U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 4822

National PDES Testbed
Report Series

=
Fed-X: The NIST

Express Translator

Revised April, 1992

NATIONAL Stephen Nowland Clark

» r Don Libes

ES

TESTBED ™

April 3, 1992

NISTIR 4822

National PDES Testbed
Report Series

Sponsored by:

U.S. Department of Defense
CALS Evaluation and NATIONAL

Integration Office - r Fed'X: The NIST

The Pentagon Express Translator
Washington, DC 20301-8000

TESTBED™

Revised April, 1992

U.S. Department of Commerce
P Stephen Nowland Clark

Barbara Hackman Franklin, Don Libes

Secretary

Technology Administration
Robert M. White,
Undersecretary for Technology

National Institute of

Standards and Technology OO0,
. & %
John W. Lyons, Director g 5
2 S
% &

© o

April 3, 1992 STares oF

Table Of Contents

I 01 A o [1 T A o o ISP 1
1.1 CONLEXT ...ttt sttt e e b e e e ne e n e s ne e ne e neeennis 2

2 Implementation ENVIronment..........ccccoceeivee e vciee e 2
SRUNNING FEA-X ...ttt 2
A DESIGN OVENVIEBW......eeoiieiieeieeie ettt sbe et ee e sre st snee e 3
4.1 Fed-X CONtrol FIOW.....cc.coiiiiiiierieeie et 4
4.1 1 First Pass: ParSiNg......cccceeeeeiierieniesesiesiesieseseeee s 4

4.1.2 Second Pass. Reference ReSOIULION...........cccvvveireeiieiese e 4

4.1.3 Third Pass: Output GENErationcccevereereerienieeseerie e 6

4.2 Working FOrm Data SITUCKUIES.........ccovirieriienerieee e 6
4.2. 1 CONSLANT ..ottt n e sne e sre e nne e e 6

A 1Y/ oL TP PR T PRUPR 7

B 2.3 ENLiLY oottt s neenas 8

A2 ANV ATADIC.......ooeiee s 9

A.2.5 EXPIrESSION.....coiiieiiiiiesieeiesiee st eie e teete st steste e sbeeeesseesaeeneesneensens 10

4.2.6 SEAEMENT ..ot e 12

V220 A 2N [To 11 1 o USROS 13

4.2.8 SCOPE.....eeeeeteeeieeetee ettt e ettt e st e be e s e e e sbe e sateesbe e enneesneesareenreeareenneean 14

4.2.9 SCheMA, SCREIMBS........icceeiie et e s e e sabeee s 15

4.3 ClasS HI€rarChyccccoeeiiiieie et 15
4.4 ODJECE PrOCESSING ...veveeveeeesieesieeiesieesieseesieesseseesseeseessessseessesseesseessesnessees 17
44,1 USE, REFEIENCE.oeeiei ittt et e s era e e e e sareee s 17

4.5 MISSING FEALUIES.......cueeitecie et ete ettt ettt ae e re e ens 17

N 070 01 11T o] o PR TSR 18
Appendix A: Cross-Referenceto N14 Rules.........ccccoveveveecieennne, 19
AppendixX B: REfENENCES......coooieieecee s 23

Disclaimer
No approval or endorsement of any commercial product by the National Institute of
Standards and Technology isintended or implied

Oracleis aregistered trademark of Oracle Corporation
Smalltalk-80 is atrademark of ParcPlace Systems, Inc.
Sun-3 and Sun-4 are trademarks of Sun Microsystems, Inc.
Unix isatrademark of AT& T Technologies, Inc.

Fed-X: TheNIST ExpressTranglator

Stephen Nowland Clark
Don Libes!

1 | ntroduction

The NIST (Federal) Express Trandator (Fed-X), and the associated Express Working
Form, are Public Domain software tools for manipulating information model s written
inthe Expresslanguage[Part1l]. The ExpressWorking Formispart of theNIST PDES
Toolkit [Clark90a]. It isintended to be used to provide the input to various conceptual -
schema-driven applications in a STEP implementation. For example, tools such as
Data Probe, a prototype STEP and Express schema browser and editor devel oped at
NIST [Morris91], and the STEP Working Form with its associated STEP physical file
parser, STEPparse [Clark90b], have been written independently of any particular infor-
mation model. Fed-X-based translators are used to provide the information model def-
initions to drive these applications. This approach resultsin smaller applications
(which need not have entire information model s embedded within them), aswell asin-
sulating these applications against changes in the conceptual schema and, to acertain
extent, in Expressitself. Indeed, an application such as STEPparse can be used with
different conceptual schemas, or different versions of the same schema, without modi-
fication. The Data Probe has been used to edit STEP product modelsin the context of
several different Express information models.

A primary goal in the development of Fed-X wasto provide a clean back-end interface,
in order to allow various output modules to be easily plugged into a basic front-end
parser. To accomplish this, the Fed-X parser populates a set of data structures (the Ex-
press Working Form, or WF) containing all of the information in an Express specifica-
tion. A user-supplied back-end® can then walk through the data structure, extracting
relevant portions of the available data and producing an appropriately formatted output
file.

1. Don Libesis responsible for the minor changes made to this document to track the actual implementation
of the software described. However, credit for the bulk of the document, its style, and the implementation of
the NIST Express Working Form remains with Stephen Nowland Clark. Recent changes are denoted by a
change bar to the left of the text.

