
Analysis of Module Interaction in an OMAC Controller

John Michaloski
National Institute of Standards and Technology

ABSTRACT

Machine controllers built from standardized software parts, commonly
referred to as components or modules, have the greatest potential to reap
open architecture benefits – including plug-and-play, reusability and
extensibility. Modularity is the key to enabling component technology.
Naturally, module interaction is a by-product of modularity, and must be
explicitly modeled to allow plug-and-play technology. This paper will
present a high-level model of component interactions in order to allow
component-based machine controllers. Discussion will focus on
Functionality, Infrastructure and Connection interfaces for dealing with
the common software functionality such as handling normal operation,
creation and destruction, parameter manipulation, connection, wiring,
licensing, security, registration, binding, discovery, naming, and
introspection. The concept of introspection will be explored as it relates to
designing a machine controller architecture using an Integrated
Development Environment.

KEYWORDS: Finite State Machine, component, module, client/server, control,
standard, modularity, proxy agent, machine

BACKGROUND

Open architecture controllers [11] have the potential to transform manufacturing by
exploiting the power of standardized software parts, much like standardized mechanical
parts contributed to the industrial revolution. The key to standardized software parts is
modularity, which refers to encapsulating common functionality into a separate entity. In
current software parlance, a modular entity is referred to as a “component,” while a
grouping of components will be called a “module” (akin to a hardware assembly).
Modularity makes “plug-and-play” possible so that you can replace a component
(module) without affecting the rest of the system. If properly designed, components and
modules can be reused in different applications. Reusability, when combined with feature
customization, allows engineers to the tailor components to meet the specific needs of
individual applications. All in all, modularity can make it easier and more cost-effective
to design, develop, and integrate applications.
Commercial equipment and materials are identified in order to adequately specify certain procedures. In no case
does such identification imply recommendation or endorsement by the National Institute of Standards and Technology,
nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

This publication was prepared, in part, by a United States Government employee as part of their official duties and is,
therefore, a work of the U.S. Government and not subject to copyright.

Assuming object-oriented technology, the fundamental aspect to attaining modularity is
encapsulating functionality by specifying interfaces. However, there are other factors
besides explicit functionality that play an important role in making plug-and-play
possible. A module must understand the framework in which it will operate and how the
module interacts with other modules; a module must advertise what it does, where and
how it operates, as well as what the module requires in order to operate. This paper will
attempt to address these module interaction questions as they apply to open architecture
controllers. Much of the discussion will be drawn from the efforts of the Open Modular
Architecture Controller (OMAC) Application Programming Interface (API) workgroup
[10] to standardize modular technology in open architecture controllers. The paper will
start with an overview of the OMAC API specification methodology. The paper will
continue by examining the different OMAC API constraints required to allow component
interaction in a machine controller. Finally, the paper concludes with discussion on the
issue of development using mainstream, high-volume, component technology.

SPECIFICATION METHODOLOGY

The goal of the OMAC API workgroup is to develop a specification for machine
controllers yielding the benefits of open architecture technology – e.g., plug-and-play,
extensibility, and reusability. The OMAC API workgroup advocates component-based
technology as the best alternative to attaining open-architecture benefits. As a
consequence, the specification defines components that cover the gamut of machine
control functionality and a framework in which the components cooperate. Figure 1
illustrates the OMAC API relationship between different elements in a component-based
abstraction hierarchy. An application is a program designed for machine control. The
OMAC API application domain is multi-axis, coordinated motion control typical of
Computer Numerical Control (CNC) machines or robots. Representative controller
applications include cutting, manipulation, and grinding. The targeted range of controller
complexity is quite broad – from multiple robotic arms to single axis controllers. A
framework is the infrastructure for integrating software. Examples of frameworks include
Microsoft’s Component Object Model (COM) [8] or the Object Management Group
(OMG) Common Object Request Broker Architecture (CORBA) [2].

Application

Framework

...

Module

Component

Component

...

Module

Component

Component

...

Figure 1. OMAC API Component-Based Abstraction Hierarchy

A component is a reusable piece of software that serves as a building block within an
application. Example components defined in the OMAC API specification include: IO
Point, Control Plan, Kinematics, Process Model, and Control Law. Interfaces define
component functionality. A component may contain multiple interfaces, either through
aggregation or inheritance. New components may extend functionality by means of
aggregation or specialization. A module is a type of component, one that acts as a
container of components of some other type. A module provides a means of storing
component references and then providing access to the component references. The
OMAC API specification defines a series of modules, including Axis, Axis Group, Task
Coordination, and Discrete Logic.

