
National PDES Testbed
Report Series

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NATIONAL

TESTBEDTM

Fed-X: The NIST
Express Translator

Revised April, 1992

Stephen Nowland Clark
Don Libes

NISTIR 4822

April 3, 1992

U.S. Department of Commerce

Barbara Hackman Franklin,

Secretary

Technology Administration

Robert M. White,

Undersecretary for Technology

National Institute of

Standards and Technology

John W. Lyons, Director

Sponsored by:

U.S. Department of Defense

CALS Evaluation and

Integration Office

The Pentagon

Washington, DC 20301-8000

National PDES Testbed
U

N
ITED STATES OF AMER

IC
A

D
E

P
A

R
TM

ENT OF COMM
E

R
C

E

NATIONAL

TESTBEDTM

Report Series

Fed-X: The NIST
Express Translator

Revised April, 1992

Stephen Nowland Clark
Don Libes

NISTIR 4822

April 3, 1992

iii

Table Of Contents

1 Introduction..1
1.1 Context...2

2 Implementation Environment...2

3 Running Fed-X ...2

4 Design Overview...3
4.1 Fed-X Control Flow...4

4.1.1 First Pass: Parsing...4
4.1.2 Second Pass: Reference Resolution..4
4.1.3 Third Pass: Output Generation ...6

4.2 Working Form Data Structures..6
4.2.1 Constant ..6
4.2.2 Type ..7
4.2.3 Entity...8
4.2.4 Variable...9
4.2.5 Expression...10
4.2.6 Statement ..12
4.2.7 Algorithm..13
4.2.8 Scope...14
4.2.9 Schema, Schemas..15

4.3 Class Hierarchy..15
4.4 Object Processing ..17

4.4.1 Use, Reference ..17
4.5 Missing Features ..17

5 Conclusion...18

Appendix A: Cross-Reference to N14 Rules...................................19

Appendix B: References ...23

Disclaimer
No approval or endorsement of any commercial product by the National Institute of
Standards and Technology is intended or implied

Oracle is a registered trademark of Oracle Corporation

Smalltalk-80 is a trademark of ParcPlace Systems, Inc.

Sun-3 and Sun-4 are trademarks of Sun Microsystems, Inc.

Unix is a trademark of AT&T Technologies, Inc.

Page 1

Fed-X: The NIST Express Translator

Stephen Nowland Clark
Don Libes1

1 Introduction

The NIST (Federal) Express Translator (Fed-X), and the associated Express Working
Form, are Public Domain software tools for manipulating information models2 written
in the Express language [Part11]. The Express Working Form is part of the NIST PDES
Toolkit [Clark90a]. It is intended to be used to provide the input to various conceptual-
schema-driven applications in a STEP implementation. For example, tools such as
Data Probe, a prototype STEP and Express schema browser and editor developed at
NIST [Morris91], and the STEP Working Form with its associated STEP physical file
parser, STEPparse [Clark90b], have been written independently of any particular infor-
mation model. Fed-X-based translators are used to provide the information model def-
initions to drive these applications. This approach results in smaller applications
(which need not have entire information models embedded within them), as well as in-
sulating these applications against changes in the conceptual schema and, to a certain
extent, in Express itself. Indeed, an application such as STEPparse can be used with
different conceptual schemas, or different versions of the same schema, without modi-
fication. The Data Probe has been used to edit STEP product models in the context of
several different Express information models.

A primary goal in the development of Fed-X was to provide a clean back-end interface,
in order to allow various output modules to be easily plugged into a basic front-end
parser. To accomplish this, the Fed-X parser populates a set of data structures (the Ex-
press Working Form, or WF) containing all of the information in an Express specifica-
tion. A user-supplied back-end3 can then walk through the data structure, extracting
relevant portions of the available data and producing an appropriately formatted output
file.

1. Don Libes is responsible for the minor changes made to this document to track the actual implementation
of the software described. However, credit for the bulk of the document, its style, and the implementation of
the NIST Express Working Form remains with Stephen Nowland Clark. Recent changes are denoted by a
change bar to the left of the text.
2. The terms information model, data model, and conceptual schema are used interchangeably throughout this
document.
3. Two Fed-X output modules have been provided with the NIST PDES Toolkit in the past; they are not cur-
rently distributed with the toolkit. One of these produces Smalltalk-80™ class definitions [Clark90e] for use
with QDES. The other forms the back end of Fed-X-SQL, a translator which produces relational database
table definitions in SQL from an Express information model [Morris90] [Metz89].

Page 2

1.1 Context

The PDES (Product Data Exchange using STEP) activity is the United States’ effort in
support of the Standard for the Exchange of Product Model Data (STEP), an emerging
international standard for the interchange of product data between various vendors’
CAD/CAM systems and other manufacturing-related software [Mason91]. A National
PDES Testbed has been established at the National Institute of Standards and Technol-
ogy to provide testing and validation facilities for the emerging standard. The Testbed
is funded by the Computer-aided Acquisition and Logistic Support (CALS) program of
the Office of the Secretary of Defense. As part of the testing effort, NIST is charged
with providing a software toolkit for manipulating STEP data. This NIST PDES Tool-
kit is an evolving, research-oriented set of software tools. This document is one of a set
of reports which describe various aspects of the Toolkit. An overview of the Toolkit is
provided in [Clark90a], along with references to the other documents in the set.