2. Thetermsinformation model, data model, and conceptual schema are used interchangeably throughout this
document.

3. Two Fed-X output modules have been provided with the NIST PDES Toolkit in the past; they are not cur-
rently distributed with the toolkit. One of these produces Smalltalk-80™ class definitions [Clark90e] for use
with QDES. The other forms the back end of Fed-X-SQL, atransator which produces relational database
table definitionsin SQL from an Express information model [Morris90] [Metz89].

Page 1

11

Context

The PDES (Product Data Exchange using STEP) activity isthe United States' effort in
support of the Standard for the Exchange of Product Model Data (STEP), an emerging
international standard for the interchange of product data between various vendors
CAD/CAM systems and other manufacturing-related software[Mason91]. A National
PDES Testbed has been established at the National Institute of Standards and Technol-
ogy to providetesting and validation facilities for the emerging standard. The Testbed
isfunded by the Computer-aided Acquisition and Logistic Support (CALS) program of
the Office of the Secretary of Defense. As part of the testing effort, NIST is charged
with providing a software toolkit for manipulating STEP data. ThisNIST PDES Tool-
kitisan evolving, research-oriented set of softwaretools. Thisdocument isone of aset
of reports which describe various aspects of the Toolkit. Anoverview of the Toolkitis
provided in [Clark90a], along with references to the other documents in the set.

The reader is presumed to have a working knowledge of Express N14 and the C pro-
gramming language.

| mplementation Environment

Fed-X was developed on Sun Microsystems Sun-3™ and Sun-4™ series workstations
running the Unix™ operating system. The Working Form isimplemented in ANS|
Standard C [ANSI89]. The Fed-X parser itself isimplemented in Y acc and Lex, the
Unix languages for specifying parsers and lexical analyzers. Inthe NIST development
environment, the grammar can also be processed by Bison, the Free Software Founda-
tion's! implementation of Yacc. Similarly, thelexical analyzer can be produced by
Flex2, afast, Public Domain implementation of Lex. The C compiler usedisGCC, also
aproduct of the Free Software Foundation. The implementation currently dependson
certain features of Standard C but presumably, any conformant compiler could be used.

Running Fed-X

A default main procedureis available for applications which choose not to supply their
own top-level control. Thefollowing section describesinvocation of applications built
thisway.

Fed-X takes several optiona command-line arguments:

fedex [-d <numbers>]
[-e <express>]

1. The Free Software Foundation (FSF) of Cambridge, Massachusetts is responsible for the GNU Project,
whose ultimate goal is to provide a free implementation of the Unix operating system and environment.
Thesetools are not in the Public Domain: FSF retains ownership and copyright privileges, but grantsfreedis-
tribution rights under certain terms. At thiswriting, further information is available by electronic mail on the
Internet from gnu@prep.ai.mit.edu.

2. Vern Paxson's Fast Lex is usually distributed with GNU software. It is, however, in the Public Domain,
and is not an FSF product. Thus, it does not come under the FSF licensing restrictions.

Page 2

{-w|-1i all|none|<warnings>}
The -d option controls the debugging level; the argument can range from O (the de-
fault) to 10. The Express sourcefileis specified with -e; if no -e option isgiven,
Fed-X readsfrom standard input. Thelast two options control which warning messages
Fed-X will produce. -w isused toturnonwarning classesand - i (ignore) to turn them
off. A parameter of a1l behavesin a predictable fashion, instructing Fed-X to
enable/disable all of the warning classes initialy; similarly, none instructs Fed-X to
begin with no warning classes enabled/disabled. Allowable valuesfor <warnings,
with their interpretation and default values, are:

subtypes - Warnings about subtypes. Fed-X only traverses the class
hierarchy by way of superclassinformation, so problemsin
subclass lists can "safely" be ignored. Default: on.

code - Warnings about problemsin agorithms and where clauses.
Fed-X does not yet handle all of Express scoping rules
properly, nor does it attempt to compute the return types of
expressions, so some of these warnings may be extraneous.

Default: off.
comment - Nested comment warning. Default: off.
shadows - Warnings about overloaded names. The scoping rules of

Express can disambiguate these shadowed definitions, but

cannot be invoked outside of Express, e.g. in STEPfiles.

Default: on.
Fed-X can bebuilt intwo different ways, resulting in different interaction patterns. For
many applications, a single output module is bound into Fed-X at build time. In this
statically linked case, after the first two passes are completed, the user is normally
prompted for asingle file name. Thisisthe name of the file to which Fed-X’s output
will bewritten. Inthe other (dynamically linked) version, no specific output moduleis
loaded at build time. In this case, when the first two passes are compl ete, the program
asks for an output module. If the file named is an appropriate object file, it isloaded
and an output file name requested. Thisisthe name of the file to which the output will
bewritten. Another output module isthen requested, and this sequence continues until
an empty lineisentered asthe name of the output module, which signals Fed-X to exit.
This dynamic loading facility is available only under BSD4.2 Unix and its derivates.

Design Overview

Fed-X isathree-passtrandator. Thefirst two passes are the standard parsing and sym-
bol-table resolution passes of atraditional compiler. Thethird isaflexible output gen-
eration pass. The Working Form which is produced by the first two passes consists of
data structures which directly reflect the structure and contents of the Express source.
The third pass, which can be tailored to various specific applications, traverses these
data structures and produces output in a specified format.

Page 3

4.1
41.1

41.2

Fed-X Control Flow

First Pass: Parsing

Thefirst pass of Fed-X builds a set of data structures which completely represent the
information in the Express input. This pass makes no attempt at resolving most name
references; thus, the resulting data structures are linked only indirectly by names: in or-
der to resolve afunction call, the name of the function must be looked up in the symbol
table for the appropriate scope. The entire structure of thefileis represented at this
point, however. If any syntax errors are encountered, the parser attemptsto print mean-
ingful error messages and to continue parsing.

