World Modeling and Behavior Generation for Autonomous Ground
Vehicles

Stephen Balakirsky

Intelligent Systems Division
NIST

Abstract

In this paper we define an architecture for coarse
vehicle motion planning within the Real-time Con-
trol System (RCS) hierarchy. Interaction between the
planning system and world model will be discussed,
and results of implementing this architecture on a real-
world system will be presented.

1 Introduction

A long-standing goal has been to create a refer-
ence model architecture for intelligent controllers. The
Real-time Control System (RCS) reference model ar-
chitecture is one such architecture and it has been ap-
plied successfully to multiple diverse systems [1, 2].
The target systems for RCS are, in general, complex
control problems. It has been shown [3] that the com-
plexity of a control problem is reduced by the use of
a hierarchical control system. In order to take ad-
vantage of this fact, RCS provides guidelines for the
decomposition of the problem into sets of hierarchical
control nodes. The decomposition into the hierarchy is
guided by control theory that takes into account such
items as system response times and planning horizons.

RCS has been further specialized into the applica-
tion specific 4-D/RCS that is aimed at the design and
implementation of control systems for intelligent, au-
tonomous vehicles. The “4-D” portion of the name
refers to the integration of the VaMoRs [4] approach
to dynamic machine vision.

Each level of the 4-D/RCS hierarchy follows a
“sense-model-act” paradigm and includes sensory pro-
cessing (SP), world modeling (WM), value judgment
(VJ), and behavior generation (BG) as depicted in
Figure 1 [5]. In this paradigm, SP functions filter and
extract information to feed into WM. WM maintains
this information in a Knowledge Database (KD) over

Alberto Lacaze

Electrical Engineering
University of Maryland

areas defined by the planning horizon of the level. The
KD includes symbols and data structures containing
information about entities, events, self, and knowledge
of how the world behaves. In addition, WM may pro-
vide simulation facilities to estimate the state of the
world at the present or some future time. The BG
module utilizes these facilities in cooperation with the
VJ to compute possible plans or courses of action. The
role of the VJ module in the planning process is to
compute costs, risks, and benefits of these courses of
action. Finally, the BG module makes decisions or
“acts” based on input from the VJ module, in cooper-
ation with WM, and transmits these decisions to the
next lower level of the hierarchy.

The 4-D/RCS hierarchy contains seven levels, each
of which is modeled after the generic level depicted
in Figure 1. The levels range in planning scope from
“servo control” planning for the moves of an individ-
ual actuator, to “battalion control” planning for the
movement of a large group of vehicles. Each level is
designed to function in a particular spatial and tempo-
ral scope. For each level, the temporal scope is based
on the response time required for control of the ve-
hicle and the spatial scope is based on the required
planning horizon. As one moves higher up the hier-
archy (towards battalion control), the temporal and
spatial scope increase while the resolution decreases.
By using this scheme 4-D/RCS strives to maintain a
constant level of complexity throughout the hierarchy.
All of the levels of the hierarchy have similar compo-
nents, however, the rest of this paper will concentrate
on the vehicle level.

2 World Model

The vehicle level world modeling (VLWM) is re-
sponsible for maintaining a representation of the out-
side world and the vehicle self at a resolution that

Commard
Irpast
BEHAYIOR
SERSTAY WAORLD GENERATION
Toartiton
FROCE ARG i i
*
Task DecompesiGon
L LI |ﬁ ,
Hﬂ-u: | i PLAMHER
1
Pt 8 g T Eapschad
Flhar Rl | | |
Lo P il KD i} T K
henaap 1
Windsa Imiages PLAK [FLAN [PLAH
Mags
Emriisy F
IH.EII.IT'D! ERECUTCR || BXECLTOR
peamamans B [
I
Aultate Gebbdk Tubbak
i P v i Faared Cammazd
Ostpnt Castmist Durpn
| —

21

Eﬁﬁéﬁé

IR

Figure 1: A typical 4-D/RCS computational level.

A pricri Mo Vebide Level Easd ETr
- i ol ke d AR T —— | 1'- i ,].m::
IIl,l'nn: 5 o HE“:F"
i
i A= -
o] Al i o
Wakiecle Lawel VT
oA ook e g it
Vebicls Lowel Ohinisels D P
wl cradeddcgrenty
VEMICLE LEVEL
CLL] R LLL] LLLL) LL] L1 CLLLL]

SUMSYETHERM LEYHEL

i e bl s
treen & buldage)

Figure 2: Simplified WM component layout.

Figure 3: Vehicle level graph.

allows for the control of deliberative/reactive gross ve-
hicle movements. The Vehicle Level (VL) has a sub-
ordinate level that performs similar tasks, but at a
much finer resolution that includes such things as ve-
hicle dynamics. BG tasks the VLWM to evaluate the
cost/benefit of tentative plans. These tentative plans
are passed into VLWM in the form of “plan segments”,
where many segments make up a complete vehicle level
plan. VLWM simulates these plan segments and re-
turns to BG a single value per segment that represents
the cost/benefit. As shown in Figure 1, VLWM may
be broken down into three components: the Vehicle
Level Knowledge Database (VLKD), the Vehicle Level
Simulator/Predictor (VLS/P), and the Vehicle Level
Value Judgment (VLVJ) modules.

The VLKD receives information from lower levels
through the use of sensor processing and information
from higher levels through filters. The actual control
and low-level processing of raw, high-resolution, sen-
sor data are performed at the level subordinate to the
vehicle level (the subsystem level). The vehicle level
receives the subsystem level’s SP representation, and
performs processing to convert this data into a resolu-
tion and form appropriate for the vehicle level. For ex-
ample, high-resolution obstacle data will be converted
into mobility corridor estimates. Information received
from higher levels includes such items as a priori map
information and designated constraints on individual
vehicles. This information is filtered, and the relevant
information for this particular vehicle is stored in the
VLKD.

The VLKD may be viewed as containing many
“overlays”, each of which has knowledge about a par-

ticular attribute or feature in the world. In an effort
to reduce off-processor communication bandwidth and
latency between the VLS/P and VLKD, the VLKD
has been designed as a modular system with individ-
ual overlays residing with individual sensor processing
modules. This has the additional advantage of allow-
ing for distributed computing.

The VLS/P utilizes the information from the
VLKD in cooperation with VLVJ to produce the cost
map that is used by BG. The VLS/P must first dis-
cretize the plan segment into steps that match the
resolution of the vehicle level. The plan segment is
then simulated so that information about the vehi-
cle self may be produced. The VLS/P combines this
predicted information about the vehicle self (e.g. vehi-
cle speed, heading, etc.) with known constraints from
higher levels (e.g. avoid roads and populated areas) to
form queries about individual plan segments into the
VLKD. These queries are sent to the individual VLKD
overlays, and the results are collated for processing by
the VLVJ module.

3 Value judgment

The VLVJ is a rule-based module that evaluates
the cost/benefit of plan segments based on informa-
tion provided by the VLS/P and the supervisor. The
VLVJ has two distinct types of rules: those that apply
to individual VLKD overlays to form intermediate re-
sults and those that apply to the combination of these
intermediate results to form a single final cost/benefit
to be passed back to the BG. The rules that apply to

the individual VLKD overlays utilize modifiers such as
“contains”, “near”, and “far”, and information about
the vehicle self and constraints to produce a confor-
mity measure to the rule. For example, a mobility
rule that would be sent to the “roads” overlay of the
VLKD may state to only allow driving on roads (con-
tains roads). Constraints from the upper levels may
include items such as obey traffic laws and avoid ma-
jor highways. Predicted information about the vehi-
cle self would include information on predicted vehicle
speed and heading. All of this information would be
combined to evaluate each step of the plan segment.
The step would be said to “conform” if it met the rule
and all of the constraints, and would be said to “not
conform” if it violated the rule or any constraint (for
example driving the wrong way on a one-way road).
The conform /not conform decision need not be binary.
The rule may contain a conformance curve to be ap-
plied to the feature as it strays from the desired value.
For example, a rule may be to drive as fast as pos-
sible. A plan step with a vehicle speed equal to the
speed limit and a plan step with a speed slightly be-
low the speed limit would both conform. However,
the higher speed step would conform “more” and re-
ceive a higher conformity value based on the confor-
mance curve. Conformance values of the individual
steps of the segment are then combined into a sin-
gle conformance value. This may be accomplished in
many ways, including using the minimum, maximum,
or average value.