The reader is presumed to have a working knowledge of Express N14 and the C pro-
gramming language.

2 Implementation Environment

Fed-X was developed on Sun Microsystems Sun-3™ and Sun-4™ series workstations
running the Unix™ operating system. The Working Form is implemented in ANSI
Standard C [ANSI89]. The Fed-X parser itself is implemented in Yacc and Lex, the
Unix languages for specifying parsers and lexical analyzers. In the NIST development
environment, the grammar can also be processed by Bison, the Free Software Founda-
tion’s1 implementation of Yacc. Similarly, the lexical analyzer can be produced by
Flex2, a fast, Public Domain implementation of Lex. The C compiler used is GCC, also
a product of the Free Software Foundation. The implementation currently depends on
certain features of Standard C but presumably, any conformant compiler could be used.

3 Running Fed-X

A default main procedure is available for applications which choose not to supply their
own top-level control. The following section describes invocation of applications built
this way.

Fed-X takes several optional command-line arguments:

fedex [-d <number>]
 [-e <express>]

1. The Free Software Foundation (FSF) of Cambridge, Massachusetts is responsible for the GNU Project,
whose ultimate goal is to provide a free implementation of the Unix operating system and environment.
These tools are not in the Public Domain: FSF retains ownership and copyright privileges, but grants free dis-
tribution rights under certain terms. At this writing, further information is available by electronic mail on the
Internet from gnu@prep.ai.mit.edu.
2. Vern Paxson’s Fast Lex is usually distributed with GNU software. It is, however, in the Public Domain,
and is not an FSF product. Thus, it does not come under the FSF licensing restrictions.

Page 3

{-w|-i all|none|<warning>}
The -d option controls the debugging level; the argument can range from 0 (the de-
fault) to 10. The Express source file is specified with -e; if no -e option is given,
Fed-X reads from standard input. The last two options control which warning messages
Fed-X will produce. -w is used to turn on warning classes and -i (ignore) to turn them
off. A parameter of all behaves in a predictable fashion, instructing Fed-X to
enable/disable all of the warning classes initially; similarly, none instructs Fed-X to
begin with no warning classes enabled/disabled. Allowable values for <warning>,
with their interpretation and default values, are:

subtypes - Warnings about subtypes: Fed-X only traverses the class
hierarchy by way of superclass information, so problems in
subclass lists can "safely" be ignored. Default: on.

code - Warnings about problems in algorithms and where clauses.
Fed-X does not yet handle all of Express’ scoping rules
properly, nor does it attempt to compute the return types of
expressions, so some of these warnings may be extraneous.
Default: off.

comment - Nested comment warning. Default: off.
shadows - Warnings about overloaded names. The scoping rules of

Express can disambiguate these shadowed definitions, but
cannot be invoked outside of Express, e.g. in STEP files.
Default: on.

Fed-X can be built in two different ways, resulting in different interaction patterns. For
many applications, a single output module is bound into Fed-X at build time. In this
statically linked case, after the first two passes are completed, the user is normally
prompted for a single file name. This is the name of the file to which Fed-X’s output
will be written. In the other (dynamically linked) version, no specific output module is
loaded at build time. In this case, when the first two passes are complete, the program
asks for an output module. If the file named is an appropriate object file, it is loaded
and an output file name requested. This is the name of the file to which the output will
be written. Another output module is then requested, and this sequence continues until
an empty line is entered as the name of the output module, which signals Fed-X to exit.
This dynamic loading facility is available only under BSD4.2 Unix and its derivates.

4 Design Overview

Fed-X is a three-pass translator. The first two passes are the standard parsing and sym-
bol-table resolution passes of a traditional compiler. The third is a flexible output gen-
eration pass. The Working Form which is produced by the first two passes consists of
data structures which directly reflect the structure and contents of the Express source.
The third pass, which can be tailored to various specific applications, traverses these
data structures and produces output in a specified format.

Page 4

4.1 Fed-X Control Flow

4.1.1 First Pass: Parsing

The first pass of Fed-X builds a set of data structures which completely represent the
information in the Express input. This pass makes no attempt at resolving most name
references; thus, the resulting data structures are linked only indirectly by names: in or-
der to resolve a function call, the name of the function must be looked up in the symbol
table for the appropriate scope. The entire structure of the file is represented at this
point, however. If any syntax errors are encountered, the parser attempts to print mean-
ingful error messages and to continue parsing.

The N14 specification [Spiby 91] provides a suggested grammar, however it suffers
from various defects, such as unreferenced rules. This is probably because it was edited
from previous drafts rather than being constructed anew. The grammar also sacrifices
pedagogy for efficiency in many places.

The grammar used by Fed-X resembles the N14 grammar in spirit and language accep-
tance, but differs widely in some places. Since the N14 specification provides no map-
ping of rules to pages, an index was built for our own requirements. It is given in
appendix A.

4.1.2 Second Pass: Reference Resolution

In the second pass, an attempt is made to resolve all names. An error message is gen-
erated for any reference to an undefined name and for any use of a name in an inappro-
priate context (e.g., an algorithm name as the type of a variable). Some checks are made
on the consistency of the model during this pass. For example, one check ensures that
every supertype of a given entity also lists the entity as a subtype, and vice versa. Also
during this pass, warnings may be issued about names which are multiply defined in
different scopes. Express has a hierarchical scoping mechanism to disambiguate these
names, so that such overloading is allowed. In practice, however, Express models are
mapped onto STEP physical files, which have no notion of a hierarchically scoped in-
formation model. When this "flattening out" of the model takes place, overloaded
names may conflict; hence the need for these warnings about shadowed definitions.