The N14 specification [Spiby 91] provides a suggested grammar, however it suffers
from various defects, such asunreferenced rules. Thisisprobably becauseit was edited
from previous drafts rather than being constructed anew. The grammar also sacrifices
pedagogy for efficiency in many places.

The grammar used by Fed-X resembles the N14 grammar in spirit and language accep-
tance, but differswidely in some places. Since the N14 specification provides no map-
ping of rulesto pages, an index was built for our own requirements. Itisgivenin
appendix A.

Second Pass: Refer ence Resolution

In the second pass, an attempt is made to resolve all names. An error message is gen-
erated for any reference to an undefined name and for any use of anamein an inappro-
priate context (e.g., an algorithm name asthetype of avariable). Some checksaremade
on the consistency of the model during this pass. For example, one check ensures that
every supertype of agiven entity also liststhe entity asasubtype, and viceversa. Also
during this pass, warnings may be issued about names which are multiply defined in
different scopes. Express has ahierarchical scoping mechanism to disambiguate these
names, so that such overloading is allowed. In practice, however, Express models are
mapped onto STEP physical files, which have no notion of ahierarchically scoped in-
formation model. When this "flattening out" of the model takes place, overloaded
names may conflict; hence the need for these warnings about shadowed definitions.

Hereisacursory overview of the sequence of code that builds the Working Form. Oc-
casional annotations are provided for clarity. The following stepsall occur in the func-
tion:

EXPRESSpass 2 express.c
SCHEMAresolve (model->schema) ; pass2.c
SCOPEresolve passl (schema) ; pass2.c
for each imported schema name (SCOPEget imports) scope.cC

replace name with actual schema
SCHEMAresolve passl pass2.c
SCOPEresolve passl
for each non-imported schema (SCOPEget schemata) scope.c
SCHEMAresolve passl
for each entity (SCOPEget entities)

Page 4

ENTITYresolve passl(e) pass2.c
convert supertype list from list of idents to entities
EXPresolve qualification
convert subtype list from expression to list of entities
(EXPresolve subtype expression(expr, entity, list);)
resolve explicit, derived attributes (via VARresolve)
VARresolve variable.c
attempt to resolve type by calling
TYPEresolve (type reference) type.c
if type is an entity, generate an entity ref
and attach to var by...
OBJbecome (type,OBJcreate (Class Entity Type...
attach entity to entity type by...
ENT TYPEput entity (type,def)
resolve unique

SCOPEresolve pass2 (schema) ; pass2.c
for every symbol in scope
report on shadowed decl's
for every schema in scope
SCHEMAresolve pass2 pass2.c
SCOPEresolve pass2 (see above)
for every type in scope
resolve all references (TYPEresolve) pass2.c
for every entity in scope
ENTITYresolve_pass2 pass2.c
for every supertype of this entity
recursively call ENTITYresolve pass2 (see above)
tag each entity with count of attributes inc. inherited
verify one of its subtypes is the entity
add copy of supertype to entity's list of scopes
for each subtype of this entity
verify one of its supertypes is entity
for each attribute
for each supertype, if we can find a variable with
same name, report "overloaded"
resolve inverses (VARresolve)
for every algorithm in scope
resolve references (ALGresolve)
skip rules
if function
TYPEresolve
if
for each parameter
VARresolve
TYPEresolve

Page 5

4.1.3

4.2

42.1

if initializer, EXPresolve it
SCOPEdefine_symbol
for statement in body
STMTresolve
big case here on various statement types

EXPRESSpass 2 and SCHEMAresolve are very simple, just calling the routines indi-
cated above.

Third Pass. Output Generation

After the first two passes have built and linked the in-memory Working Form, a third
pass may be invoked to write the output. This pass can load several output modulesin
succession, so that several file representations of the Express input can be produced
from asingle parse. Alternatively, a specific module can be built into the trangdlator,
and this dynamic loading phase bypassed.

Working Form Data Structures

The Express Working Form is designed in object-oriented fashion, with one data ab-
straction corresponding to each concept in Express. Thus, there are abstractionswhich
represent types, entities, variables (which include entity attributes and formal parame-
ters, aswell aslocal variables), expressions, statements, algorithms, and schemas. An
additional concept which recursin Express, and which is represented by a correspond-
ing data abstraction, isthat of ascope, whichis, in effect, asymbol table. Algorithms,
schemas, and entities all introduce their own local scopes.

In the following sections, we examine each abstraction in turn. Although each abstrac-
tion paralels the corresponding construct in Express quite closely, so that the descrip-
tions below often seem to be echos [Spiby91], bear in mind that the objects described

are actually the abstract data types of the Express Working Form.

Constant

The Constant abstraction represents symbolic constants. In the current implementation
of the Working Form, constants appear only as elements of an enumerated type. A con-
stant isnamed, and is marked with atype. Thetype of an enumeration constant simply
points back at the enumeration of which it isan element. Each constant has a value,
which can be of any C type (although it should be compatible with the type of the con-
stant); in the case of enumeration constants, this value is always an integer.

