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ABSTRACT
This paper develops extended Kalman filtering algorithms

for a generic Gough-Stewart platform assuming realistically
available sensors such as length sensors, rate gyroscopes, and
accelerometers. The basic idea is to extend existing methods for
satellite attitude estimation. The nondeterministic methods are
meant to be a practical alternative to existing iterative, determin-
istic methods for real-time estimation of platform configuration.

1 INTRODUCTION
Parallel mechanisms were introduced by Gough and White-

hall in tire-testing equipment (Gough and Whitehall 1962).
Later, Stewart (1965) proposed to use a parallel mechanism as
a motion base for a flight simulator. This architecture, which is
referred to as the “Gough-Stewart platform”, can now be found in
virtually all modern flight simulators. Parallel mechanisms have
also been used in a number of other applications (Hunt 1978;
Fichter 1986; Merlet 1994), including robotics.

The direct kinematic problem is the problem of computing
the rigid body configuration (position and orientation) of the mo-
bile platform given measurements of articular sensors. The in-
verse kinematic problem is the problem of computing the ar-
ticular configurations given a rigid body configuration of the
platform. For parallel robots the inverse kinematic problem is
straightforward. The direct kinematic problem is difficult. Ex-
cept for very special cases, e.g. (Bruyninckx 1997b; Bruyninckx
1997a), analytic solutions do not exist. For practical problems
one solution approach is to add additional sensors to the links

(Tancredi, Teillaud, and Merlet 1995).
It is known with certainty in the planar case that all di-

rect kinematics problems can be transformed to polynomial root-
finding problems. This has proven true for all spatial mech-
anisms that have been analyzed. The equations are typically
“horribly complex” (Merlet 1989b). Iterative numerical solution
methods are required (Merlet 1989a). For the spatial case there
are typically many different solutions.

In general, kinematic algorithms can be classified as deter-
ministic or nondeterministic. Deterministic algorithms assume
that all measured or otherwise assumed kinematic variables are
known perfectly and that unknown kinematic variables are to be
determined exactly. This type of analysis is centuries old and is
generally what one associates with “kinematic analysis”. Nonde-
terministic algorithms assume that measurements are imperfect
and perhaps insufficient in number to determine exactly the un-
known kinematic variables. At any instant one has an estimate of
the kinematic variables and the accuracy of the estimate. This es-
timate is propagated through time and updated as measurements
are available.

Nondeterministic algorithms are recent in origin. The best
known example of a nondeterministic estimator is the Kalman fil-
ter (Kalman 1960; Gelb 1974). Nonlinear extensions of Kalman
filtering, in particular the so-called “extended” Kalman filter,
have been applied extensively to aerospace applications (Schmidt
1981). Elegant methods exist for satellite attitude estimation
(Lefferts, Markley, and Shuster 1982).

A fundamental advantage of Kalman filtering and other non-
deterministic methods is their ability to use a wide variety of sen-
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sor modalities and measurement frequencies. This is essential in
space applications, where bearing measurements from different
sensors like magnetometers and star trackers are intermittent and
available at different rates. For robotics one might use both ar-
ticular measurements, which are available frequently, and vision
estimates, which are available infrequently. Using inertial sen-
sors like miniature gyroscopes, or other tool motion sensors, one
may be able to effectively track changes in the tool position that
cannot be observed by articular sensors alone.

Software development is modular because information from
each sensor is processed individually. If in practice a sensor fails
then the estimate update rule for that sensor is simply not called.
In this sense the software is fault tolerant. If the sensor config-
uration is changed, where a sensor is replaced by one or more
other sensors, then only the relevant sensor update routines need
be changed. No other kinematic routines need be changed. This
makes it easier to modify and maintain software. This is a sig-
nificant practical benefit and discussed in some detail in Sec. 10.

For parallel, spatial robots geometrical methods of config-
uration estimation are desirable. Much relevant work has been
done in the area of satellite attitude estimation (Schmidt 1981;
Lefferts, Markley, and Shuster 1982). Particularly relevant meth-
ods are described and extended in this paper. We are not aware
of relevant work regarding parallel, spatial robots. Certainly
Kalman filter methods have been applied to robot vehicle pose
estimation and to a lesser extent manipulator pose estimation (de
Graaf 1994). The contribution of this paper is to develop ex-
tended Kalman filtering algorithms for a generic Gough-Stewart
platform assuming realistically available sensors such as length
sensors, rate gyroscopes, and accelerometers. The basic idea is
to extend existing methods for satellite attitude estimation. The
nondeterministic methods are meant to be a practical alternative
to existing iterative, deterministic methods for real-time estima-
tion of platform configuration.

2 RELATED PRIOR WORK
Merlet compares seven methods of numerical, direct kine-

matic computation (Merlet 1989a). Broadly he classifies algo-
rithms as being either “iterative” or “least squares”. First con-
sider iterative algorithms. Let X be a set of variables represent-
ing the rigid body configuration of the mobile platform. Let ρ be
a set of articular configuration variables (e.g., link lengths). Let
J(X) be a Jacobian matrix relating infinitesimal variations of the
platform and articular variables, so that δρ = J(X)δX . This is the
so-called inverse Jacobian, which is easy to compute for parallel
mechanisms. We are given the actual articular variables, ρ. Let
X̂k be the current, k-th estimate of the platform configuration. Let
ρ̂k be the corresponding set of articular variables, which is easily
computed using the inverse kinematics. Let ∆X = X̂k+1 − X̂k be
the difference between the next and current estimates. To first

order one requires that

(ρ− ρ̂k) = J(X̂k)∆X (1)

This equation can be solved for ∆X , determining the next esti-
mate X̂k+1. It is essentially a Newton-Raphson update rule. Mer-
let considers six different iterative rules, the differences of which
are not important for this discussion.

In the least squares method the goal is to minimize the cost
function

C(X̂) = (ρ− ρ̂)TM(ρ− ρ̂) (2)

where M is a symmetric, positive-definite weighting matrix. This
equation must be minimized numerically using, for example,
steepest descent methods.

Merlet achieved good numerical results using iterative meth-
ods, including one geometrical method using the “kinematic Ja-
cobian” (“geometric Jacobian”). Poor results were achieved us-
ing the least squares approach. Another approach using itera-
tive polynomial solution was reported in (Merlet 1989b). This
method is quite complicated. For the Gough-Stewart platform
it requires solving a twentieth-degree polynomial. It has funda-
mentally better convergence properties than the iterative methods
because of the robust numerical stability of polynomial solution
methods. Still, it is more complex and was an order of magnitude
slower than the iterative method using the kinematic Jacobian.

For all solution methods multiple solutions are a fundamen-
tal problem. The Gough-Stewart platform is known to have
at most 40 solutions (Faugère and Lazard 1995; Lazard 1992;
Raghavan 1991). Some examples are known to have 40 real so-
lutions (Dietmaier 1998).

3 INTRODUCTION TO EXTENDED KALMAN
FILTERING
Extended Kalman filtering is a well established technique

for estimating the state of nonlinear systems. This section sum-
marizes the continuous-discrete extended Kalman filter equa-
tions. It is based on the summary of (Lefferts, Markley, and
Shuster 1982) and the extensive treatment of (Gelb 1974).

3.1 Model
The model of the dynamic system is of the form

d
dt

x(t) = f (x(t), t)+g(x(t), t)w(t) (3)

where x(t)is the system state and process noise w(t) is a zero-
mean, Gaussian white noise process. The mean and covariance
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are

E[w(t)] = 0 and E[w(t)wT(t ′)] = Q(t)δ(t − t ′) (4)

where E denotes the expectation and δ(t− t ′) is nonzero only for
t = t ′, in which case δ(t − t ′) = 1. The initial mean and covari-
ance of the state are

E[x(t0)]≡ x̂(t0) = x0 (5)

E[(x(t0)− x0)(x(t0)− x0)
T]≡ P(t0) = P0 (6)

3.2 Propagation
In between measurements the state and error covariance are

propagated as follows. The estimate of state at any instant is
defined by a conditional expectation:

x̂(t) = E[x(t) | x̂(t0) = x0] (7)

The evolution of this estimate is governed by a differential equa-
tion

d
dt

x̂(t) = E[ f (x(t), t)] ≡ f̂ (x(t), t) ≈ f (x̂(t), t) (8)

The latter approximation is a defining feature of the extended
Kalman filter.

The state error, and error covariance matrix are defined by

∆x(t) = x(t)− x̂(t) and P(t) = E[∆x(t)∆xT(t)] (9)

The evolution of the error is governed by

d
dt

∆x(t) = F(t)∆x(t)+G(t)w(t) (10)

where

F(t) ≡
∂
∂x

f (x, t)
∣

∣

x̂(t) and G(t)≡ g(x̂(t), t) (11)

The evolution of the error covariance matrix is governed by
a Riccati equation:

d
dt

P(t) = F(t)P(t)+P(T)FT(t)+G(t)Q(t)GT(t) (12)

3.3 Measurement updates
Between measurements the state estimates and error covari-

ance are propagated according to (8) and (12). When measure-
ments are available the state estimates and error covariance are
updated according to the following rules. Measurements are as-
sumed to be a function of state

zk = h(xk)+ vk (13)

where xk = x(tk) and measurement noise vk is a discrete, zero-
mean, Gaussian white-noise process

E[vk] = 0 and E[vkvT
t′ ] = Rkδkk′ (14)

where δkk′ is nonzero only for k = k′, in which case δkk′ = 1. The
measurement covariance matrix is underlined, R, to distinguish
it from the direction cosine matrix, R.

Let x̂k(−) and Pk(−) be the state estimate and error covari-
ance immediately before measurement. Let x̂k(+) and Pk(+)
be the state estimate and error covariance immediately following
measurement. The minimum variance estimate of xk is given by

x̂k(+) = x̂k(−)+Kk[zk −h(x̂k(−))] (15)

where Kk is the Kalman gain matrix defined by

Kk = Pk(−)HT
k [HkPk(−)HT

k +Rk]
−1 (16)

and Hk is the measurement sensitivity matrix defined by

Hk ≡
∂
∂x

h(x)
∣

∣

x̂k(−)
(17)

The error covariance matrix is updated according to

Pk(+) = (I−KkHk)Pk(−)(I−KkHk)
T +KkRkKT

k (18)

4 PLATFORM KINEMATICS
The Gough-Stewart platform is a spatial platform acted upon

by six linear actuators, as depicted schematically in Fig. 1. The
mobile platform and base are depicted as polyhedra. The base
attachment point of actuator i is denoted by Ai. The platform
attachment point of actuator i is denoted by Bi. The configuration
shown is nearly singular.

Let p be the position of any convenient point on the plat-
form. It is expressed in coordinates of the distinguished base
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Figure 1. A Gough-Stewart platform

frame. Let e1, e2 and e3 be an orthonormal triplet of unit vec-
tors attached to the platform, again in coordinates of the base
frame. Together these unit vectors define a direction cosine ma-
trix R = [e1e2e3], which represents the orientation (attitude) of
the platform. Matrix R corresponds to matrix AT of Lefferts,
Markley, and Shuster (1982). Orientation can also be expressed
using Euler parameters (unit quaternions).

4.1 Euler parameters
This section is based primarily on reference (Nikravesh

1988). Rotation matrix R can be associated with an angle of
rotation α and axis of rotation u. Let e0 = cos(α/2). Let
e = sin(α/2)u. Let q = [e0; e] denote the Euler parameters (unit
quaternion) corresponding to R. Scalar e0 is the scalar part of q.
Vector e is the vector part of q.

In general given Euclidean vector v let ṽ = (v)∼ denote the
cross-product matrix

ṽ =





0 −v3 v2

v3 0 −v1

−v2 v1 0



 (19)

Given Euler parameters q the corresponding rotation matrix
is

R = ΓΛT (20)

where

Γ(q) =
[

−e ẽ+ e0I
]

and Λ(q) =
[

−e −ẽ+ e0I
]

(21)

In general given Euclidean vector v let matrices v+ and v−

be defined by

v+ =

[

0 −vT

v +ṽ

]

and v− =

[

0 −vT

v −ṽ

]

(22)

These matrices have the useful properties that

ΓT(q)v = v+q and ΛT(q)v = v−q (23)

4.2 Rate of change of platform configuration
Let ω be the angular velocity of the platform in platform

coordinates. Then the rate of change of the Euler parameters is

q̇ =
1
2

ΛTω =
1
2

ω−q (24)

Let v be the linear velocity of platform point p in platform coor-
dinates. Then the rate of change of p is

ṗ = Rv (25)

5 RATE AND ACCELERATION SENSORS
Assume that the angular velocity of the platform is measured

using a three-axis gyroscope. Such gyroscopes are common and
relatively inexpensive. Assume that the linear acceleration of
point p on the platform is measured using accelerometers. These
sensors are not required for state estimation. The point is that
they can be incorporated in the method.

Let zg be the gyro measurement, with

zg = ω+bg +wg1 (26)

where bg is the gyro bias and wg1 is the gyro bias noise. The gyro
bias noise is a zero-mean Gaussian process with

E[wg1(t)] = 0 and E[wg1(t)w
T
g1(t

′)] = Qg1δ(t− t ′) (27)

The gyro bias is assumed to be driven by a Gaussian process

d
dt

bg = wg2 (28)

where wg2 is the gyro ramp noise. The mean and covariance are
assumed to be

E[wg2(t)] = 0 and E[wg2(t)w
T
g2(t

′)] = Qg2δ(t− t ′) (29)

4 Copyright  2000 by ASME



Let za be the accelerometer measurement, with

zg = a+RTg+ba +wa1 (30)

where a is the linear acceleration of point p in platform coordi-
nates, g is the acceleration of gravity in base coordinates, ba is
the accelerometer bias, and wa1 is the accelerometer bias noise.
The accelerometer bias noise is a zero-mean Gaussian process
with

E[wa1(t)] = 0 and E[wa1(t)w
T
a1(t

′)] = Qa1δ(t − t ′) (31)

The accelerometer bias is assumed to be driven by a Gaussian
process

d
dt

ba = wa2 (32)

where wa2 is the accelerometer ramp noise. The mean and co-
variance are assumed to be

E[wa2(t)] = 0 and E[wa2(t)w
T
a2(t

′)] = Qa2δ(t − t ′) (33)

6 STATE EQUATIONS
6.1 General state equations

The state is defined to be x = [q; p; vp; bg; ba]. The corre-
sponding state equations are

q̇ =
1
2

ΛT(zg −bg−wg1) (34)

ṗ = Rvp (35)

v̇p = za −RTg−ba−wa1 (36)

ḃg = wg2 (37)

ḃa = wa2 (38)

The process noise is w = [wg1; wa1; wg2; wa2]. The associ-
ated covariance is

Q =









Qg1 03×3 03×3 03×3

03×3 Qa1 03×3 03×3

03×3 03×3 Qg2 03×3

03×3 03×3 03×3 Qa2









(39)

The norm of any unit quaternion is constrained to be
unity, qTq = 1. From this it follows that ∆qTq ≈ 0 and that
[q̂; 03×1; 03×1; 03×1; 03×1] is a null vector of the error covariance
matrix P. Maintaining this singularity is difficult in practice be-
cause of numerical errors. This problem is dealt with in Sec. 8
using a reduced error covariance matrix.

6.2 Linearized state equations
The linearized state equations are

F(t) =













Fq̇,q 04×3 04×3 Fq̇,bg 04×3

Fṗ,q 03×3 Fṗ,vp 03×3 03×3

Fv̇p,q 03×3 03×3 03×3 Fv̇p,ba

03×4 03×3 03×3 03×3 03×3

03×4 03×3 03×3 03×3 03×3













(40)

where

Fq̇,q =
1
2
(zg − b̂g)

− (41)

Fq̇,bg =−
1
2

ΛT(q̂) (42)

Fṗ,q = 2Γ(q̂)(v̂p)− +2v̂pq̂T (43)

Fṗ,vp = R(q̂) (44)

Fv̇p,q =−2Λ(q̂)g+−2gq̂T (45)

Fv̇p,ba =−Ie×3 (46)

G(t) =













Gq̇,wg1 04×3 04×3 04×3

03×3 03×3 03×3 03×3

03×3 Gv̇p,wa1 03×3 03×3

03×3 03×3 Gḃg,wg2
03×3

03×3 03×3 03×3 Gḃa,wa2













(47)

where

Gq̇,wg1 =−
1
2

ΛT(q̂) (48)

Gv̇p,wa1 =−I3×3 (49)

Gḃg,wg2
= I3×3 (50)

Gḃa,wa2
= I3×3 (51)

7 CONFIGURATION SENSORS
Two kinds of configuration sensors are considered, vector

field sensors and articular sensors.

7.1 Vector field sensors
First we consider a sensor for which the sensor output is a

function of a vector field. Let v0(·) be a vector field expressed
in base coordinates. This might be the geomagnetic field, an
artificially generated magnetic field, or a directional field towards
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a beacon. Assume that the field is measured at point p on the
platform. The vector field in platform coordinates is given by

vp(p) = RT(q)v0(p) (52)

Let z = h(vp) be the n-dimensional sensor output. We need to
compute the corresponding measurement sensitivity matrix. To
do this we use the identity

δ(RT)v = (2Λv+ +2vqT)δq (53)

Using this identity it follows that

δvp = δ(RT)v0 +RTδ(v0)

= (2Λ(v0)+ +2v0qT)δq+RT ∂v0

∂p
δp

(54)

and

δh =
∂h
∂vp (2Λ(v0)+ +2v0qT(−))δq+

∂h
∂vp RT ∂v0

∂p
δp (55)

Let

Hq =
∂h
∂vp

∣

∣

x̂(−)

[

2Λ(v0)+ +2v0qT]

x̂(−)
(56)

Hp =
∂h
∂vp

∣

∣

x̂(−)

[

RT]

q̂(−)

∂v0

∂p

∣

∣

p̂(−)
(57)

The measurement sensitivity matrix is then given by

H =
[

Hq Hp 0n×3 0n×3 0n×3
]

(58)

7.2 Articular sensors
Vector field sensors are common on satellites but uncom-

mon on manipulators. Much more common are articular sensors,
which sense displacement of manipulator articulations (joints).
We assume that the sensor output can be expressed as a function
of the position of a point on the platform. Let

pi = p+Rpp
i (59)

be the position of some point on the platform, so that pp
i is con-

stant. In particular this might be an actuator attachment point.

Let z = h(pi) be the n-dimensional sensor output. Using analysis
similar to that of the preceding section it can be shown that

δh =
∂h
∂pi

(2Γ(pp
i )
− +2pp

i qT(−))δq+
∂h
∂pi

δp (60)

Let

Hq =
∂h
∂pi

∣

∣

x̂(−)

[

2Γ(pp
i )
−+2pp

i qT(−)
]

x̂(−)
(61)

Hp =
∂h
∂pi

∣

∣

x̂(−)
(62)

The measurement sensitivity matrix is then given by

H =
[

Hq Hp 0n×3 0n×3 0n×3
]

(63)

In particular consider a length (linear displacement) sensor.
Let pBi be the location of the platform attachment point of linear
actuator i. Let pAi be the location of the base attachment point of
actuator i. The sensor output is assumed to be the length of the
actuator, ρi, which is the distance between the two attachment
points:

h = ρi = ‖pBi − pAi‖= [(pBi − pAi)
T(pBi − pAi)]

0.5 (64)

The matrix of partial derivatives with respect to pBi is

∂h
∂pBi

= [(pBi − pAi)
T(pBi − pAi)]

−0.5(pBi − pAi)
T

=
1
h
(pBi − pAi)

T

(65)

8 KALMAN FILTERING USING A REDUCED ERROR
COVARIANCE MATRIX
One approach to maintaining singularity of the error covari-

ance matrix is to use a reduced error covariance matrix. This is
a straightforward extension of the method described in (Lefferts,
Markley, and Shuster 1982). Again let ∆q be the estimation error
of the Euler parameters. If the estimation error is small then it is
approximately given by