Here is a cursory overview of the sequence of code that builds the Working Form. Oc-
casional annotations are provided for clarity. The following steps all occur in the func-
tion:

 EXPRESSpass_2 express.c

 SCHEMAresolve(model->schema); pass2.c

 SCOPEresolve_pass1(schema); pass2.c

 for each imported schema name (SCOPEget_imports) scope.c

 replace name with actual schema

 SCHEMAresolve_pass1 pass2.c

 SCOPEresolve_pass1

 for each non-imported schema (SCOPEget_schemata) scope.c

 SCHEMAresolve_pass1

 for each entity (SCOPEget_entities)

Page 5

 ENTITYresolve_pass1(e) pass2.c

 convert supertype list from list of idents to entities

 EXPresolve_qualification

 convert subtype list from expression to list of entities

 (EXPresolve_subtype_expression(expr, entity, list);)

 resolve explicit, derived attributes (via VARresolve)

 VARresolve variable.c

 attempt to resolve type by calling

 TYPEresolve(type_reference) type.c

 if type is an entity, generate an entity ref

 and attach to var by...

 OBJbecome(type,OBJcreate(Class_Entity_Type...

 attach entity to entity type by...

 ENT_TYPEput_entity(type,def)

 resolve unique

 SCOPEresolve_pass2(schema); pass2.c

 for every symbol in scope

 report on shadowed decl's

 for every schema in scope

 SCHEMAresolve_pass2 pass2.c

 SCOPEresolve_pass2 (see above)

 for every type in scope

 resolve all references (TYPEresolve) pass2.c

 for every entity in scope

 ENTITYresolve_pass2 pass2.c

 for every supertype of this entity

 recursively call ENTITYresolve_pass2 (see above)

 tag each entity with count of attributes inc. inherited

 verify one of its subtypes is the entity

 add copy of supertype to entity's list of scopes

 for each subtype of this entity

 verify one of its supertypes is entity

 for each attribute

 for each supertype, if we can find a variable with

 same name, report "overloaded"

 resolve inverses (VARresolve)

 for every algorithm in scope

 resolve references (ALGresolve)

 skip rules

 if function

 TYPEresolve

 if

 for each parameter

 VARresolve

 TYPEresolve

Page 6

 if initializer, EXPresolve it

 SCOPEdefine_symbol

 for statement in body

 STMTresolve

 big case here on various statement types

EXPRESSpass_2 and SCHEMAresolve are very simple, just calling the routines indi-
cated above.

4.1.3 Third Pass: Output Generation

After the first two passes have built and linked the in-memory Working Form, a third
pass may be invoked to write the output. This pass can load several output modules in
succession, so that several file representations of the Express input can be produced
from a single parse. Alternatively, a specific module can be built into the translator,
and this dynamic loading phase bypassed.

4.2 Working Form Data Structures

The Express Working Form is designed in object-oriented fashion, with one data ab-
straction corresponding to each concept in Express. Thus, there are abstractions which
represent types, entities, variables (which include entity attributes and formal parame-
ters, as well as local variables), expressions, statements, algorithms, and schemas. An
additional concept which recurs in Express, and which is represented by a correspond-
ing data abstraction, is that of a scope, which is, in effect, a symbol table. Algorithms,
schemas, and entities all introduce their own local scopes.

In the following sections, we examine each abstraction in turn. Although each abstrac-
tion parallels the corresponding construct in Express quite closely, so that the descrip-
tions below often seem to be echos [Spiby91], bear in mind that the objects described
are actually the abstract data types of the Express Working Form.

4.2.1 Constant

The Constant abstraction represents symbolic constants. In the current implementation
of the Working Form, constants appear only as elements of an enumerated type. A con-
stant is named, and is marked with a type. The type of an enumeration constant simply
points back at the enumeration of which it is an element. Each constant has a value,
which can be of any C type (although it should be compatible with the type of the con-
stant); in the case of enumeration constants, this value is always an integer.

Data private to constant objects is:

struct Constant {
 Type type;
 Generic value;
};

Page 7

4.2.2 Type

The Type abstraction is used to represent Express types. Every type has a name, which
is empty in many cases. When it is not, the type represents a type declaration, as in the
TYPE <id> = <type> END_TYPE construct of Express. When the name is empty,
the type represented appears within some other context - perhaps as the type of a func-
tion parameter or the base type of an aggregate. A type may have a list of constraints
(WHERE rule) associated with it; these constraints restrict the legal values of the type.

Several classes of types are represented, including simple types (numeric, logical,
string), enumerations, various aggregates, entity types, and select types. Several type
classes are implicitly or explicitly subclasses of other type classes. Thus, boolean is a
subtype of logical, and the various classes of aggregation types are subclasses of the
general aggregate type. The attributes of a type depend on its class. Thus, integer,
floating point, and string types may have a precision specification: an expression which
constrains the number of significant digits or characters allowed in a value of the type.
An enumeration type includes a list of the enumeration constants which are the allow-
able values for the type.