Data private to constant objectsis:

struct Constant

Type type;
Generic value;

}i

Page 6

4.2.2

Type

The Type abstraction is used to represent Expresstypes. Every type hasaname, which
iIsempty in many cases. When it isnot, the type represents atype declaration, asin the
TYPE <id> = <type> END_ TYPE construct of Express. Whenthe nameisempty,
the type represented appears within some other context - perhaps as the type of afunc-
tion parameter or the base type of an aggregate. A type may have alist of constraints
(WHERE rule) associated with it; these constraints restrict the legal values of the type.

Several classes of types are represented, including simple types (numeric, logical,
string), enumerations, various aggregates, entity types, and select types. Several type
classes are implicitly or explicitly subclasses of other type classes. Thus, booleanisa
subtype of logical, and the various classes of aggregation types are subclasses of the
general aggregate type. The attributes of atype depend onitsclass. Thus, integer,
floating point, and string types may have a precision specification: an expression which
constrains the number of significant digits or characters allowed in avalue of the type.
An enumeration type includes alist of the enumeration constants which are the allow-
able valuesfor the type.

Every aggregate type (which may be an array, bag, list, set, or general aggregate) in-
cludes a base type, which indicates the type of objects which can beinserted into anin-
stance of the aggregate type. In addition, an aggregate type may have lower and upper
bounds. In the case of an array, these expressions indicate the first and last allowable
index into the array. For other aggregate types, these expressions constrain the total
number of objects which can (must) appear in an instantiation. If the bounds are not
specified, they are assumed to be 0 and infinity, respectively. Two flags are also asso-
ciated with each aggregate type, corresponding to the UNIQUE and OPTIONAL key-
words in an Express aggregate definition. The’unique’ flag, if set, indicates that all
elements of an aggregate must be unique among themselves. Asthis requirement al-
ready appliesto aset, the flag isnot valid for aset type. The’optiona’ flag, which ap-
pliesonly to an array type, indicates that all positionsin the array need not befilled in
avalid instantiation of the type - the array may contain null entries.

An entity typeis simply one or more entities packaged as atype. No further informa-
tion isadded beyond the entity definitionsthemselves. Entity typesexist to alow entity
instantiations to be represented (c.f. STEP Working Form [Clark90b]), and to provide
a clean mechanism for recognizing entity namesin type contexts.

A select type consists of alist of selectable types. Aninstantiation of any of these se-
lectionsisavalid instantiation of the select type. In this sense, the select issimilar to
the C language union construct and the Pascal variant record. In Express, thelist
of selections may only include references to named types.

There aretwo type classes, generic and number, which are distinguished by thefact that
the corresponding Express types (GENERIC and NUMBER, respectively) cannot be
instantiated. These can only be used astypesof formal parametersto algorithms, where
an actual parameter will provide an instantiation of a more specific type at run time.

Page 7

A special type classisused to represent type references. These are (possibly qualified)
references which appear in type contexts, but which are not yet resolved to a particular
type. In normal operation under the control of Fed-X, they are replaced during the sec-
ond pass by appropriate type constructs. A type reference uses an expression (see sec-
tion 4.2.5) to record the qualified type name it represents. The components of this
expression are identifiers, and they are combined into binary expressions with the dot
operator.

There are several type constants available. These constants can be used to avoid creat-
ing multiple copies of some common types, including generic, integer, unbounded ge-
neric set, logical, etc.

Data private to type objectsis:

struct Type {
Linked List where;
Type original type;

}i

struct Aggregate Type ({
Type base type;
Expression lower;
Expression upper;
short flags;

}i

struct Composed Type {
Linked List list;

}i

struct Sized Type {
Expression size;
Boolean fixed;

}i

struct Type Reference ({
Expression name;

4.2.3 Entity

The Entity abstraction represents Express entity declarations. Every entity consists of

aname, and (possibly empty) lists of attributes, subtypes, and supertypes. Inaddition,

an entity includes abool ean expression which describes the rel ationships among its var-
ious subtypes. The attributes are represented as variableswhich are defined in the local

scope of the entity. The sub- and supertypes are themsel ves entities.

Page 8

4.2.4

In order to give ahierarchical structure to an Express model, entities are arranged in a
class hierarchy, asin the Object-Oriented world. This hierarchy is defined by the sub-
class and superclasslists of its component entities. As specified by Express, the class
hierarchy provides for conjunctive as well as digunctive subclassing: foo SUPER-
TYPE OF (bar AND blat) meansthat any instance of foo isaso an instance
both of bar and of blat, while foo SUPERTYPE OF ONEOF (bar, blat,
blit) represents standard inheritance, in which aninstance of foo isaso either an
instance of bar or an instance of blat or aninstance of blit.

An entity may also include alist of uniqueness sets (from the Express UNIQUE rule)
and alist of constraints (from the Express WHERE clause). Each uniqueness setisa
list of attributes whose val ues, when taken together, must uniquely identify a particular
instance of the entity. The constraints, if any, are expressions which compute logical
results. Each must evaluate to true in avalid product model. These constraints can
apply toindividual instantiations of the entity aswell asto the collection of all instances
of the entity.

Since one possible way of looking at an entity classis asthe collection of itsinstances,
provision ismadein this abstraction for maintaining thiscollection. Thus, it ispossible
to add instancesto an entity, or to retrieve alist of all of theinstances of an entity. This
mechanism is used by the STEP Working Form.

Data private to entity objectsis:

struct Entity {
Linked List supertypes; /* list of supertypes */
Linked List subtypes; /* simple list of */
/* subtypes, useful for simple lookup */
Expression subtype expression; /* DAG of */
/* subtypes, with complete information */
/* including, OR, AND, and ONEOF */
Linked List attributes; /* explicit attributes */
int inheritance;
int attribute count;
Linked List unique;
Linked List constraints;
Linked List instances;
int mark;
Boolean abstract; /* is this an abstract */
/* supertype? */
}i
Variable

The Variable abstraction is used to represent entity attributes and formal parametersto
algorithms as well aslocal variablesin ascope. A variable consists of aname, atype,
areference, an offset, and some flags. A variable may optionally have an initializer,
which is an expression used to specify aninitial value for the variable.

Page 9

4.2.5

The reference of avariable isthe original name of an entity object in the schemafrom
which it has been used or referenced.

A variable s offset indicates its position in a storage block. Thus, the offset of alocal
variableisits offset into the data space of the scope in which it is defined, while the
offset of an entity attributeisits position relative to thefirst attribute of the entity. Itis
important to realize that, in the latter case, this offset is not sufficient to locate the at-
tribute in an instantiation of the entity, sincethistotal offset cannot be determined from
the entity definition alone. To seethis, consider entities A and B, each with asingle at-
tribute (call these aa and bb, respectively) The offset to bb in an instantiation of B is
0. But now suppose there isathird entity class, C, which inherits from both A and B,
in that order. Then the offset to bb in an instance of ¢ must be 1, even though bb is
inherited from B, where its offset was 0. Thus, avariable’s offset may not be a useful
piece of information by itself.

The’optional’ flag is used with entity attributes, and indicates that the attribute need
not have avaluein avalid instantiation of the entity. A variable representing an entity
attribute can also be marked ' derived,’ indicating that the attribute value is always de-
rived from the values of other attributes, and can never be specified by auser. The
"variable’ flag, meaningful for formal parameters, indicates that the parameter isto be
passed by reference, i.e., it can be modified by the receiver.

Data private to variable objectsis:

struct Variable ({

Type type;
Expression initializer;
Expression reference; /* true name */
/* in use'd or reference'd object */
int offset;
short flags;
Symbol inverse; /* remote entity ref */

/* entity related by this inverse */
/* relationship */

}i
Expression

Expression isone of the more complex abstractions, simply because of thewide variety
of expressions found in Express. There are five basic classes of Expressions, some of
which arefurther divided into conceptual subclasses: literals (including integer, logical,
real, set, and string literals), identifiers, operations (including unary operations and bi-
nary operations), function calls, and queries. Every expression includes atype, which
isthe type of the value it computes. Although thistype isintended to be computed au-
tomaticaly, it currently is neither computed nor used by the Working Form code, ex-
cept in the case of aliteral. Inthiscase, thetypeisanimplied part of the definition of
theliteral’s class.

Page 10

Literal classes exist for most of the concrete simple types (as opposed to the abstract
simpletypes, NUMBER and GENERIC). Boolean literalsdo not exist in Express; they
areinterpreted aslogical literalsinstead. There may also be set literals (notably, the
empty set). There are severa literal expression constants representing, for example,
zero, infinity, and the empty set.

Anidentifier expression represents areference to avariable. It consists ssimply of the
variable referenced. (Simple) identifier expressions can be composed using (binary)
field reference expressions to form the complex qualified identifiers which Express
provides.

An operation expression includes one (unary operation) or two (binary operation) op-
erands, which are themsel ves expressions, and an operator, such as addition, negation,
array indexing, or attribute extraction. All of the operations of Express are supported.

A function call is composed of an algorithm (which may not be a procedure) and alist
of actual parametersto the algorithm. The actual parameters to the function call are
themselves expressions. Entity subtype expressions (see section 4.2.3) make use of a
closely related expression class, the oneof expression, which consists of alist of entity
references.

A query expression representsthe set-theoretic "set of all xin X suchthat ..." construct.
It consists of adomain set (X), atemporary identifier which represents each element of
the domain successively (x), and alist of conditionsto apply to each x. Theresult com-
puted is a set containing all of the values of x which satisfy the constraints.

Data private to expression objectsis:

struct Ary Expression {
Op_Code op_code;
Expression opl;

}i

struct Ternary Expression {
ExXpression op2;
Expression op3;

}i

struct Query ({
Variable identifier;
Expression fromSet;
Expression discriminant;
Scope local scope;

Page 11

4.2.6

Statement

The Statement abstraction is used to represent the wide variety of statements which oc-
cur in Express. There are many classes of statements, including assignments, case
statements, conditionals, loops, procedure calls, returns, and with statements. A series
of statements may be combined into a single compound statement.

An assignment statement consists of aleft-hand-side expression, which must be assign-
able (thislimitsthe expression to apossibly qualified identifier, although therestriction
currently isnot enforced by the Working Form), and aright-hand-side expression, com-
puting the value to be assigned.

A CASE statement is, asin Pascal, a multi-branch conditional. It contains an expres-
sion (the case selector) and alist of branches. Each branch is a case item, represented
by the Caseltem abstraction. A caseitem consistsof alist of one or morevalues against
which the selector will be compared and a statement to be executed if the selector
matches one of these values.

The looping construct in Expressis quite general, combining the functionality of the
repeat .. until,while .. do, and for loopsof modern programming lan-
guages. An Expressloop consists of a controlled statement (the body of the loop) and
alist of loop controls. There are three classes of 1oop control: increment (correspond-
ing toaFOR loop), until, and while. Thefirst consists of acontrolling identifier expres-
sion, initial and terminal expressions, and an optional increment expression, which
defaultsto 1 if not present. The controlling identifier takes on successive values from
theinitial to the terminal expressions, and isincremented by the increment expression
on eachiteration. Anuntil control consistsof asingle expression (which must compute
a boolean result); it causes the loop to terminate when this expression evaluates to
true. Similarly, awhile control causes the loop to terminate as soon asits single ex-
pression evaluatesto false.

