Enter number of object�

�

Thing� instance got mess�

The program will fail at run time if the speci�ed message cannot be handled by the chosen object

Enter name of message�

mess�

Enter number of object�

�

error� Thing� 	instance


Thing� does not recognize mess�

IOT trap�Abort

It will also fail if the user types the name of a message that is not declared in the program or in
the Objective C library�

Although there have been many object�oriented languages over the years and several of great
historical importance that we have not discussed� the languages already mentioned su�ce to demon�
strate the major forms of dispatching currently supported�

� Generalized Dispatching

The word �resolution� is most often used to refer to the process of choosing the most appropriate
version of an overloaded function� or choosing the correct method for the speci�c subclass in a
subclass dispatching language� There are several possible matches for a message name� and it is
up to the compiler or run�time environment to �nd the �best match����� However� it is possible to
use best match resolution more extensively� The following three generalized forms of dispatching
support best match resolution that is not restricted to name resolution

�� Recipient Resolution

A message can be directed at a group of recipients� and received by only the best one� �Best�
is determined at run time using evaluation functions� Recipient resolution is routing��� that is
supported by the programming language instead of implemented by the programmer� Recipient
resolution provides support for automatically using the best tool for a particular job�

�� Message Resolution

A group of messages can be directed at a single recipient� and only the best one sent� Message
resolution provides support for automatically choosing the best way to use a particular tool� We
will not discuss message resolution in detail since it is less interesting than recipient resolution
and is a special case of action resolution�

�� Action Resolution

Action resolution combines recipient resolution with message resolution� Action resolution
supports goal�based programming and can abstract out the common task of searching for the
best next move�

The selection of the best recipient or best course of action is done by using evaluation func�

tions� Evaluation functions are de�ned by the programmer to compute 	or estimate� or specify
 the
desirability of sending a particular message to a particular recipient relative to the other possible

�



combinations� An evaluation function for generalized dispatching serves somewhat the same purpose
as the evaluation function in a best��rst search����

Subclass and classless dispatching can be viewed as cases of recipient resolution in which the
evaluation functions are solely based on the classes and subclasses� the number of parameters� and
their data types� True recipient resolution gives the programmer the power to de�ne dispatching
priorities explicitly instead of being restricted to a single language�dependent evaluation function�
The programmer�s evaluation function can be time and situation�dependent and can use any available
input�

To clarify the semantics of recipient and action resolution� we de�ne an action to be the sending
of a speci�c message to a speci�c object� The message sent is one of a set of messages� M � and the
object is one of a set of possible recipients� R� Recipient resolution requires that M have only one
member� action resolution does not�

The selection of a single action to perform out of all the possible combinations of messages and
recipients is done by choosing the combination that maximizes the value of an evaluation function
f � This value is called the priority of the action� f is a function of a message m� an object r� and
the global state S� S is meant to incorporate all other possible inputs to the evaluation function�
including message parameters� global variables� time�dependent information� and data received from
remote sources� If more than one possible action has the maximum priority� then the choice among
the winners can be made arbitrarily by the run�time environment�� However� one of the winning
actions must be taken � issuing an error is not permissible�

Although it is �ne in theory to have a single evaluation function that calculates priorities for
all actions� in practice it is not very useful� In practice we will want to have a set of evaluation
functions F � such that either m or r has been made implicit and the corresponding parameter
omitted from each function call� The message or recipient is made implicit by encapsulating the
evaluation function inside the message or object to which it relates�

The two approaches 	make m implicit or make r implicit
 are equivalent in the sense that both
can be trivially transformed into the single monolithic evaluation function approach� However� they
are vastly di�erent in practice� It would make little sense for messages to encapsulate evaluation
functions in an environment that supports only recipient resolution� Since it is the recipient� not the
message� that is being resolved� it is only logical for the evaluation functions to be encapsulated by
the recipients� That way the evaluation functions can be understood by the programmer as de�ning
the behaviors of the recipients with respect to the messages that might be received�

It is not as obvious what the right approach is when action resolution is fully supported and
resolving actions can be a two�dimensional problem� However� since there is more context associated
with an object than with a message� it would still make more sense to associate evaluation functions
with recipients than with messages� If desired� one can always get back to the single monolithic
evaluation function by having each object point to it�

� Extending Objective C

Although we have not actually implemented a compiler for a language that does recipient or ac�
tion resolution� we have considered how Objective C might be extended to provide the additional
functionality with minimal disruption of its present syntax�

To get started� we de�ne an evaluation function in the top�level Object class� to be inherited by
all objects� The name �priority� will henceforth be reserved for evaluation functions� By default�
objects will disqualify themselves from action resolution by returning a negative priority regardless
of the action

� 	float
 priority� 	char �
 message�

	int
 parmc�

	void ��
 parmv

�

�In de�ning the language� we specify neither determinacy nor randomness in this case� the results are

implementation�dependent�

�



return ����

�

When action resolution is performed� the dispatcher will never choose an action that has a
negative priority� If all possible actions have a negative priority� then a �ag is set to indicate that
the message could not be sent� Section ��� gives an example of why abnormal termination of the
program at this point is not an acceptable alternative�

An evaluation function for a regular class of objects could then be done similar to the following
example

�� Evaluation function for legal dept�

� 	float
 priority� 	char �
 message�

	int
 parmc�

	void ��
 parmv

�

�� Messages taking one argument

if 	parmc �� �
 �

if 	�strcmp 	message� �sue�

 �

�� Won�t sue other lawyers

if 	�parmv��� isKindOf�

�Lawyer class��


return ����

else

return ����

�

if 	�strcmp 	message� �threaten�



return ���

�

�� Pass the buck for inherited methods

return �super priority� message�

parmc�

parmv�

�

To group recipients and messages� we assume the existence of a Bag class that acts as a container
for objects� Such a class is provided by the GNU Objective C Class Library� libobjects�

id recipients � �����Bag new�

addElement� legal�dept�

addElement� public�relations�dept�

addElement� president�

addElement� spy�

So far we have done nothing that violates normal Objective C syntax� but now we come to the
turning point� The following syntax is already de�ned in Objective C to mean that we want to send
a message to the Bag object itself� rather than to one of the objects that it contains

�recipients threaten� rival�company�

We will therefore invent a new operator to indicate that we want to choose the best recipient out
of the Bag

��recipients threaten� rival�company�

In order to do action resolution� we must �rst decide what it means to have a Bag of messages�
Messages in Objective C are not objects� one cannot simply throw a handful of them into a Bag�
However� we can achieve the same result using message selectors or message names�

To emphasize that the Bag must contain only messages� we de�ne a MessageBag subclass that
allows messages to be added and removed by giving their names

�



�interface MessageBag� Bag

� addMessage� 	char �
 message

� removeMessage� 	char �
 message

�end

The message names or selectors would be bagged using methods inherited from the parent class�
Whether the messages are actually bagged by name or by selector does not matter� although it may
be advantageous to verify that the named message does exist before it is bagged�

Now that we have MessageBags� we can do full action resolution

id messages � ������MessageBag new�

addMessage� �sue���

addMessage� �threaten���

addMessage� �conciliate���

addMessage� �bash���

addMessage� �observe���

��recipients �messages� rival�company�

� Generalized Dispatching and Virtual Reality

��� Recipient Resolution

When building a virtual world� we want to be able to create �robots�� A VR robot is an active�
intelligent entity within the virtual world that is controlled by the computer� Programming such a
robot is often a laborious and di�cult task because of the many details that must be handled� The
programmer must try to think of every possible situation that the robot could encounter and add
code to handle each one�

Consider the example of a robot trying to open a locked door� Without recipient resolution� the
programmer must add code to the robot to decide which tool to use� at what time� and for how long

� �BOOL� open�locked�door� door�

�int� time�available

�

id tool�

assert �time�available � ���

		 Try to open the door with the key


if �tool � �self find�inventory� key�� �

if ��tool open�door� door��

return TRUE�

if �����time�available��

return FALSE�

�

		 Either didn�t have key or it didn�t work


		 Try to card the door


if �tool � �self find�inventory� card�� �

if ��tool open�door� door��

return TRUE�

if �����time�available��

return FALSE�

�

		 Getting desperate


		 If door is wooden� try the axe for a while


if ��door isKindOf� �WoodenDoor class���

if �tool � �self find�inventory� axe�� �

int a�

for �a���a����a��� �

if ��tool open�door� door��

return TRUE�

if �����time�available��

return FALSE�

�

�

�



		 Try to burn our way in with propane torch


if �tool � �self find�inventory� torch�� �

while ��tool has�propane� ��

�door is�locked�� �

if ��tool open�door� door��

return TRUE�

if �����time�available��

return FALSE�

�

�

		 Unable to open door


return FALSE�

�

This approach is inherently clumsy because we are attempting to pre�educate the robot with
knowledge about every single tool it might encounter� If we later create a new tool� we must also
update the robot�s program� or else the robot will not know when to use the tool�

With recipient resolution� it is not necessary to pre�educate the robot� The usefulness of a given
tool for a given task will be coded into the tool itself� where it belongs� The robot will then be able
to pick up a new tool and recognize its usefulness without being re�educated

� 	BOOL
 open�locked�door� door�

	int
 time�available

�

assert 	time�available � �


for 	 time�available ��

�door is�locked� time�available��


��inventory open�door� door�

return ��door is�locked�

�

Note that the clumsiness associated with limited�use tools has gone away� When the fuel for the
torch is used up� the torch�s evaluation function begins returning a negative priority� and the robot
stops trying to use the torch� Similarly� the priority of the axe will decrease each time it fails to
open the door� 	It will always be negative if the door is not wooden�
 Depending on how smart we
want the robot to seem� the key and the card can either refuse to be used on the same door more
than once� or refuse to be used on the wrong door in the �rst place� Although the total number of
lines of code might have increased because of the need for priority functions� the top�level routine
is much more straightforward� and the detail work has been moved into the lower levels where it
belongs�

In recent years� VR has been rede�ned by some to refer to the sophisticated graphics that can
complement a virtual world� rather than the virtual world itself� Fortunately� recipient resolution
can be applied in many di�erent domains� including graphics�

Suppose that we are designing a graphics engine that must render images of many objects in real
time� Some of them are constantly moving� rotating� and changing� some do not move unless they
are acted upon by another object� and some are simply backdrop� Once an object has been rendered�
the rendering can be drawn and redrawn with relative ease� the expensive part is re�rendering objects
that have moved or changed so that the picture will look right� At the same time as this rendering
is taking place� we must also handle input from the user and compute the behaviors of the objects
in real time� In order to keep up with all the computation that needs to be done� we must make
intelligent decisions about when to re�render objects� A half second delay in updating the rendering
of a slowly moving object will be considerably less noticeable than a half second delay in updating
the rendering of an object that is �ying around� However� if the fast moving object collides with
the slowly moving one� we must devote a large time slice to both of them to make the collision look
right�

Writing a main loop for this graphics engine that does not just rely on brute force to keep up with
the work load could be a very di�cult task� However� with recipient resolution� we can implement
a complete task scheduler just by de�ning the priority function� The main loop could be as simple
as this

�



while 	�


��world render�

The evaluation functions would adjust the priority upward as the speed of the object and the
age of the rendering increased� Also included in the world would be a special object tasked with
processing user input and sending �heartbeat� messages to objects to make them look alive and
react to their surroundings� It is an unfortunate kluge that the �render� message is deliberately
misused to insure that events unrelated to rendering 	user input and heartbeats
 will be serviced�
In the next section we will see how this inelegance is removed by the more �exible action resolution�

��� Action Resolution

Recipient resolution takes for granted that we know which is the best course of action 	i�e� which
message to send
 to achieve our goal� This is not always the case� Let us return to our �rst example
in which we were simulating a company trying to deal with a threat posed by a rival company�
With recipient resolution� if we assume that the best response to a threat is a counterthreat� we can
delegate the decision of who is best to make the counterthreat� However� if we want to be able to
choose between legal action� threats� diplomacy� PR wars� and watchful waiting� we must add code
at the top level�

With action resolution� all of the information needed to choose a course of action is encapsulated
in the de�nitions of the objects� so the programmer is free to delegate the decision making to the
run time environment� Since lawyers can threaten and conciliate as well as sue� the public relations
department can either threaten or conciliate� and the president can threaten� conciliate� or bash�
the decision making is not a linear process� It is necessary to weigh the risks and bene�ts of each
course of action� knowing that the e�ectiveness of each course of action is a�ected by the tool that
is used and the threat that is being dealt with� The risks and bene�ts may also change over time
if� while observing the threat� the corporate spy discovers evidence of wrongdoing that can be used
against the threat� the company might decide to take legal action on the next iteration of the loop�

Of course� the programmer is not at the mercy of the machine any more than he or she wants to
be� since decisions can still be hard coded

if 	�threat isKindOf�

�Hostile�takeover class��


�company buy�back�stock�

If we now return to the graphics example� we �nd that there is no longer a need for a kluge to
poll user input and broadcast heartbeat messages� These actions can simply be resolved against the
rendering work

id animate � ����MessageBag new�

�� Render � draw objects

addMessage� �render��

�� Let objects be active

addMessage� �heartbeat��

�� Poll user input

addMessage� �userinput��

while 	�


��world �animate�

Instead of relying on a special object to periodically send heartbeats to every object in the
world� we now let objects specify a priority for their own heartbeat� Di�erent objects can now have
di�erent heart rates� Although we still need somebody to be responsible for polling user input� we
no longer need to bind this unrelated action to the render message� The objects that cannot receive
the userinput message simply return a negative priority�

�



��� Experiments with Recipient Resolution

The idea for recipient and action resolution came from Cheezmud���� an experimental mud written
in Objective C� A mud is a virtual world in which any number of users can interact with each other
and with characters 	robots
 run by the computer� Cheezmud is copyrighted software that was
developed independently and placed under the GNU Public License�

The virtual world can have any theme� we chose to use the traditional �swords and sorcery� theme
in our experiments� Since Objective C does not support recipient resolution or action resolution�
we settled for emulating recipient resolution via message routing��� as shown in the appendix� This
was su�cient to discover the many ways in which evaluation functions simplify the task of VR
programming� Not only are they useful for abstracting out the complex decision trees that computer�
controlled characters might have needed� they also permit user�controlled characters to exhibit a
certain level of common sense in following the user�s commands�

One major example is the �kill� command� In a swords and sorcery mud� combat is a frequent
occurrence� and weapons are plentiful� The emulated recipient resolution of Cheezmud allows the
computer�controlled characters to display intelligence in their choice of weaponry� When a character
does a command� the message� in this case �kill�� is resolved against the character�s inventory 	the
objects that he or she is carrying
� the room that the character is in� and the character himself
	herself
� This is because commands can be related to tools that are being carried 	unlock door
� to
a location 	go north
� or to the character 	grin
� The character has an inherent �kill� method that
corresponds to unarmed combat� most weapons have �kill� methods with a higher priority�

The default priority of the �kill� method for a weapon is calculated when the speed and maximum
damage done by the weapon are set

speed � s

damage � d

tspeed � 		float
s � ��� � ���
 � ��� � ���

prio � 	float
damage � tspeed

The result is a ranking of weapons by their e�ectiveness� such that the rate at which damage is
done and the amount of damage that can be done at one time are both taken into consideration�
This is merely a default evaluation function� a more complex function that returns di�erent priorities
depending on the nature of the enemy can easily be speci�ed for a speci�c subclass of weapon�
Characters will then use the weapon that is best suited for the speci�c threat being faced� when
di�erent kinds of weapons are best suited for di�erent kinds of enemies�

The power of recipient resolution became particularly obvious when we created a single�use
weapon 	a bomb
 that explodes when thrown at an enemy� Any computer�controlled character that
possesses it knows to use the bomb �rst� then �nish o� a surviving enemy with some other weapon�
It was not necessary to add code to test for the special weapon� Its evaluation function returns a
high priority� but it vanishes after one use� The next time the character does the �kill� command�
it is resolved against his or her remaining inventory� and the �ght goes on without interruption�

Another interesting application of evaluation functions was for containers� such as sacks or bags�
A character can carry more items if he or she bags them up� In Cheezmud� a player that has more
than one sack can simply �bag� something without specifying which sack to use� Items are trivially
distributed among all available sacks by de�ning evaluation functions that return a variable priority
for the �bag� command depending on how full the sack is

if 	�contents count� �� capacity


return ��

return ���� �

	float
	capacity � �contents count�


� 	float
capacity

Note that returning �� when the bag is full prevents anything else from being stu�ed into it� If
the player attempts to execute a �bag� command with all bags full� an error is returned� This is
an example of why abnormal termination of the program should not result if all possible recipients

��



have negative priority� Ideally� all languages would support Ada or SQL�like��� exception handling�
and we could simply write an exception handler for this case� Instead� Cheezmud uses the return
code of the message routing routine to indicate success or failure�

From these examples it is possible to see how helpful it would be to have recipient or action
resolution for virtual reality programming� The e�ort of writing evaluation functions is negligible
compared to the convenience of abstracting out so many special cases from the main program�

� Conclusion

Recipient resolution and action resolution provide support for new styles of programming� By moving
evaluation criteria away from the main program and abstracting out the search process� we state
more concisely the task that is to be accomplished and thus increase the signal�to�noise ratio of the
source code�

Future progress in �exible programming languages may occur as the result of �persistent� pro�
gramming� Persistent languages allow programs to preserve internal state inde�nitely and increase
support for dynamic linking and dispatching so that previously compiled modules can work with
newly compiled modules without themselves having been recompiled� An example is E���� a per�
sistent version of C��� While languages like E are adding database functions to programming
languages� database languages are closing the gap in the other direction� SQL has achieved com�
putational completeness with the addition of Persistent Stored Modules and the control statements
that were necessary for PSM to be useful� SQL is now exploring new territory with its function
call semantics� Given su�cient metadata� a program can use a SELECT statement to search at run
time for modules appropriate to a particular task� and invoke them dynamically� The designers of
standard SQL are being careful to preserve the safety and compilability of the language� so certain
opportunities for even greater �exibility have been foregone� That leaves open the possibility for
experimentation with wilder variants of SQL that do more work at run time� Overload resolution
could be done at the last minute so that the best matching function would always be the one that is
called� even if the CALL statement were compiled and the best matching function were de�ned dy�
namically just now� Exception handlers could recover from failures by calling the next best function
from the list of candidate functions�

The most e�ective programming can only be done if the language permits the programmer to
express his or her intentions in a way that seems natural and intuitive� Lower software quality and
longer development times result if it is necessary to reformulate ideas in an awkward way to get them
implemented� Language designers always run the risk of making a language that seems intuitive and
natural to them� but not to anyone else� Hopefully the language extensions that we have made will
not fall into that category�

Appendix

The following method resolves the recipient of the message generated when a character tries to do
something in Cheezmud� Our de�nitions of recipient resolution and action resolution were only
made after Cheezmud was developed� so the word �action� is used loosely in this example� Note
how the character� the character�s location� and the character�s inventory 	contents
 are searched
for appropriate message handlers� NULL is returned if the recipient cannot be resolved�

� resolve�action� 	char �
 action�

	int
 numargs

�

id actor � NULL

float prio � ����� t�prio

void countprio 	id whatever


�

if 		t�prio � �whatever priority�

��



action� numargs�
 � prio
 �

if 	t�prio �� ���
 �

prio � t�prio

actor � whatever

�

�

�

countprio 	self


if 	location


countprio 	location


if 	�self isKindOf� �Container class��


��self contents� withObjectsCall�

countprio�

return actor

�

The actual sending of the message is done one level up� in a method called �do�� The following
is the relevant code fragment

if 		t � �self resolve�action�

verb� numargs�

 �

char temp����

sprintf 	temp� ��s��� verb


if 	numargs � �


strcat 	temp� ���


a � sel�get�any�uid 	temp


if 	numargs �� �


�t perform� a with� self�

else

�t perform� a with� self with� dobj�

return �

�

References

��� Gordon Blair� John Gallagher� David Hutchison� and Doug Shepherd� editors� Object�Oriented
Languages� Systems and Applications� chapter �� page ��� Halsted Press� New York� �����

��� Ada �� HTML�Hypertext Reference Manual� �URLhttp��www�adahome�com�rm�����

��� United States Department of Defense� Reference Manual for the Ada Programming Language�
U�S� Government Printing O�ce� Washington� D�C�� �����

��� Margaret A� Ellis and Bjarne Stroustrup� The Annotated C�� Reference Manual� Addison�
Wesley� Reading� MA� �����

��� Dennis de Champeaux� Douglas Lea� and Penelope Faure� Object�Oriented System Development�
chapter ��� page ���� Addison�Wesley� Reading� MA� �����

��� Eugene Charniak� Christopher K� Riesbeck� Drew V� McDermott� and James R� Meehan� Arti�
�cial Intelligence Programming� page ���� Lawrence Erlbaum Associates� Hillsdale� NJ� second
edition� �����

��� Cheezmud� an experimental mud implemented in Objective C� �URLhttp��www�universe
�digex�net��dave��les�cheezmud�����tgz��

��� ISO�ANSI working draft� Database Language SQL 	SQL�
� March ����� X�H�������� �� X�H��
�������

��



��� Murali Vemulapati� Ram D� Sriram� and Amar Gupta� Incremental loading in the persistent
C�� language E� Journal of Object�Oriented Programming� �	�
������ �����

About the author� David Flater is a Computer Scientist in the Information Management Group

of the NIST Computer Systems Laboratory� The National Institute of Standards and Technology is

an agency of the Technology Administration� U�S� Department of Commerce�

��


