An Automated Documentation System for a Large Scale
Manufacturing Engineering Research Project

Howard M.

Bloonm

Leader, Software Systems Group
Carl E. Wenger
Electronics Engineer
Mational Bureau of Standards
Metrology Building, Room Al27
Washington, D.C. 20234

The Automated Manufacturing Re~
search Facility (AMRF) being implemented
at the National Bureau of Standards
(NBS) involves the development of a
software system integrating the various
information processing, communications
and data storage functions required in a
totally automated manufacturing environ-
ment. The project contains a five year
softvare development effort by more than
thirty research staff organizationally
partitioned into many units working
concurrently on different parts of the
system and supplemented by software
acgquired through procurement or
contractual effort. As the (facility
is dimplemented in modular blocks, new
software development will be undertaken
as research into factory automation
technology continues.

In such a research environment, a
system is needed for maintaining
documentation for the software life
cycle for the following purposes: (1)
tracking progress of individual module
development, (2) allewing for the
availability of up-to-date information
on module description to other members
of the project who need to interface to
a given module, (3) developing a cross
reference of module and data element
relationships, (4) providing a
documentation format that includes
specific reporting requicementr to upper
level management, and (S} generating
working level documentation that can be
eagsily modified and serve as an up-to-
date reference for anyone with interest
in the project or special subproject.

This paper describes the structure
of a software system that is functioning
in a research environment and satisfies
the following design constraints: (1)
provide minimum additional effort on the
part of the systen developers, and (2)

*Contribution of the U.S. National
Bureau of Standards, not subject to
copyright.

ACM
SIGDOC

Second International Conference on
Systems Documentation

April 29-30
Seattle, WA

reflect the structured thinking of the
developer during the software life
cycle.

¢ The key to such a management system
is the early documentation of the system
modules identified ’ through a
decomposition of all functions from the
integrated system down to the lowest
level subroutines. Each component
module of the system has a group of
seven documents to track it through the
life cycle. The decomposition provides
each developer with an understanding of
where bhis module fits into the overall
system and permits module documentation
to be produced that can be limited to
just a few pages. The documenter is
encouraged to enter information as it
becomes known so that the system always
reflects the Jlatest status of the re-
search effort.

The automated system 1is Dbeing
developed as an on-line interactive
menu-driven system that allows the
developer to enter information about his
modules. The final system version will
be capable of the following functions:
(1) full-screen editing, {(2) menu driven
interface between the user and the
system, (3) cross reterencing between
module and data elements, (4) generation
of reports, (S) generation of work
schedules, (6) monitoring of system
milestones, (7) checking for approp..ata
information, and (8) managing a data
element dictionary.

Bagckground

The RNational Bureau of Standards
was given a Congressional initiative in
October 1980 to build an Automated
Manufacturing Research Facility (AMRF)
where issues involving the batch shop
manufacturing environment could be
studied (Simpson, 1982). The two major

focal points were to be (1) the
establishment of quidelines for inter-
face standards between the various

system modules in a manufacturing system
and (2) the extension of the
dimensional traceability ("Deterministic

upon the premise that an accurate
monitoring of the manufacturing process
can replace or reduce the need for
inspecting the product.

The research project involves the
effort of approximately 70 persons
working on various aspects of automation
technology which must be integrated
together as a defined facility
implementation. The researchers come
from a variety of disciplines--computer
science, electrical engineering,
mechanjical engineering, industrial
engineering, etc. -— and are applying
technology to a wide range of
manufacturing areas. Examples of
systems include hardware intensive
sensory interactive robot control
systems, network communication, smart
machine tools, vision systems, etc.
Software intensive systems include data

base management systems, network
protocols, computer ajded process
planning, computer-aided-design, wmanu~

facturing planning and control systems,

scheduling, process monitoring and
artificial intelligence, graphics, and
sipulation. Because of the wide range

of applications, many languages will be
used such as FORTRAN, PASCAL, PORTH,
LISP, C, varieties of assembly
languages, and special purpose languages
such as APT, SLAM, PRAXIS, etc.; in
addition many computers will be used
varying in size from microcomputers to
minicomputers and special purpose
computers such as controllers, data base
machines and Al/graphics machines.