A procedure call isvery much likeafunction call, with the exception that the algorithm
is expected to be a procedure, rather than afunction or rule. The procedure call state-
ment includes alist of expressions, representing the actual parameters to the call.

A RETURN statement is the mechanism by which afunction reportsavalueto itscall-
er. It contains a single expression, which computes the value to be returned.

A simple statement is one which consists of asingle keyword. There aretwo such state-
mentsin Express. ESCAPE and SKIP. No statement classis provided for ssmple state-
ments; rather, they are represented by statement constants, unique instances of the
Statement abstraction itself.

Finally, Express includes the WITH statement, which resembles Pascal’ s construct of
the same name. It includes a controlled statement and a controlling expression which
provides (optional) partial qualification to any expression in this statement. If aname
in the controlled statement cannot be resolved, an attempt is made to resolve the name
asif it were prepended with the controlling expression. The Working Form currently
does not attempt to acknowledge WITH statements when resolving identifiers.

Data private to statement objectsis:

Page 12

4.2.7

struct Assignment
Expression 1lhs;
Expression rhs;

}i

struct Case_ Statement ({
Expression selector;
Linked List cases;

}i

struct Compound Statement {
Linked List statements;

}i

struct Conditional
Expression test;
Statement code;
Statement otherwise;

}i

struct Loop {
Linked List controls;
Statement statement;

}i

struct Procedure Call ({
Procedure procedure;
Linked List parameters;

}i

struct Return Statement {
Expression value;

}i
Algorithm

Express functions, procedures, and rules are each represented by a subclass of the Al-
gorithm abstraction. A procedure is simply a sequence of statements. A functionisa
sequence of statements which computes aresult and returnsit to thecaller. A ruleisa
special kind of function whose result is always a boolean (logical). A rule aso has
dlightly different scoping rules than other algorithms, to allow it to manipulate entity
classes as well as instances.

Page 13

4.2.8

Any algorithm consists of aname, alist of formal parameters (which are represented by
variables), and alist of statements forming the body of the algorithm. In addition, a
function hasareturn type. A ruleimplicitly returnsalogical value. Thisvalueiscom-
puted by alist of constraints (WHERE clause), which is evaluated after the statements
which form the rule body.

Data private to algorithm objectsis:

struct Algorithm {
Linked List parameters;
Linked List body;

}i

struct Function ({
Type return type;

}i

struct Rule {
Linked List where;

}i
Scope

All scoping and symbol table functionality are managed by the Scope abstraction. A
local scopeis established by each algorithm, schema, and entity. For this reason, each
of these abstractionsis considered to be a subclass of scope, thereby inheriting all of its
functionality. Pascal-like hierarchical scoping and inheritance are implemented by
having each scope point to its immediate containing scope(s), if any. For example, an
algorithm’ slocal scope pointsto the scopeinwhich the algorithmisdefined; an entity’s
scope may have several parents. the scope in which the entity is defined, and al of the
supertype entity scopes. Initsrole as a symbol table, a scope includes definitions of
various names as entities, types, variables, algorithms, constants, and schemas.

A scope can be queried for its definition of a particular symbol. If the scope does not
itself define the symboal, its superscopes are in turn queried, and so forth. If no defini-
tion can be found, the query fails.

Data private to scope objectsis:

typedef struct Express {
FILE* file;
Dictionary schemas;
} *Express;

struct Scope {
Linked List parents;
Dictionary symbol table;
Dictionary references;

Page 14

4.2.9

4.3

Linked List use;
int last search;
Boolean resolved;

i
Schema, Schemas

The Schema abstraction represents the Express construct of the same name, whichiis,
in effect, anamed scope. Most operations of interest are performed on the scope. There
IS no data private to schema objects.

The Schemas abstraction represents a set of Schemas. The object produced by the first
two passes of Fed-X issuch aset, which ultimately contains all of the definitionsfound
in the sourcefile. Thereis no data private to schemas.

ClassHierarchy

In order to get a better idea of how the objects and classes fit together, this section pre-
sentsaclasshierarchy. Theleft column definesthe class names and the hierarchy —the
datalocal to each classobject isdefined in theright column. Thehierarchy ispresented
so that each classis defined to be asuperclass of thefirst classaboveit that is exdented
to adifferent position.

Typename sizeof
(all prefixed by "Class ")

Null
Construct struct Construct
Case Item struct Case_item
Expression Type
Ary Expression struct Ary Expression

Unary Expression

Binary Expression Expression

Ternary Expression struct Ternary Expression
Function Call Algorithm
Identifier Variable
Literal

Aggregate Literal Linked List

Binary Literal Binary

Integer Literal Integer

Logical Literal Logical

Real Literal Real

String Literal String
One_Of Expression Linked List
Query struct Query

Loop_Control struct Loop_ Control

Increment_ Control struct Increment_ Control

Conditional Control
Until Control

Page 15

While Control
Statement
Assignment
Case_Statement
Compound_Statement
Conditional
Loop
Procedure_ Call
Return Statement
With Statement
Dictionary
Linked List
Stack
Symbol
Constant
Instance (step only)

Scope
Algorithm
Function
Rule
Procedure
Entity
Schema
Type
Aggregate Type
Array Type
Bag Type
Set Type
List Type