Every aggregate type (which may be an array, bag, list, set, or general aggregate) in-
cludes a base type, which indicates the type of objects which can be inserted into an in-
stance of the aggregate type. In addition, an aggregate type may have lower and upper
bounds. In the case of an array, these expressions indicate the first and last allowable
index into the array. For other aggregate types, these expressions constrain the total
number of objects which can (must) appear in an instantiation. If the bounds are not
specified, they are assumed to be 0 and infinity, respectively. Two flags are also asso-
ciated with each aggregate type, corresponding to the UNIQUE and OPTIONAL key-
words in an Express aggregate definition. The ’unique’ flag, if set, indicates that all
elements of an aggregate must be unique among themselves. As this requirement al-
ready applies to a set, the flag is not valid for a set type. The ’optional’ flag, which ap-
plies only to an array type, indicates that all positions in the array need not be filled in
a valid instantiation of the type - the array may contain null entries.

An entity type is simply one or more entities packaged as a type. No further informa-
tion is added beyond the entity definitions themselves. Entity types exist to allow entity
instantiations to be represented (c.f. STEP Working Form [Clark90b]), and to provide
a clean mechanism for recognizing entity names in type contexts.

A select type consists of a list of selectable types. An instantiation of any of these se-
lections is a valid instantiation of the select type. In this sense, the select is similar to
the C language union construct and the Pascal variant record. In Express, the list
of selections may only include references to named types.

There are two type classes, generic and number, which are distinguished by the fact that
the corresponding Express types (GENERIC and NUMBER, respectively) cannot be
instantiated. These can only be used as types of formal parameters to algorithms, where
an actual parameter will provide an instantiation of a more specific type at run time.

Page 8

A special type class is used to represent type references. These are (possibly qualified)
references which appear in type contexts, but which are not yet resolved to a particular
type. In normal operation under the control of Fed-X, they are replaced during the sec-
ond pass by appropriate type constructs. A type reference uses an expression (see sec-
tion 4.2.5) to record the qualified type name it represents. The components of this
expression are identifiers, and they are combined into binary expressions with the dot
operator.

There are several type constants available. These constants can be used to avoid creat-
ing multiple copies of some common types, including generic, integer, unbounded ge-
neric set, logical, etc.

Data private to type objects is:

struct Type {
 Linked_List where;
 Type original_type;
};

struct Aggregate_Type {
 Type base_type;
 Expression lower;
 Expression upper;
 short flags;
};

 struct Composed_Type {
 Linked_List list;
};

struct Sized_Type {
 Expression size;
 Boolean fixed;
};

struct Type_Reference {
 Expression name;
};

4.2.3 Entity

The Entity abstraction represents Express entity declarations. Every entity consists of
a name, and (possibly empty) lists of attributes, subtypes, and supertypes. In addition,
an entity includes a boolean expression which describes the relationships among its var-
ious subtypes. The attributes are represented as variables which are defined in the local
scope of the entity. The sub- and supertypes are themselves entities.

Page 9

In order to give a hierarchical structure to an Express model, entities are arranged in a
class hierarchy, as in the Object-Oriented world. This hierarchy is defined by the sub-
class and superclass lists of its component entities. As specified by Express, the class
hierarchy provides for conjunctive as well as disjunctive subclassing: foo SUPER-
TYPE OF (bar AND blat) means that any instance of foo is also an instance
both of bar and of blat, while foo SUPERTYPE OF ONEOF(bar, blat,
blit) represents standard inheritance, in which an instance of foo is also either an
instance of bar or an instance of blat or an instance of blit.

An entity may also include a list of uniqueness sets (from the Express UNIQUE rule)
and a list of constraints (from the Express WHERE clause). Each uniqueness set is a
list of attributes whose values, when taken together, must uniquely identify a particular
instance of the entity. The constraints, if any, are expressions which compute logical
results. Each must evaluate to true in a valid product model. These constraints can
apply to individual instantiations of the entity as well as to the collection of all instances
of the entity.

Since one possible way of looking at an entity class is as the collection of its instances,
provision is made in this abstraction for maintaining this collection. Thus, it is possible
to add instances to an entity, or to retrieve a list of all of the instances of an entity. This
mechanism is used by the STEP Working Form.

Data private to entity objects is:

struct Entity {
 Linked_List supertypes; /* list of supertypes */
 Linked_List subtypes; /* simple list of */
 /* subtypes, useful for simple lookup */
 Expression subtype_expression; /* DAG of */
 /* subtypes, with complete information */
 /* including, OR, AND, and ONEOF */
 Linked_List attributes; /* explicit attributes */
 int inheritance;
 int attribute_count;
 Linked_List unique;
 Linked_List constraints;
 Linked_List instances;
 int mark;
 Boolean abstract; /* is this an abstract */
 /* supertype? */
};

4.2.4 Variable

The Variable abstraction is used to represent entity attributes and formal parameters to
algorithms as well as local variables in a scope. A variable consists of a name, a type,
a reference, an offset, and some flags. A variable may optionally have an initializer,
which is an expression used to specify an initial value for the variable.

Page 10

The reference of a variable is the original name of an entity object in the schema from
which it has been used or referenced.

A variable’s offset indicates its position in a storage block. Thus, the offset of a local
variable is its offset into the data space of the scope in which it is defined, while the
offset of an entity attribute is its position relative to the first attribute of the entity. It is
important to realize that, in the latter case, this offset is not sufficient to locate the at-
tribute in an instantiation of the entity, since this total offset cannot be determined from
the entity definition alone. To see this, consider entities A and B, each with a single at-
tribute (call these aa and bb, respectively) The offset to bb in an instantiation of B is
0. But now suppose there is a third entity class, C, which inherits from both A and B,
in that order. Then the offset to bb in an instance of C must be 1, even though bb is
inherited from B, where its offset was 0. Thus, a variable’s offset may not be a useful
piece of information by itself.

The ’optional’ flag is used with entity attributes, and indicates that the attribute need
not have a value in a valid instantiation of the entity. A variable representing an entity
attribute can also be marked ’derived,’ indicating that the attribute value is always de-
rived from the values of other attributes, and can never be specified by a user. The
’variable’ flag, meaningful for formal parameters, indicates that the parameter is to be
passed by reference, i.e., it can be modified by the receiver.

Data private to variable objects is:

struct Variable {
 Type type;
 Expression initializer;
 Expression reference; /* true name */
 /* in use'd or reference'd object */
 int offset;
 short flags;
 Symbol inverse; /* remote entity ref */
 /* entity related by this inverse */
 /* relationship */
};

4.2.5 Expression

Expression is one of the more complex abstractions, simply because of the wide variety
of expressions found in Express. There are five basic classes of Expressions, some of
which are further divided into conceptual subclasses: literals (including integer, logical,
real, set, and string literals), identifiers, operations (including unary operations and bi-
nary operations), function calls, and queries. Every expression includes a type, which
is the type of the value it computes. Although this type is intended to be computed au-
tomatically, it currently is neither computed nor used by the Working Form code, ex-
cept in the case of a literal. In this case, the type is an implied part of the definition of
the literal’s class.

Page 11

Literal classes exist for most of the concrete simple types (as opposed to the abstract
simple types, NUMBER and GENERIC). Boolean literals do not exist in Express; they
are interpreted as logical literals instead. There may also be set literals (notably, the
empty set). There are several literal expression constants representing, for example,
zero, infinity, and the empty set.

An identifier expression represents a reference to a variable. It consists simply of the
variable referenced. (Simple) identifier expressions can be composed using (binary)
field reference expressions to form the complex qualified identifiers which Express
provides.

An operation expression includes one (unary operation) or two (binary operation) op-
erands, which are themselves expressions, and an operator, such as addition, negation,
array indexing, or attribute extraction. All of the operations of Express are supported.

A function call is composed of an algorithm (which may not be a procedure) and a list
of actual parameters to the algorithm. The actual parameters to the function call are
themselves expressions. Entity subtype expressions (see section 4.2.3) make use of a
closely related expression class, the oneof expression, which consists of a list of entity
references.

A query expression represents the set-theoretic "set of all x in X such that …" construct.
It consists of a domain set (X), a temporary identifier which represents each element of
the domain successively (x), and a list of conditions to apply to each x. The result com-
puted is a set containing all of the values of x which satisfy the constraints.

Data private to expression objects is:

struct Ary_Expression {
 Op_Code op_code;
 Expression op1;
};

struct Ternary_Expression {
 Expression op2;
 Expression op3;
};

struct Query {
 Variable identifier;
 Expression fromSet;
 Expression discriminant;
 Scope local_scope;
};

Page 12

4.2.6 Statement

The Statement abstraction is used to represent the wide variety of statements which oc-
cur in Express. There are many classes of statements, including assignments, case
statements, conditionals, loops, procedure calls, returns, and with statements. A series
of statements may be combined into a single compound statement.

An assignment statement consists of a left-hand-side expression, which must be assign-
able (this limits the expression to a possibly qualified identifier, although the restriction
currently is not enforced by the Working Form), and a right-hand-side expression, com-
puting the value to be assigned.

A CASE statement is, as in Pascal, a multi-branch conditional. It contains an expres-
sion (the case selector) and a list of branches. Each branch is a case item, represented
by the Case Item abstraction. A case item consists of a list of one or more values against
which the selector will be compared and a statement to be executed if the selector
matches one of these values.

The looping construct in Express is quite general, combining the functionality of the
repeat .. until, while .. do, and for loops of modern programming lan-
guages. An Express loop consists of a controlled statement (the body of the loop) and
a list of loop controls. There are three classes of loop control: increment (correspond-
ing to a FOR loop), until, and while. The first consists of a controlling identifier expres-
sion, initial and terminal expressions, and an optional increment expression, which
defaults to 1 if not present. The controlling identifier takes on successive values from
the initial to the terminal expressions, and is incremented by the increment expression
on each iteration. An until control consists of a single expression (which must compute
a boolean result); it causes the loop to terminate when this expression evaluates to
true. Similarly, a while control causes the loop to terminate as soon as its single ex-
pression evaluates to false.

A procedure call is very much like a function call, with the exception that the algorithm
is expected to be a procedure, rather than a function or rule. The procedure call state-
ment includes a list of expressions, representing the actual parameters to the call.

A RETURN statement is the mechanism by which a function reports a value to its call-
er. It contains a single expression, which computes the value to be returned.

A simple statement is one which consists of a single keyword. There are two such state-
ments in Express: ESCAPE and SKIP. No statement class is provided for simple state-
ments; rather, they are represented by statement constants, unique instances of the
Statement abstraction itself.

Finally, Express includes the WITH statement, which resembles Pascal’s construct of
the same name. It includes a controlled statement and a controlling expression which
provides (optional) partial qualification to any expression in this statement. If a name
in the controlled statement cannot be resolved, an attempt is made to resolve the name
as if it were prepended with the controlling expression. The Working Form currently
does not attempt to acknowledge WITH statements when resolving identifiers.

Data private to statement objects is:

Page 13

struct Assignment {
 Expression lhs;
 Expression rhs;
};

struct Case_Statement {
 Expression selector;
 Linked_List cases;
};

struct Compound_Statement {
 Linked_List statements;
};

struct Conditional {
 Expression test;
 Statement code;
 Statement otherwise;
};

struct Loop {
 Linked_List controls;
 Statement statement;
};

struct Procedure_Call {
 Procedure procedure;
 Linked_List parameters;
};

struct Return_Statement {
 Expression value;
};

4.2.7 Algorithm

Express functions, procedures, and rules are each represented by a subclass of the Al-
gorithm abstraction. A procedure is simply a sequence of statements. A function is a
sequence of statements which computes a result and returns it to the caller. A rule is a
special kind of function whose result is always a boolean (logical). A rule also has
slightly different scoping rules than other algorithms, to allow it to manipulate entity
classes as well as instances.

Page 14

Any algorithm consists of a name, a list of formal parameters (which are represented by
variables), and a list of statements forming the body of the algorithm. In addition, a
function has a return type. A rule implicitly returns a logical value. This value is com-
puted by a list of constraints (WHERE clause), which is evaluated after the statements
which form the rule body.

Data private to algorithm objects is:

struct Algorithm {
 Linked_List parameters;
 Linked_List body;
};

struct Function {
 Type return_type;
};

struct Rule {
 Linked_List where;
};

4.2.8 Scope

All scoping and symbol table functionality are managed by the Scope abstraction. A
local scope is established by each algorithm, schema, and entity. For this reason, each
of these abstractions is considered to be a subclass of scope, thereby inheriting all of its
functionality. Pascal-like hierarchical scoping and inheritance are implemented by
having each scope point to its immediate containing scope(s), if any. For example, an
algorithm’s local scope points to the scope in which the algorithm is defined; an entity’s
scope may have several parents: the scope in which the entity is defined, and all of the
supertype entity scopes. In its role as a symbol table, a scope includes definitions of
various names as entities, types, variables, algorithms, constants, and schemas.

A scope can be queried for its definition of a particular symbol. If the scope does not
itself define the symbol, its superscopes are in turn queried, and so forth. If no defini-
tion can be found, the query fails.

Data private to scope objects is:

typedef struct Express {
 FILE* file;
 Dictionary schemas;
} *Express;

struct Scope {
 Linked_List parents;
 Dictionary symbol_table;
 Dictionary references;

Page 15

 Linked_List use;
 int last_search;
 Boolean resolved;
};

4.2.9 Schema, Schemas

The Schema abstraction represents the Express construct of the same name, which is,
in effect, a named scope. Most operations of interest are performed on the scope. There
is no data private to schema objects.

The Schemas abstraction represents a set of Schemas. The object produced by the first
two passes of Fed-X is such a set, which ultimately contains all of the definitions found
in the source file. There is no data private to schemas.

4.3 Class Hierarchy

In order to get a better idea of how the objects and classes fit together, this section pre-
sents a class hierarchy. The left column defines the class names and the hierarchy – the
data local to each class object is defined in the right column. The hierarchy is presented
so that each class is defined to be a superclass of the first class above it that is exdented
to a different position.

Typename sizeof

(all prefixed by "Class_")

Null

 Construct struct Construct

 Case_Item struct Case_item

 Expression Type

 Ary_Expression struct Ary_Expression

 Unary_Expression

 Binary_Expression Expression

 Ternary_Expression struct Ternary_Expression

 Function_Call Algorithm

 Identifier Variable

 Literal

 Aggregate_Literal Linked_List

 Binary_Literal Binary

 Integer_Literal Integer

 Logical_Literal Logical

 Real_Literal Real

 String_Literal String

 One_Of_Expression Linked_List

 Query struct Query

 Loop_Control struct Loop_Control

 Increment_Control struct Increment_Control

 Conditional_Control

 Until_Control

Page 16

 While_Control

 Statement

 Assignment struct Assignment

 Case_Statement struct Case_Statement

 Compound_Statement struct Compound_Statement

 Conditional struct Conditional

 Loop struct Loop

 Procedure_Call struct Procedure_Call

 Return_Statement struct Return_Statement

 With_Statement struct With_Statement

 Dictionary struct Dictionary

 Linked_List struct Linked_List

 Stack

 Symbol struct Symbol

 Constant struct Constant

 Instance (step only) struct Instance

 Scope struct Scope

 Algorithm struct Algorithm

 Function struct Function

 Rule struct Rule

 Procedure

 Entity struct Entity

 Schema

 Type struct Type

 Aggregate_Type struct Aggregate_Type

 Array_Type

 Bag_Type

 Set_Type

 List_Type

 Type_Reference struct Type_Reference

 Sized_Type struct Sized_Type

 Binary_Type

 Integer_Type

 Real_Type

 String_Type

 Number_Type

 Logical_Type

 Boolean_Type

 Generic_Type

 Composed_Type struct Composed_Type

 Entity_Type

 Enumeration_Type

 Select_Type

 Variable struct Variable

Page 17

You will note that there is no multiple inheritance. This is a serious drawback and pre-
vents certain N14 constructs such as a type and enumeration with the same name. In
order to provide this, you would need to be able to have multiple symbols in a single
scope with the same name (or multiple scopes at the same level). The cleanest solution
would be to add a scope to enumeration types, but this is currently impossible since
types and scopes cannot inherit from one another due to the lack of multiple inheritance.