The project will support and draw
upon both university and industrial
efforts that will either develop or
furnish software to be included in the
research facility. The AMRP will
ultimate'y nerve as a testbed research
for NBS, industry, and universities to
work together on solving the ecritical
-manufacturing problem stated above.
Hence even though the environment 1is
research in its nature, it was
recognized that a strong software
management program was essential to the
software development effort and that at
the heart of such a program would be an
effective documentation structure.

Documentation Philosophy

Software documentation is certainly
not a new problem and much effort has
been spent on defining standard types of
documentation (FIPS Pub 38). However
the emphasis has invariably been placed
on management information systems or
large scale weapons systems that will be
used in a production environment. Much
has been written on the ways in which

documentation for production systems
should be prepared, controlled and
maintained (Neuman, 1982). A major

difference between the research and the

typical production development effort is
in the resources allocated to
documentation, A good project manager
will include in his budget funds for
documentation as well as an allocation

for staft time required for
documentation of his milestone
compitments. The major documentation

emphasis in research efforts is in the
area of publishing technical papers on
the results and usage of the system.

The research environment of the
AMRP project may be considered to be the
major .constraint affecting the software

management efforts, -In order to
function effectively, the following
goals nust be achieved: (1)

additional effort on the part of the
system developers that would delay the
research results must be minimized, (2)
the structured thinking of the developer
during the software life cycle should be
reflected, (3) useful information about
the development of particular module
must be comnunicated ¢to the staff
without overwhelming them with paper or
meetings, and (4) a level of
documentation must be provided that can
satisfy a multitude of readers who are
interested in various aspects or views
of the project.

. The second issue above < the
software life cycle - is a difficult
concept to institute in a research
environment. The functional
requirements for systems very often do
not originate with the end user (or
sponsor) but are tentative goals for the
software developer and are subject to
change as the design is implemented.
Requirements are often driven by the
design decisions and demonstration mile-
stones.

Since the staff is research
oriented, it is often the case that the
progranmer does not have a lot of
experience in generating code for a
particular application and must spend
tine “rapid prototyping" to gain
experience with various programming
technigues to better understand the
problem being undertaken. Even |if
structured design and coding practices
are followed, there is a real concern on
the part of the designer that he must
spend his time documenting, stages in
development that could be completely
changed.

The Kkey to a useful documentation
system is the early identification of
the components of the system from the
major subsystems down through the lowest
level subroutines. An example of such a
decomposition for the AMRF is given in
Table 1. This decomposition allows each
developer to understand where his module
fits into the overall systenm and pernmits
module documentation to be produced that

can often be limitgd to Just a ztew
pages. The documenter is encouraged to
record information as it becomes known
so that the documentation data base
always reflects the latest status of the
research effort, _

The purpose of the documentation
varies with the level of the system. At
the top level, docunentation represents
a formal description of the effort to be
undectaken, the resoucrces required, the
overall design architecture, the
acceptance test procedures and the
manner in which the system is to be
constructed. This documentation should
be completed as soon as go:ciblo as it
represents a “contract® between the
developer and the supervisor of the
project's goals. The top level
documentation should not change
significantly during the 1life ecycle.
This information can serve as the basis
for developing reports that will be made
available for people outside the project
who have an interest in the effort. The
lover 1levels of the system should also
be documented, but not necessarily as
quickly or as completely since the
design of the actual implementation may
vary greatly as insight is gained into
the project.

In summary, the top level of docu-
mentation in a research project s
important for internal communication and
for interface requirements specifica-
tions between modules developed by dif-
ferent groups. In addition, the docu-
ments are used in the review process
to aid in the *walk-through®.

Rocumentation Iypes

The documents described in this
section vwhen completed will give a
history of the entire project. Bach
document has a standard format that is
meant to be used as a guideline for
pt«pacing the necessary information. It
is important that all system developers
follow the same guideline in order to
ensure that the proper information is
recorded and that it is in a form that
is convenient for retrieval by all
project staff.

Bach level of decomposition of the
system has a complete life cycle of its
own, which, is 1linked into the 1life-
cycle documentation at the next higher
level. The design phase at one level
drives the functional requizements phase
of the next lowver level.

The ten documents normally required
in a software development project have
been reduced to seven:

4.

Functional Requirements Document

This document initiates the
softwvare development effort, and
includes the description of the
following information: tequire-
ments definition, system descrip-

tion, data requirements, interface
specifications and resource
requirements. This document also

identifies the next level of
modules in the decomposition so
that the next set of documents can
be identified. This document must
be prepared as completely as
possible for the highest level
systen before any additional
development efforts are undertaken.
It serves as the basic agreement
between user and the supervisor or
project leader and delineates the
magnitude of the effort.
Information not available at the
beginning of the project can be
::tnilhed at an agreed upon later
te. .

System Development Plan

This document shows the
gesults of the software planning
function. It includes a
description of all bhardware and
softvare resources, their estimated
cost and expected dates of usage,
The 1life-cycle checklist is also
produced to show the tentative
teview dates for each Trequired
document or module.

Module Design Specification Document

This document specifies in
detail how the module is to be
implemented. It includes a
description of the control logic,
interface specifications, internal
storage layout, data base require-
ments angd formats for the input/
vacput functions. A description
of the messages, both prompts and
ercor description that are
generatad by the system is also
included.

Data Base Requirement Docunment

This document describes the
logical layout of the data elements
to be managed by the system. The
information should include the re-
lationship between the data
elements, and the format of each
element. The physical structure of
the data base is also defined.
Procedures for backing-up and
restoring the data base are
specified. (The data base manager

- (JJ

can help in preparing this
section.) Any supporting
" application software that must be
interfaced to the data base manage-
ment system should be specified.

S. Test Plan

The plan for testing the
module is described by the
following information: (1)
tentative dates for carrying out a
test, (2) resources required, (3)
module capabilities to be tested,
‘and (4) step-by-step procedures for
carrying out the tests. The test

data should be described in terns
of its content and physical
location. The expected output

results must also be specified.
6. Development Journal

This document is used to list
the history of events that have
occurred in implementing the
system. This includes problems,
successes, solutions to problens,
test results, etc.

7. System Library Document

This last document of the
development stage includes all the
information required to run and
maintain the software. The
operating environment needs to be
identified in terms of hardvare
requirements and support software.
A detailed identification of all
files containing program informa-
tion needs to be specified.

Descriptian of ADS

An Automated Documentation Systenm
(ADS) is being developed as an
interactive menu-driven systenm to
asgist the developer in the preparation
of system documentation. The objectives
of the system are as follows: (1) Pro-
vide an autcmated system for generating
documentation for the software develop-
ment life cycle, (2) Provide tables of
system information that are useful in
coordinating the relationship among
systen entities, (3) Provide tracking of
the progress of the software project,
and (4) Provide each member of the
software project with a means of
obtaining up—-to-date information on the
description of those systems being im-
plemented by other members of the
project.

The Automated Documentation Systenm
will be wused to handle the automatic
recording of working-level information
that a system developer generates during
the 1life c¢ycle software development.
The user will enter information as {t
becomes known to him into any of the

seven document-type tiles mentioneg
earlier. The ADS must be capable of
tracking the entities as they are

entered, deteraining if they are already
available as part of the system data
base, and also note for the new entities
that future documents are required. Por
exanple if the system has'3 modules, a
document needs to be generated for each
module.

The following 1list is the
functional requirements to be considered
for the first implementation of ADS:

(1) Documents will be stored in Standard
ADS Document Format (SADP), allowing
changes and additions to the document.
(SADP is defined as the RUNOPF output
print file format wvhich is left and
right justified.) The documents may be
created from a terminal keyboard with
prompting and full screen formatting,
from existing files in SADP, or from
existing files or parts of files in
other formats.

(2) Inputing/editing of ADS test data
will be done using full screen
capabilities including forms, protected
fields, and forms paging. ADS should
allow documents to be completed on other
systems such as vord processing or text
editors and then to be logged into ADS
after processing by the Pormatter and
Parser modules. Documents should be
logged out for editing by ADS or other
text editors ‘and made unavailable to
other users except in a read only mode.
When the author chooses, the document is
formated, parsed, and logged back into
the system.

(3) All field values for any document
should be available for retrieval pur-
poses. When appropriate, field values
should be checked for wvalidity and
logical) consistency.

(4) There should be a system command
structure wvhich allows mnemonics or menu
selection of system or subsystenm,
document type, or ADS functions such as

edit, input, print, etc. Variable EELP
levels controlled by the user or by a
user profile should lead the user

through the use of the systea.

(5) The system should maintain an index
of all systenm and subsysten
documentation files with the status of
each. All requized subsystem
documentation files should be initiated
automatically when the subsystem is
first mentioned in a higher level
Punctional Requirements Document (PRD).
All data field values already known to
ADS should be automatically filled {n
for these documents.

(6) Provide for the generation of re-
ports using any combination of fields

i+

from any document.

(7) The system should allow multiple
users to use the system at the sane
time, but not allow more than one user
t:. update the same document at the sane
tine.

The first version of the system has
been implemented on the AMRP research
computer. A description of the use
of this version is given below and a
sample terminal session using ADS on
the VAX is shown in fiqures 1, 2, and
3. For the sample session, a ‘'ss=>' ig
displayed to prompt the user for an ADS
command or or data required before

rocessing of the selected document
geginl. After processing of the document
begins, a '->' prompts the user for text
data to be input for the document.
Underlined text data in the sasmple
session are responses to these prompts
and are terminated by carriage returns.
Responses to some prompts without
underlined text are carriage returns
only.

The first part of one continued ADS
terminal session on the research
computer is shown in fiqure 1. The user
executes the Automated Documentation
System (ADS) by entering the command
'ADS'. An ADS sign on message followed
by the main command menu is then dis-
played. .

The 'XPR' command as shown in the
ADS command menu toggles the expert
mode switch to provide abbreviated

displays. When an ADS session is
completed by entering the 'EX' (or
'EXIT') command, the last setting of
this switch is stored in the ADS user
profile which is automatically created
and maintained for each user. If ADS is
exited with this swicch set tou the
expert or abbreviated mode, the
expert mode will be set for the next ADS
session. If an illegal or blank
command is entered, all command
choices are displayed even though the
expert mode is set. The expert mode was
selected in the sample session, figure
1, by entering 'XPR' in response to the
command prompt.

The *I* or input menu option is
used to input new data to an existing
document or to create a new document.
1f a carriage return only is entered for
the system name and document type
prompts, a list of the current system
names and document types is
displayed. After the system name and
document type is selected, a prompt is
displayed for each data field of the
selected document. Single or multiple
lines of text may be entered for each
prompt. The input option was selected by
entering 'I' in response to the command
prompt in figure 1. After the input

option was selected, ADS prompted for

- the System Name Code for which a

document is to be processed. The user
entered a carriage return only to get a
list of systems for which document
processing had been previously .started.
ADS was selected by entering 'ADS' as a
prompt response.

The ADS terminal session is
continued in figure 2. A carriage return
only response to the Document type code
pronpt listed all the document types and
their codes. The Functional Requirements
Document was selected by entering 'PRD'.
The actual text of the document begins
after the dashed line in figure 2. Each
‘=>' prompts the user for data to be
included in the document. The underlined
responses to the '=>' oprompts are
terninated by carriage returns.

Text data may be entered
directly for each '=>*' prompt. A
carriage return or four other ADS
subcommands nay also be entered
instead of text data in response to
a '=>' prompt. These four subcommands
are ‘EDIT', 'PIND', 'EXIT', and 'HELP'.

The 'EDIT' subcommand invokes the
EDT text editor which may be used
to input new data into the ADS document.
When prompted for the edit file name,
pressing RETURN without entering a file
name will cause ADS to Create a
temporary edit file to be used as input
data. When EDT is exited, the contents
of edit file is inserted into the ADS

document, and the ‘'=>' oprompt for
the next document section is
displayed.

The 'EDIT' subcommand may also be
used to insert an existing file into
the ADS document by entering an
existiag file name when prompted. Afte:r
editing of the file is completed, an

TEXIT' command to EDT will insert the
just edited file into the ADS document
and prompt for the next document

section. This ADS feature is illustrated
starting near the end of PFigure 2 and
continued in figure 3. A response of
'EDIT' to the '=>' prompt and the file
name response to the 's==s=>' prompt
invoked the EDT editor so that file
[WENGER.ADS]DESCRPT.DAT could be edited
using EDT and then inserted into the ADS
document. The EDT command 'TYPE WHOLE',
figure 3, listed the file, and the first
'EXIT' exited EDT so that the file was
inserted into the document. The second
'EXIT' exited the ADS edit mode so that
a new ADS command could be entered.

The 'FIND’' subcommand prompts for a
document section number. The section
nunber to be found may be any existing
section numnber either ahead or behind
the current position. After. the
requested section is found, data may be

A

typed in for that section or EDT may be
invoked to 4insert a file in that
section.

The 1EXIT' subcommand causes an
exit from the ADS input mode to the
main command menu, and the ‘HELP'
subcommand prints help information about
how to answer the ‘~>' pronpt while

in the input mode.

The 'E' command in the main ADS
command menu allows use of the EDT

editor to edit selected sections of a
document. When the ‘B option is
selected, a prompt is displayed for

the first document section to be
edited. Next a prompt is displayed for
the first NOT included section. All
document sections starting with the
section number entered for the first
prompt up to but not including the
section number entered for the last
prompt will be brought into the ED?
editor. After an exit from EDT, the
just edited sections will be replaced in
the document., Use of the 'E' option is
shown in figure 3. The user entered ‘'E'
for the first ‘'=m==>' prompt and a
carriage return only for the second to
edit a section of the document currently
being processed. Entering '2.' for the
first included section and '3.' for the
first not included section entered the
docunment - section 2 into the EDT
editor for editing. Entering 'EXIT' for
the EDT '*' prompt saved section 2 back
into the document.

The three remaining commands in the
ADS command are ‘L', 'P', and 'EX'. The
‘L' command lists a document on the
terminal, the 'P' command prints a
document on the line printer, and the
'EX' command ends the ADS session. The
command 'EXIT' may a.so be used instead
of 'EX'.

Conclusions

The Automated Documentation System
has been implemented and has become part
of the AMRF software management program.
It is still too early to tell what level
of success will be achieved. The system
has been heavily used and the
documentation output has been very
convenient for formating project
descriptions. There are still many
features of the system such as the cross
reference capability and report
generation that need to be implemented.

Acknowledgement

The authors want to thank Albrecht
Neumann, of NBS, for his guidance and
assistance in the area of software docu-
mentation. A special thanks to Charles
McLean, of NBS, for his technical review
of this paper.

References

1.

2.

3.

4.

Neumann, Albrecht J., Management
Guide for Software Documentation,
KBS Special Publication 500-87,
January 1982.

A Guide to Softwvare lzquizcnent
Specifications (IEEE Project 830),
Preliminary Draft, June 15, 1982.

Guidelines for Documentations of
Computer Programs and Automated

"Data Systems, PIPS Pub 38, Bational

Bureau of Standards, Pebruary 15,
1976.)

Becht, Betbert, Requirements
Documentation - A Management -

Oriented Approach, PFIPS Software
Documentation Workshop, Rational
Bureau of Standards, March 3, 1982.

Simpson, J. A. National Bureau of
Standards Automation Research
Program, Proc. Pourth IPAC/IFIP

Symposium on Information Control
Problems in Manufacturing
Technology, October 1982.