∆q ≈ ΛT(q̂)∆θ (66)

where ∆θ is a 3× 1 angular error in platform coordinates. The
state error is ∆x = [∆q; ∆p; ∆vp; ∆bg; ∆ba]. Let the reduced state
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error be ∆x′ = [∆θ; ∆p; ∆vp; ∆bg; ∆ba]. Define transformation
matrix S as:

S =

[

ΛT(q̂) 04×12

012×3 I12×12

]

(67)

Then ∆x = S∆x′. The full error covariance is defined by P =
E[(∆x)(∆x)T]. The reduced error covariance is defined by

P′ = E[(∆x′)(∆x′)T] (68)

The full error covariance matrix can be determined from the re-
duced error covariance matrix by

P = SP′ST (69)

Matrix S is not orthonormal. (It is not even square.) Still it is true
that STS = I15×15, because in general ΛΛT = I3×3. It follows that

P′ = STPS (70)

It is not difficult to show that

STṠ =−ṠTS = Ω (71)

where

Ω =

[

1
2 ω̃ 03×12

012×3 012×12

]

(72)

The rate of change of the reduced covariance matrix is then

Ṗ′ = ṠTPS+STPṠ+STṖS

=−STṠP′+P′STṠ+STṖS

= P′Ω−ΩP′+STṖS

(73)

Let

F ′ = STFS−Ω (74)

G′ = STG (75)

Using (12) and (73) it is then easy to show that

Ṗ′ = F ′P′+P′(F ′)T +G′Q(G′)T (76)

This is the equation used to propagate the reduced error covari-
ance matrix between measurements.

Next consider the problem of error covariance updates given
measurements. Let

H ′ = HS (77)

K′ = P′(H ′)T(H ′P′(H ′)T +R) (78)

The full and reduced Kalman gain matrices are related by

K = SK ′ and K ′ = STK (79)

It is straightforward to show that the reduced error covariance
update rule is

P′(+) = (I−K ′H ′)P′(−)(I−K ′H ′)T +K ′R(K ′)T (80)

The state estimate is still updated according to (15) using the
Kalman gain defined by (78) and (79).

9 EXAMPLE
This section presents a realistic example illustrating the ap-

plication of the methods. The example is adapted from one of
Fasse and Gosselin (1999). Suppose that the task is to grind an
elliptical paraboloid, a common shape for lenses, mirrors, an-
tennas, etc. The kinematics of this task are given in (Fasse and
Gosselin 1999).

The assumed platform geometry is shown in Fig. 2. In
(Fasse and Gosselin 1999) a special Minimal Symmetric Sim-
plified Manipulator (MSSM) geometry was used for illustration.
In this geometry both the base and mobile platform attachment
points consist of three pairs of coincident points. Neither the
methods described in (Fasse and Gosselin 1999) nor those de-
scribed here assume any particular symmetries. Pairs of points
are chosen to be nearly coincident, both to keep the figure un-
cluttered and to ensure that the manipulator does not go through
any kinematic singularities.

The platform is drawn as a regular hexagonal prism. A
spherical grinding tool is mounted to the platform. The elliptical
paraboloid is to be ground from below.

The manipulator is controlled using a geometrical
impedance controller. Perfect state estimates are assumed
for control purposes. A Kalman filter-based state estimator runs
simultaneously, but these estimates are not used for control.
This was done to allow fair comparison of different estimation
algorithms.

Interaction of the grinding tool with the paraboloid was
modelled as a frictionless kinematic constraint between the tool
tip and the paraboloid surface.
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Figure 2. Final configuration of controlled platform
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Figure 3. Trajectory of controlled platform using global potential function

method

Figure 3 depicts a wire-frame animation of the platform.
Only the platform is shown for clarity. The configurations of
the six linear actuators are depicted only at the final configura-
tion of the platform. The final configuration of the platform and
actuators along with the paraboloid is shown more realistically
in Fig. 2.

Results are shown in Figs. 4 and 5. The actual, simulated
variables are graphed with solid lines. The estimated variables
are graphed with dashed lines. The length measurements are as-
sumed to have constant errors in addition to time-varying errors,
as is realistic. Because of this perfect state estimation is impos-
sible.