Type_ Reference
Sized Type
Binary Type
Integer Type
Real Type
String Type
Number Type
Logical Type
Boolean Type
Generic_ Type
Composed_Type
Entity Type
Enumeration Type
Select Type
Variable

Page 16

struct Assignment

struct Case_ Statement
struct Compound_ Statement
struct Conditional

struct Loop

struct Procedure_Call
struct Return Statement
struct With Statement
struct Dictionary

struct Linked List

struct Symbol
struct Constant
struct Instance
struct Scope
struct Algorithm
struct Function
struct Rule

struct Entity

struct Type
struct Aggregate Type

struct Type Reference

struct Sized Type

struct Composed Type

struct Variable

4.4
441

4.5

Y ou will note that thereis no multipleinheritance. Thisis aserious drawback and pre-
vents certain N14 constructs such as atype and enumeration with the same name. In
order to provide this, you would need to be able to have multiple symbolsin asingle
scope with the same name (or multiple scopes at the samelevel). The cleanest solution
would be to add a scope to enumeration types, but thisis currently impossible since
types and scopes cannot inherit from one another dueto the lack of multipleinheritance.

It isour suspicion that adding multipleinheritance to the current object implementation
would greatly decrease the operating speed even for Expressfilesthat do not make use
of this capability.

Object Processing

Use, Reference

The USE and REFERENCE constructsin the N14 version of Express permitsaschema
to access definitions in other schemas. The two constructs differ in the type of access.
USE treats definitionsin the other schema as local. REFERENCE permits entitiesin
the local schemato reference itemsin the other schema but the definitions are not con-
sidered local.

The processing of the USE construct is as follows. The parser returns alist containing
the schema name as the first element followed by an optional list of expressions. The
expressions contain the name of theforeign entity and an optional local name. If thefor-
eign schemais not yet resolved, then SCHEMAresolveis called on it. The foreign
schemamust be resolved sinceit may have a USE statement which bringsin additional
entity definitions and so on. Schema resolution will expand any USE constructs into
their equivalent entities. After any USE'd schemas are resolved, the list of foreign enti-
tiesistraversed and they are copied into the local schema, renaming as necessary.

The processing of the REFERENCE construct is somewhat different. The structure re-
turned from the parser isthe same aswith USE. However, instead of being added to the
schema's symbol table, a separate dictionary is used to contain references to foreign
items. The parser adds references to the dictionary. During REFERENCEresolve a
copy of the dictionary istraversed and pointersto the objects being referenced are add-
ed. If an object is renamed with aloca name, a copy of the object is made and that
pointer is added to the reference dictionary. This is because the referenced object does
not know it has been referenced and only knowsits original name. Thus, referenced ob-
jectsare not local to aschema, i.e., they would not appear on the list of entitiesfor a
schema. The reference dictionary is searched by SCOPElookup so that a referenced
item is known to the schema but it is not considered local.

Missing Features

While Fed-X accepts almost all of the syntactic constructs of Express, the Working
Form does not yet represent as many of them; nor does it observe al of those which it
represents. In particular, constant is syntactically observed but semanticaly ig-
nored.

Page 17

Although the full type system of Expressisrepresented in the Working Form, type der-
ivationsare not performed. Itistheoretically possibleto assign atypeto any expression
on the basis of the operator and operands (or by looking up afunction in the symbol
table), but this functionality is not yet implemented. Thus, erroneous messages about
type mismatches are sometimes produced simply because type information about cer-
tain expressionsis not available.

Expressimplicitly suggests an evaluation environment yet it does not define one. Fed-
X makes occasional attemptsto mitigate this deficiency, however arigorous treatment
isimpossible without further specificiation.

Due to problems with the Express language definition, qualified identifiers may not al-
ways be interpreted properly. Problems are particularly common when dealing with
enumeration identifiers. Similarly, Express alows a subtype entity to redefine an at-
tribute which it inherits from asupertype. The effect of this redefinition on scoping re-
mains an open issue, and so Fed-X currently does not allow it.

Fed-X responds robustly to semantic errors. Syntax error recovery is somewhat more
haphazard.

Comments are discarded during lexical analysis and so have no chance of being record-
ed by the parser.

Conclusion

Although the Express Working Form in its current state is sufficient for current appli-
cations, it isonly amatter of time before some of the missing features are required. In
addition, Expressis still evolving, and the software must continue to change with the
language.

Fed-X has proven to be an effective tool for the creation of schema-independent appli-
cations based on STEP. Translators using each of the output modules distributed with
the ExpressWorking Form arein common useat NIST. Fed-X isalso part of thetoolkit
distributed by PDES, Inc.

Page 18

Cross-Referenceto N14 Rules

Rules below 117 are omitted, since they are trivial mappings.

Rule #
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
148
147
149
150
151
152
153
154
155
156
157
158
159
160
161
163
164
165

Page #(s)
72

24
24
25
18
24
24
19
25
20
72
20
20
19-20
20
20
24
72
24

19
20
25
89,97
90
86
60

31-34,40,45-46,58-60,62-64

63-64
93
93

31

94

45-46

45-46,48
45-46,49,93-94

32
31-34,45-46,58-60,62-64
28

28

31-34,48,62,77,98
31-34,48,62,77,98
31-34,48,62

89

97

95

Page 19

Rule name

add like op
binary_literal

bit

character

digit

digits
integer_literal
letter

logical_literal
Iparen_not_star
multiplication_like op
not_Iparen_star
not_paren_star
not_paren star_special
not_rparen
not_star

real_literal

rel_op

sign

simple id

special
star_not_rparen
string_literal
actual_parameter_list
aggregate initializer
aggregate_source
aggregate_type
aggregation_types
algorithm_head
dias id

alias_stmt

dias ref
array_type
assignment_stmt
attribute_decl
attribute id
attribute_qualifier
attribute_ref
bag_types

base type

binary type
boolean_type
bound 1

bound 2
bound_spec
built_in_function
built_in_procedure
case action

166
167
168
169
170
171
172
173
174
175
176
177
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

95
95
96
62
62
58
58
72
58

58,63-64
46

90

20

41

41

41
34,41,66-67
91

66

34

36,72

72

36

96

45

72

72
59,63-64
63

89

63

63,67

72,93-94

61
45-46,49,93-94
97

98

98
79,81,83,93-94
79,81,83,93-94
72

27

58,66

77

77

77

48

(example on p.48 hints at syntax)
49-50

49

50

33

Page 20

case_label
case_stmt
compound_stmt
conformant_aggregate
conformat_type
constant_decl
constant_body
constant_factor
constant_id
constant_ref
declaration
derived_attr
element
embedded_remark
entity _block

entity _body

entity _head
entity_id
entity_init
entity_or_rename
entity_ref
enumeration _id
enumeration_ref
enumeration_type
escape_stmt
explicit_attr
expression

factor
formal_parameter
function_block
function_call
function_head
function_id
function_ref
genera_ref
generic_type
group_qualifier
if_stmt

increment
increment_control
index
index_qualifier
initializer
integer_type
interface_specification
interval
interva_item
interval_op
inverse attr
inverse clause
label
labelled_attrib_list
labelled_expression
list_type

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

23

62

62

86

28
31-34,37,45-46,58-60,62-64
93

26

52

89,97
59,63-64

59-60,62-64
27

64

97

64

64,67

72,93-94
72
45-46,49
86
27
67
45-46,49
72

67
97
97
90
67
67
100
64
64
64
58
58
58

37

95

34

72

72
31-34,40,45-46,58-60,62-64
100

93

29
79,81,93-94
52

91

Page 21

literal

local_decl
local_variable
logical_expression
logical_type
named_types
null_stmt
number_type
one_of

parameter
parameter_id
parameter_ref
parameter_type
precision_spec
procedure_block
procedure_call_stmt
procedure_head
procedure id
procedure_ref
qualifier
qualifiable_factor
qualified_attribute
guery_expression
real_type
reference_clause
referenced_attribute
rel_op_extended
remark

rename_id
repeat_control
repeat_stmt
repetition
resource_or_rename
resource_ref
return_stmt
rule_block
rule_head

rule_id
schema_block
schema_body
schema_id

schema _ref
select_type
selector

set_type
simple_expression
simple_factor
simple_types
skip_stmt

stmt

string_type
subcomponent_qualifier
subsuper
subsuper_init

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

52

52

52

52

20

72

40
35,40,67
60-61
35

72

40

49

99

66
62,86,98

50
99
28-29

Page 22

subtype_declaration
supertype_declaration
supertype_expression
supertype_factor
tail_remark

term

type_decl

type_id

type_label

type_ref

unary_op
underlying_type
unique_clause
until_control

use clause

variable id
variable_ref
where_clause
while_control

width

References

[ANSI89]

[Clark90a]

[Clark90b]

[Clark90c]

[Clark90d]

[Clark90¢]

[Mason 91]

[Metz89]

[Morris90]

[Morris9l]

[Perlotto89]

[Part11]

American National Standards Institute, Programming Language C,
Document ANSI X3.159-1989

Clark, S. N., An Introduction to The NIST PDES Toolkit, NISTIR
4336, National Institute of Standards and Technology, Gaithersburg,
MD, May 1990

Clark, S.N., The NIST Working Form for STEP, NISTIR 4351,
National Institute of Standards and Technology, Gaithersburg, MD,
June 1990

Clark, S.N., Libes, D., NIST Express Working Form Programmer’s
Reference, NISTIR 4814, Nationa Institute of Standards and
Technology, Gaithersburg, MD, September 1990

Clark, S.N., QDES User’s Guide, NISTIR 4361, National Institute
of Standards and Technology, Gaithersburg, MD, June 1990

Clark, S.N., QDES Administrative Guide, NISTIR 4334, National
Institute of Standards and Technology, Gaithersburg, MD, May
1990

Mason, H., ed., Industrial Automation Systems — Product Data
Representation and Exchange — Part 1: Overview and Fundamental
Principles, Version 9, SO TC184/SC4/WG PMAG Document N50,
December 1991.

Metz, W.P., and K.C. Morris, Trand ation of an Express Schemainto
SQL, PDES Inc. internal document, November 1989

Morris, K.C., Translating Expressto SQL: A User’sGuide, NISTIR
4341, Nationa Institute of Standardsand Technology, Gaithersburg,
MD, May 1990

Morris, K.C., McLay M. Carr, P. J,, Validation Testing System
Requirements, NISTIR 4636, National Institute of Standards and
Technology, Gaithersburg, MD, September 1991.

Perlotto, K. L., The Use of GM AP Software asa PDES Environment
in the National PDES Testbed Project, NISTIR 89-4117, National
Institute of Standards and Technology, Gaithersburg, MD, June
1989

ISO 10303-11 Description Methods. The EXPRESS Language
Reference Manual, SO TC184/SC4 Document N14, April 1991.

Page 23