It is our suspicion that adding multiple inheritance to the current object implementation
would greatly decrease the operating speed even for Express files that do not make use
of this capability.

4.4 Object Processing

4.4.1 Use, Reference

The USE and REFERENCE constructs in the N14 version of Express permits a schema
to access definitions in other schemas. The two constructs differ in the type of access.
USE treats definitions in the other schema as local. REFERENCE permits entities in
the local schema to reference items in the other schema but the definitions are not con-
sidered local.

The processing of the USE construct is as follows. The parser returns a list containing
the schema name as the first element followed by an optional list of expressions. The
expressions contain the name of the foreign entity and an optional local name. If the for-
eign schema is not yet resolved, then SCHEMAresolve is called on it. The foreign
schema must be resolved since it may have a USE statement which brings in additional
entity definitions and so on. Schema resolution will expand any USE constructs into
their equivalent entities. After any USE'd schemas are resolved, the list of foreign enti-
ties is traversed and they are copied into the local schema, renaming as necessary.

The processing of the REFERENCE construct is somewhat different. The structure re-
turned from the parser is the same as with USE. However, instead of being added to the
schema's symbol table, a separate dictionary is used to contain references to foreign
items. The parser adds references to the dictionary. During REFERENCEresolve a
copy of the dictionary is traversed and pointers to the objects being referenced are add-
ed. If an object is renamed with a local name, a copy of the object is made and that
pointer is added to the reference dictionary. This is because the referenced object does
not know it has been referenced and only knows its original name. Thus, referenced ob-
jects are not local to a schema, i.e., they would not appear on the list of entities for a
schema. The reference dictionary is searched by SCOPElookup so that a referenced
item is known to the schema but it is not considered local.

4.5 Missing Features

While Fed-X accepts almost all of the syntactic constructs of Express, the Working
Form does not yet represent as many of them; nor does it observe all of those which it
represents. In particular, constant is syntactically observed but semantically ig-
nored.

Page 18

Although the full type system of Express is represented in the Working Form, type der-
ivations are not performed. It is theoretically possible to assign a type to any expression
on the basis of the operator and operands (or by looking up a function in the symbol
table), but this functionality is not yet implemented. Thus, erroneous messages about
type mismatches are sometimes produced simply because type information about cer-
tain expressions is not available.

Express implicitly suggests an evaluation environment yet it does not define one. Fed-
X makes occasional attempts to mitigate this deficiency, however a rigorous treatment
is impossible without further specificiation.

Due to problems with the Express language definition, qualified identifiers may not al-
ways be interpreted properly. Problems are particularly common when dealing with
enumeration identifiers. Similarly, Express allows a subtype entity to redefine an at-
tribute which it inherits from a supertype. The effect of this redefinition on scoping re-
mains an open issue, and so Fed-X currently does not allow it.

Fed-X responds robustly to semantic errors. Syntax error recovery is somewhat more
haphazard.

Comments are discarded during lexical analysis and so have no chance of being record-
ed by the parser.

5 Conclusion

Although the Express Working Form in its current state is sufficient for current appli-
cations, it is only a matter of time before some of the missing features are required. In
addition, Express is still evolving, and the software must continue to change with the
language.

Fed-X has proven to be an effective tool for the creation of schema-independent appli-
cations based on STEP. Translators using each of the output modules distributed with
the Express Working Form are in common use at NIST. Fed-X is also part of the toolkit
distributed by PDES, Inc.

Page 19

A Cross-Reference to N14 Rules

Rules below 117 are omitted, since they are trivial mappings.

Rule # Page #(s) Rule name
117 72 add_like_op
118 24 binary_literal
119 24 bit
120 25 character
121 18 digit
122 24 digits
123 24 integer_literal
124 19 letter
125 25 logical_literal
126 20 lparen_not_star
127 72 multiplication_like_op
128 20 not_lparen_star
129 20 not_paren_star
130 19-20 not_paren_star_special
131 20 not_rparen
132 20 not_star
133 24 real_literal
134 72 rel_op
135 24 sign
136 simple_id
137 19 special
138 20 star_not_rparen
139 25 string_literal
140 89,97 actual_parameter_list
141 90 aggregate_initializer
142 86 aggregate_source
143 60 aggregate_type
144 31-34,40,45-46,58-60,62-64 aggregation_types
145 63-64 algorithm_head
146 93 alias_id
148 93 alias_stmt
147 alias_ref
149 31 array_type
150 94 assignment_stmt
151 45-46 attribute_decl
152 45-46,48 attribute_id
153 45-46,49,93-94 attribute_qualifier
154 attribute_ref
155 32 bag_types
156 31-34,45-46,58-60,62-64 base_type
157 28 binary_type
158 28 boolean_type
159 31-34,48,62,77,98 bound_1
160 31-34,48,62,77,98 bound_2
161 31-34,48,62 bound_spec
163 89 built_in_function
164 97 built_in_procedure
165 95 case_action