+operations()

Component

Infrastructure

Functionality

Connections

Dependency

Interface

Notation Legend

Figure 2. OMAC Component High-Level Interface Model

Using the Unified Modeling Language (UML) notation [12], Figure 2 illustrates a high-
level model common to all components that includes Functionality, Infrastructure and
Connection interfaces. These interfaces provides a uniform API for dealing with the
common software functionality such as handling normal operation, installation, creation
and destruction, parameter configuration, initialization, startup and shutdown, licensing,
security and registration, persistent data saving and restoring, enabling and disabling,
binding and discovery, naming, and introspection.

The Functionality interface exposes the control capability of a component. This
interface includes methods for behavior, state, and parameter manipulation. The
Infrastructure interface is vital in support of a broader application framework. The
Infrastructure interface handles component identification and registration, which is used
for the component to advertise what it does, where it is, and how it operates. The
Connection interface advertises the module dependencies such as the services it requires
and enumerating the events in and events out it supports, thereby answering the question
of what a module needs.

FUNCTIONALITY

Functionality refers to the range of application-specific behavior a component is
capable of performing. In the case of machine controllers, functionality involves different
aspects of motion control, discrete logic and program coordination depending on the
component. For components to properly use other components, a standard model of
functional behavior must exist. For the OMAC API, behavior is event-driven and
modeled with finite state machines (FSM). Event-driven systems correlate actions to
discrete changes in the world. Change is modeled as an event, which triggers a FSM state

transition. Within a FSM, actions can be associated with states and/or state transitions.
Associating an action with a state is categorized as a Moore machine. Associating an
action with a state transition is categorized as a Mealy machine. The OMAC API adopts
the Mealy machine model since it is well-suited for discrete event-driven systems. Given
this background, component interaction in the event process will be studied as it applies
to various ways in which components communicate.

The discussion will start with the prevalent model of interacting components, the
client/server architecture, in which clients send messages requesting service to the server,
which generates a response. Component-based technology uses an object-oriented
approach where the client invokes server methods to achieve message passing. For
distributed communication, component-based technology prescribes a proxy agent to
handle method invocations that cross process boundaries [14]. Since responses can take
time, clients have a number of options in awaiting a response. Synchronous
communication involves the client issuing a request to the server and then blocking,
waiting for a server response. Upon receipt of the server response, the client resumes
processing. Asynchronous communication differs from synchronous communication in
that the client returns immediately after issuing the request and does not wait for a
response. At some future point in time, the server generates an event signaling that it has
finished servicing the request.

In the context of a machine controller, client/server communication can be of a query,
command, or event service type.

Query requests simply manipulate parameter values through set and get accessor
methods. Query requests are typically synchronous due to the minimal response time
required. Query requests via a set method can cause a side effect resulting in an internal
event. As a query example, consider the interaction between a Human Machine Interface
(HMI) client and an Axis server in control of a single axis of motion. A query-based
interaction would have the HMI request from the Axis its current position.

Command requests are events that cause a state-change and a resulting behavioral
action to be taken by the server. The client/server command behavior is widely known as
the supervisor/subordinate software pattern [5]. Since having the client wait until
commands complete before a response is returned is inefficient and can lead to deadlock,
OMAC API prescribes asynchronous communication for command-related requests so
that server components can buffer command requests to minimize command
request/response turnaround. Returning to the HMI-Axis example, the HMI client may
issue a command request to an Axis server component to “jog” to an absolute position,
continue processing and either poll or use event service to determine when the Axis
completed jogging.

Client Server Client Server
 notify

...

t1 tiTIME

subscribe
Client Server

 notify

ti+n

...

Figure 3. Event Service over Time

Event Service is a variation of asynchronous communication, illustrated in Figure 3, in
which the client issues one request and then receives one or more asynchronous
response(s) from the server. The initial client request is known as event subscribing.

After subscribing to an event, the client is notified when the event occurs, which is called
notification. Event service with a single server and multiple clients is modeled as the
Subject/Observer or Publish/Subscribe software pattern [6]. A more general model of
event service is the Producer-Consumer software pattern where one or more producers
generate events to be forwarded to one or more consumers. Events generated by the
producers result in a call to each consumer’s event handler. Event handlers are methods
supported by the consumer, which execute other actions in response to the event
reception. In this way the consumers can handle actions like I/O changes, state
transitions, and elapsed timers. Event service can take on Push and Pull variations. In the
Push event model, events occur asynchronously. In the Pull model, a consumer pulls
events from a producer corresponding to the idea of polling.

There are several approaches to implementing event service including a two-tier or
peer-to-peer, as well as a three-tier or brokered approach managing multiple
producers/consumers. In a two-tier (or peer-to-peer) architecture, a producer interacts
directly with consumers, with no intervention. This protocol defines a one-to-many
relationship so that when the producer generates an event, all its dependent consumers are
notified. In Microsoft COM, peer-to-peer event service is implemented as “Connection
Points” [9]. Java calls delegation through the peer-to-peer event service the Source-
Listener software pattern. A three-tier architecture introduces a broker between event
producers and event consumers, which allows for many-to-many communication.
Brokers act as intermediaries similar to queues in a queuing model, but can provide extra
features such as event filtering, event correlation, and event quality of service. Different
push/pull combinations are possible between the producers, the broker and the consumers
leading to different computational paradigms: Notifier, Agent, Queued, and Procurer
[13]. OMAC API endorses the Notifier paradigm, the case where the producer pushes an
event to the broker, which pushes the event to all the subscribed consumers.