Table 1
System Architecture for the AMRP

Manufacturing Information Processing Systea

Support System A: System Modeling Package

Support System B: Software Development Systeam

Support System C: Graphics Support System

Support System D. Expert Systems/Artificial Intellagence

1. Production Control System

Pacility Control System
Shop Control System
Cell Control System

Group Technology Cell
Material Support Call
Workstation Pool Cell

Workstation Control Systea
Vertical Machining Station
Borizontal Machining Station
Turning Station

Cleaning fand Déburzing Station
Material Bandling Systeam
Automatic Inspection station

Equipment Control Systea
' Integrated Robot system : .
Automatically Guided Vehicle
Machine Vision System
Carousel Storage Buffer
Machine Tool Cpntrollers
Netwvork Communications System

Retwork Interface Processor
Retwork Management System

pistributed Data Administration System
Dati Base Maiagemert Systams

Pacility DBMS

shop DBMS

Cell DBMS

Workstation DBMS

Equipment DBMS
Data Transform Processor

Integrated Data Dictionary System

§&

$ ADS

Welcome to the AMRP Automated Documentation System (ADS)
Version 1.01, last update: 08/04/82.
$ ADS

Welcome to the AMRF Automated Documentation System (ADS)
Version 1.01, last update: 08/04/82.

ADS Command Menu

1 - Input data for a system document
E - Edit an existing document using ED?T
L - List a document on terminal
P - Print a document on line printer
EX - Exit ADS
XPR - Toggle expert mode

Command s==> XPR

Command m==)> I
Please enter the desired system name code, oOr
press RETURN for a list of system names and codes.

System Name Code ==a)

Code System Name _
ADS Automated Documentation System

CDI CiD Lirectea Inspection

IMS Integrated Manufacturing System
RCS Robot Control System

System Name Code =s==> ADS
Pigure 1. Sample ADS Session.

Docunment type code s===)

Code Document Type

FRD Functional Requirements Document
SDP System Development Plan

spC System Development Checklist

DBR Data Base Requirement Document

MDS Module Design Specification Document
8TP System Test Plan

§DJ Systex Development Journal

SLD System Library Document

Docunent type code s==> PRD
Document file does not exist. Press RETURN to create a new file
or enter any character. =s=s=)

Enter the document section number you wish to staz€ processing,
or press RETURN to start at beginning of document. sa=s)

Punctional Requirements Document
l. General Information
1.1 System Name: ->Automated Documentation Systam
1.2 System Identification: -=>ADS ‘
1.3 Systea Version: =>1l.01
1.4 Organization: ->Saftware Systems Group
2. Systens 0vetvi§u b

2.1 Objective: <->

Mnmwmmmmm
for fhe aoftware development cycle.

2.2 Description: =->EDIT

EDIT file-name msw> [WENGZR.ANSIDESCRPT,DAT
1l The Automated Documentation system will be used to handle the

Pigure 2. Sample ADS Session, contiued.

N

(

~~

*TYPE WHOLE
1 The Automated Documentation system will be used to handle the

2 automatic recording of working-level information that a system
3 developer generates during the life Cycle software development.

{EOB)
*EXIT
_DRAl: [WENGER.ADS]DESCRPT.DAT;2 3 lines
2.3 Design Goals: =->EXIT
Command ==s=> E

Press RETURN to process a FRD document for the ADS
system, Or enter any character., sss)
File exists. Copying to TEMP file...
Pirst included section. sam=)> 2,
Pirst NOT included section. s==) 3

1 2. Systems Overview
"IXRE HEQ?? Systems Overview
2.1 Objective:

(1) Develop an automated system for generating documentation
for the softwvare development cycle.

2.2 Description:

The Automated Documentation system will be used to handle the
10 automatic recording of working-level information that a system
11 developer generates during the life cycle software development.

WONOAUVEWN -

13 2.3 Design Goals: =>
15 2.4 Techniques: ->

i; 2.5 Constraints: =>
[EOB)
*EXIT

Command ===> EXIT
FORTRAN STOP
$

Figure 3. Sample ADS Session, continued.

(D)