Page 20

166 95 case_label
167 95 case_stmt
168 96 compound_stmt
169 62 conformant_aggregate
170 62 conformat_type
171 58 constant_decl
172 58 constant_body
173 72 constant_factor
174 58 constant_id
175 constant_ref
176 58,63-64 declaration
177 46 derived_attr
179 90 element
180 20 embedded_remark
181 41 entity_block
182 41 entity_body
183 41 entity_head
184 34,41,66-67 entity_id
185 91 entity_init
186 66 entity_or_rename
187 34 entity_ref
188 36,72 enumeration_id
189 72 enumeration_ref
190 36 enumeration_type
191 96 escape_stmt
192 45 explicit_attr
193 72 expression
194 72 factor
195 59,63-64 formal_parameter
196 63 function_block
197 89 function_call
198 63 function_head
199 63,67 function_id
200 function_ref
201 72,93-94 general_ref
202 61 generic_type
203 45-46,49,93-94 group_qualifier
204 97 if_stmt
205 98 increment
206 98 increment_control
207 79,81,83,93-94 index
208 79,81,83,93-94 index_qualifier
209 72 initializer
210 27 integer_type
211 58,66 interface_specification
212 77 interval
213 77 interval_item
214 77 interval_op
215 48 inverse_attr
216 (example on p.48 hints at syntax) inverse_clause
217 49-50 label
218 49 labelled_attrib_list
219 50 labelled_expression
220 33 list_type

Page 21

221 23 literal
222 62 local_decl
223 62 local_variable
224 86 logical_expression
225 28 logical_type
226 31-34,37,45-46,58-60,62-64 named_types
227 93 null_stmt
228 26 number_type
229 52 one_of
230 89,97 parameter
231 59,63-64 parameter_id
232 parameter_ref
233 59-60,62-64 parameter_type
234 27 precision_spec
235 64 procedure_block
236 97 procedure_call_stmt
237 64 procedure_head
238 64,67 procedure_id
239 procedure_ref
240 72,93-94 qualifier
241 72 qualifiable_factor
242 45-46,49 qualified_attribute
243 86 query_expression
244 27 real_type
245 67 reference_clause
246 45-46,49 referenced_attribute
247 72 rel_op_extended
248 remark
249 67 rename_id
250 97 repeat_control
251 97 repeat_stmt
252 90 repetition
253 67 resource_or_rename
254 67 resource_ref
255 100 return_stmt
256 64 rule_block
257 64 rule_head
258 64 rule_id
259 58 schema_block
260 58 schema_body
261 58 schema_id
262 schema_ref
263 37 select_type
264 95 selector
265 34 set_type
266 72 simple_expression
267 72 simple_factor
268 31-34,40,45-46,58-60,62-64 simple_types
269 100 skip_stmt
270 93 stmt
271 29 string_type
272 79,81,93-94 subcomponent_qualifier
273 52 subsuper
274 91 subsuper_init

Page 22

275 52 subtype_declaration
276 52 supertype_declaration
277 52 supertype_expression
278 52 supertype_factor
279 20 tail_remark
280 72 term
281 40 type_decl
282 35,40,67 type_id
283 60-61 type_label
284 35 type_ref
285 72 unary_op
286 40 underlying_type
287 49 unique_clause
288 99 until_control
289 66 use_clause
290 62,86,98 variable_id
291 variable_ref
292 50 where_clause
293 99 while_control
294 28-29 width

Page 23

B References

[ANSI89] American National Standards Institute, Programming Language C,
Document ANSI X3.159-1989

[Clark90a] Clark, S. N., An Introduction to The NIST PDES Toolkit, NISTIR
4336, National Institute of Standards and Technology, Gaithersburg,
MD, May 1990

[Clark90b] Clark, S.N., The NIST Working Form for STEP, NISTIR 4351,
National Institute of Standards and Technology, Gaithersburg, MD,
June 1990

[Clark90c] Clark, S.N., Libes, D., NIST Express Working Form Programmer’s
Reference, NISTIR 4814, National Institute of Standards and
Technology, Gaithersburg, MD, September 1990

[Clark90d] Clark, S.N., QDES User’s Guide, NISTIR 4361, National Institute
of Standards and Technology, Gaithersburg, MD, June 1990

[Clark90e] Clark, S.N., QDES Administrative Guide, NISTIR 4334, National
Institute of Standards and Technology, Gaithersburg, MD, May
1990

[Mason 91] Mason, H., ed., Industrial Automation Systems – Product Data
Representation and Exchange – Part 1: Overview and Fundamental
Principles, Version 9, ISO TC184/SC4/WG PMAG Document N50,
December 1991.

[Metz89] Metz, W.P., and K.C. Morris, Translation of an Express Schema into
SQL, PDES Inc. internal document, November 1989

[Morris90] Morris, K.C., Translating Express to SQL: A User’s Guide, NISTIR
4341, National Institute of Standards and Technology, Gaithersburg,
MD, May 1990

[Morris91] Morris, K.C., McLay M. Carr, P. J., Validation Testing System
Requirements, NISTIR 4636, National Institute of Standards and
Technology, Gaithersburg, MD, September 1991.

[Perlotto89] Perlotto, K. L., The Use of GMAP Software as a PDES Environment
in the National PDES Testbed Project, NISTIR 89-4117, National
Institute of Standards and Technology, Gaithersburg, MD, June
1989

[Part11] ISO 10303-11 Description Methods: The EXPRESS Language
Reference Manual, ISO TC184/SC4 Document N14, April 1991.