X Axis

FSM

AbsJogX
Event Broker

addEventConsumer()
removeEventConsumer()
addEventProducer()
removeEventProducer()
fireEvent()
notify()

notify()

fireEvent()

Error X
Event Broker

XYZ
Axis Group
AbsJogX

Event
Producer

Event Handler
Consumer
"AbsJogX"

Event
Producer

"XAxis Error"
HMI

AbsJogX
Event

Producer

Figure 4. Example Brokered Event Service

Illustrated in Figure 4 is an example of brokered event notification for the Axis absolute
jogging example. A separate X Axis Absolute Jog (AbsJogX) broker and X Axis Error
broker are defined. The X axis uses the addEventConsumer() broker method to
subscribe as a consumer of AbsJogX events, while the HMI and XYZ Axis Group use the
broker method addEventProducer() to subscribe as producers of AbsJogX events.
When the XYZ Axis Group uses the fireEvent() method to generate an AbsJogX
event, the X Axis consumer event handler will receive notification of the AbsJogX event.

For the X Axis, the event is propagated to its FSM, which initiates the appropriate action.
The OMAC API prescribes the following event service protocols. Peer-to-peer event

service allows client event pushes are advertised through the Functional interface. Peer-
to-peer server event pushes are special Functional interfaces, known as sources, to which
clients connect. Three-tier event service is achieved by components advertising Events-In
and Events-Out with a separate broker required for each unique Event In/Out.

INFRASTRUCTURE

Component interaction for the Infrastructure interface will be examined using one of
many potential frameworks, Microsoft’s COM. In COM, a server is a class factory that
creates components. COM servers can be inprocess, acting as a Dynamic Link Library
(DLL), and/or local or remote Executables (EXE). In COM, each component is identified
by a class id (CLSID), which is a unique 128-bit globally unique id (GUID). COM uses
this CLSID to associate a specific DLL or EXE server to a component. For each
component, an association is made to the server in the Windows registry. In COM,
category ids (CATID) identify those interfaces that a component implements and those
interfaces it requires. Components are expected to enter its Implemented/Required
interfaces in the Windows Registry. OMAC API adds the concept of CATIDs per
OMAC module in the Windows registry to reflect the addition of multiple servers per
component/module. For example, vendor A and vendor B might both install Axis
module servers. In this case, both servers are registered under the Axis Module CATID.
Browsers could then use this category information to determine available Axis Module
servers.

Discovery is a way for components to dynamically find component servers. In COM,
each component CLSID is associated to a server, which may be automatically activated.
Activation uses a component identifier and server type (inprocess, local, remote, any) to
locate a server, which creates the desired component, and then launches the server.
Activation is contingent upon satisfying licensing and security requirements. Licensing
allows only the authorized use of a component. Security determines who is granted access
to the component services and the type of access that is granted. Assuming activation, the
server can now create new components.

Finding existing components, i.e., those already created by a server, will be called
connecting. COM does not support this feature and limits finding to component servers.
The next section will review the OMAC API recommendation for this framework need.

CONNECTIONS

Connecting refers to resolving component dependencies and results in a system
architecture. The OMAC API has defined three types of dependencies: Instance
References, Events-In and Events-Out. Making connection information dynamically
accessible as part of the component will be called introspection. Introspection allows
components to be manipulated in Integrated Developer Environment (IDE) builder tools.
OMAC components are naturally expected to operate in a running application, but with
introspection, components can be used in support of the design and run-time lifecycle
phases. This concept is common elsewhere in the software industry (JavaBeans [15] and

Active/X [3]), but is rare in the machine controller domain. Using introspection at design
time, an IDE builder tool can query the component for the references it publishes, the
types of OMAC interfaces it requires as references, the events-in it requires, and the
events-out it generates. The designer can then connect the “wires” among the various
OMAC components.

To distinguish the use of introspection at different lifecycle phases, the act of resolving
component dependencies at design time will be called wiring, and at runtime binding.
Connecting is the process for discovering, activating and wiring/binding component
instances. An instance is an existing component and naming assigns a global
identification to each instance. OMAC API adds component instance discovery through
naming so that components can find other components by global name, or if no matching
component is found, to create a new component with the given name.