One of the features of Kalman filtering in general is that it
can be used even when there is insufficient information for a de-
terministic measurement. Assume, for example, that lengths ρ5
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Figure 4. Actual (solid lines) and estimated (dashed lines) Euler param-

eters
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Figure 5. Actual (solid lines) and estimated (dashed lines) position

and ρ6 are not available for measurement due to a data acqui-
sition failure. It is still possible to estimate the platform con-
figuration, although of course the accuracy of the estimate will
be worse. Figure 6 shows an estimate of the position using
only four measurements. A deterministic method could not be
used in this situation. It would be just as easy to add redundant
length measurements, or add measurements from different sen-
sory modalities like vision. Deterministic methods (e.g., based
on Newton-Raphson solution of the constraint equations) cannot
be used given insufficient or redundant information.

10 MODULARITY OF SOFTWARE DEVELOPMENT
Modularity of software development is of enormous practi-

cal benefit as is apparent for satellite systems. A wide variety of
bearing sensors are available for satellites including magnetome-
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Figure 6. Actual (solid lines) and estimated (dashed lines) position using

only four length measurements

ters, sun sensors, horizon sensors and star trackers. The sensors
that are available vary from satellite to satellite. For a given satel-
lite the measurements that are available at any instant depend on
sensor health and environmental conditions. For example, if the
earth occludes the sun then no sun sensor measurements will be
available. It is thus of great advantage if not essential to have atti-
tude estimation methods that process measurements individually
rather than collectively.

For mechanisms it may not be essential to process measure-
ments individually, but still it can be useful. Suppose that when
a mechanism is new it is equipped with eight sensors of one type
(e.g., angular encoders) and six sensors of a second type (e.g.,
length sensors). The following pseudo-code illustrates the possi-
ble organization of the configuration estimation code.

while(true) {
[x,P] = propagate(x,P);
for i=1:8 {
if data_available(sensor_type1(i))

[x,P] = update(x,P,sensor_type1(i));
endif

}
for i=1:6 {
if data_available(sensor_type2(i))

[x,P] = update(x,P,sensor_type2(i));
endif

}
}

Functions data available and update are as-
sumed to be overloaded for each sensor type. Function
data available returns a boolean value depending on if the
sensor is healthy and if data is available. If data is available then
function update updates the state x and error covariance matrix
P using the available data.

Suppose that after five years two of the sensors of the first
type are broken and irreplaceable, and that three of the sensors
of the second type are broken and prohibitively expensive to re-
place. Fortunately, two very sophisticated sensors of a third type
(e.g., vision-based) have been added. The modified pseudo-code
might look like the following:

while(true) {
[x,P] = propagate(x,P);
for i=1:6 {

if data_available(sensor_type1(i))
[x,P] = update(x,P,sensor_type1(i));

endif
}
for i=1:3 {

if data_available(sensor_type2(i))
[x,P] = update(x,P,sensor_type2(i));

endif
}
for i=1:2 {

if data_available(sensor_type3(i))
[x,P] = update(x,P,sensor_type3(i));

endif
}

}

The originally written code is unchanged except that there is
no check to see if data is available from the broken sensors. Func-
tions data available and update have been overloaded
for the third sensor type. This would require an in-depth anal-
ysis of the third sensor type, but it would not require re-analysis
of the entire system.

11 CONCLUSION
Based on limited simulation results we draw the following

simple conclusion: Nondeterministic methods can be used to es-
timate the configuration of parallel manipulators. Whether or not
these methods are practical remains to be demonstrated experi-
mentally. Because similar methods are used routinely in satellite
attitude estimation we expect that the methods will be practical.

Perhaps the most significant expected practical benefit is
modularity of software development and maintenance. Software
development is modular because information from each sensor
is processed individually. If in practice a sensor fails then the
estimate update rule for that sensor is simply not called. In this
sense the software is fault tolerant. If the sensor configuration
is changed, where a sensor is replaced by one or more other
sensors, then only the relevant sensor update routines need be
changed. No other kinematic routines need be changed. This
makes it easier to modify and maintain software.
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