OMAC component instances publish their name and properties in an instance directory.
Publishing associates names with instances that implement a given interface and makes
the instance reference address globally available to other components through an instance
directory. Components find each other through the instance directory by name (Directory
Service) or property (Trader Service). If a matching component instance is not found, a
new instance is created that may require server activation.

Connecting matches a component dependency name to a global instance name. Since
dependency names are vendor-specific, they are effectively hard-coded so that it would
be difficult to change them at design time. To match dependencies to instances, OMAC
API specifies that design-time wiring map a local dependency name to a global instance
name. Local naming is responsible for the names associated with a particular component.
A vendor would be responsible for distributing a local naming table associated with each
component. For example, the following table sketches a local naming table for an Axis
module.

Local Name Type Connected
“ENCODER” IIOPointFloat Y
“ACTUATOR” IIOPointFloat Y
“POSITION_CONTROL_LAW” IControlLaw Y
… … …

Global naming is responsible for mapping local names to global names. Global naming
serves two purposes. First, global naming allows system access to local address
references. Second, global naming enables familiar naming conventions. For example, a
three-axis mill would have three instances of the parameter ENCODER that could be
resolved into corresponding global names of X-ENCODER, Y-ENCODER, and Z-
ENCODER. The table below sketches the global-local name mapping for the X-Axis.

Global Name Component Local Name
“X-AXIS-ENCODER” “X-AXIS” “X-ENCODER”
“X-POSITION-CONTROL_LAW” “X-AXIS” “POSITION_CONTROL_LAW”
… … …

DISCUSSION

The OMAC API vision of plug-and-play involves reduced cost and higher fidelity
through leveraging pervasive, off-the-shelf, high-volume, component technology, such as

Microsoft COM for component framework, or UML for component design. This paper
presented an overview of some additional component constraints, as specified by the
OMAC API, to make such plug-and-play machine controller development possible. To
that end, a high-level component model was presented with Functional, Infrastructure and
Connection interfaces. The component interaction based on these interfaces was
examined.

In the machine controller industry, there exist controller IDE products, e.g., [4, 7], that
achieve many of the desired goals of the OMAC API prescribed plug-and-play
component-based technology. Unfortunately, these products are highly proprietary and
the resulting components are not interoperable. Further, these IDE products do not
directly support mainstream, high-volume, component technology. Without high-volume
component technology, it is economically unfeasible to create and maintain components
in a manner specific to the manufacturing automation industry [1]. At NIST, we have
used high-volume component-based technology to develop control components. We have
developed OMAC API control components in COM that support the additional OMAC
API component constraints. We have found the initial overhead in developing control
components in COM is significant, but the long-term prospect for component reusability
and customization is encouraging.

REFERENCES

1. Birla, S., Yen, J., Skeries, J., and Berger, D., “Control Systems Requirements for Global
Commonization,” Control Engineering Online Extra, http://www.manufacturing.net, January 1999

2. Common Object Request Broker Architecture, Object Management Group, Framingham, MA, 1995
3. Chappell, D., “Understanding ActiveX and OLE,” Microsoft Press, Redmond, WA, 1996
4. ControlShell, Real-Time Innovations, Inc. http://www.rti.com/
5. Flater, D., Barkmeyer, E., and Wallace, E., “Towards Unambiguous Specifications: Five Alternative

Job Control Models for An Object-Oriented, Hierarchical Shop Control System,” In Proceedings of the
1999 ASME Design Engineering Technical Conferences, Las Vegas, Nevada, ASME Technical
Publishing, September 1999

6. Gamma, E., Helm, R., Johnson, R., and Vlissides, J., “Design Patterns: Elements of Reusable Object-
Oriented Software,” Addison Wesley, Reading, MA, 1994

7. LabVIEW, National Instruments, Inc., http://www.ni.com
8. Microsoft Corporation, “Component Object Model,” http://www.microsoft.com/com
9. Microsoft MSDN, “Connection Points,” In MSDN, see mk:@ivt:vccore/F26/D2B/S4CC4A.HTM
10. Open, Modular, Architecture Controls (OMAC) Users Group API Working Group,

http://www.isd.mel.nist.gov/projects/omacapi/
11. Proctor, F., and Albus, J., “Open architecture controllers,” IEEE Spectrum, 34(6), pp. 60-64, June

1997
12. Rational Software Corporation, UML 1.3 Documentation,

http://www.rational.com/uml/resources/index.jtmpl
13. Schmidt, D., “An Overview of OMG CORBA Event Services,” http://www.cs.wustl.edu/~schmidt/
14. Shapiro, M., “Structure and Encapsulation in Distributed Systems: The Proxy Principle,” In 6TH

International Conference On Distributed Computing Systems, IEEE Computer Society Press, pp. 198-
204, May 1986

15. Voss, G., “What is a Java Bean,”
http://developer.java.sun.com/developer/onlineTraining/Beans/Beans1/simple-definition.html