The second class of rules is used to combine the
intermediate conformance results into a single, final,
cost/benefit value for the plan segment. These rules
allow for complex behaviors to be performed by the
vehicle. The rules may take the form of binary arith-
metic over rules (e.g. rule 1 conforms and rule 2 con-
forms or rule 3 conforms) or may be a weighted com-
bination of conformance values (e.g. conformance to
rule 1 is very important and conformance to rule 2 is
slightly important). Each plan segment is evaluated
by these rules and a single cost/benefit value is passed
back to BG.

4 Behavior Generator

The function of BG at every level of the 4-D/RCS
hierarchy is the same: to create ordered time tagged
sets of actions to be performed by the subordinate
levels and to execute these actions.

In order to perform its function, BG at a level must:

e receive commands from the supervisor level BG.
These commands contain actions and goals for

the level

e interpret the set of constraints and cost evalua-
tion functions relevant to the assigned command

e create sets of alternative behaviors that may
achieve the goal

e evaluate these behaviors based on predicted out-
comes

e select the best behavior given the supervisor’s
constraints and cost evaluation criteria and the
time allocated to find it

e execute these behaviors by sending them to the
subordinates in a common language

In order to accomplish these tasks, BG has at its
disposition VJ and WM. From the point of view of BG,
the purposes of WM and VJ are to give an accurate
representation of the state of the world and provide a
comparison between alternate behaviors so that it can
select the best one. This may include simulation and
prediction of the changes in the world caused by the
generated behavior. The source, accuracy, and fresh-
ness of the information in WM are irrelevant to BG
except in the manner that they influence the result of
the evaluation of cost for the requested behavior.

BG can be divided functionally into the Planner
(PL) and Executor (EX). The planner’s primary func-
tion is creating alternative behaviors. Since intelligent
systems are generally highly dimensional, there may
exist a large or infinite number of alternative behav-
iors. Generally, the evaluation of these alternatives is
the computational bottleneck of the level. In order to
avoid this bottleneck, the planner must carefully se-
lect the alternatives to include satisfactory solutions
but not overburden the WM. To constrain the num-
ber of alternatives to be created and evaluated, the
PL makes use of the constraints available. These con-
straints may come from different sources, which in-
clude:

e goal assigned by the supervisor, which can be
represented as regions in the state space

e current state of the world and the self repre-
sented in the WM

e characteristics and capabilities of the subordi-
nates (or resources)

e computational timing constraints set by the
level’s cycle

The creation (or pruning) of the alternatives varies
depending upon which of these constraints is valid for
the particular application. In some applications, cer-
tain constraints are more important than others, and
therefore they may create separate functional modules
for the determination of these alternatives. For exam-
ple, resource allocation and scheduling can be con-
sidered the pruning of alternatives that do not follow
resource and timing constraints respectively.

The executor takes the result of PL and feeds it to
the subordinates. The subordinates for the level may
be other levels or actual hardware actuators in the
highest resolution levels. The executor can be viewed
as an interface between the two levels and generally is
composed of classical control techniques to guarantee
stability between levels.

In the interest of consistency and modularity, RCS
reuses modules at different levels whenever possible.
Of course, in actual implementation, these modules
may be instantiated in different hardware, and they
may work with different levels of resolution. The
VLBG is no exception, and similar planners may be
shared at different levels. Specifically, in VLBG the
cycle of execution for mobility purposes is as follows:

1. A command is received from the vehicle level’s
superior (the section level), which comes as an
order to move along a particular path. The sec-
tion level may be coordinating different vehicles
therefore it may send allowed corridors to tra-
verse, or sets of zones to stay away from.

2. Along with this command there may be a cost
evaluation function (or reference to one) so that
the VLBG knows how to compare behaviors.
Example include how much risk to accept, or
a desired completion time.

3. The VLBG sends the cost evaluation function to
VLWM.

4. The VLBG requests from the VLWM special in-
terest states (SIS) given the current goal and
command. An example of these may include
roads, bridges, known observation posts, etc.

5. The VLBG creates a set, of possible actions and
sends them to the VLWM and VLVJ. In our
case these actions are sets of movements where
the initial and final state are assigned. They
may include SIS but the set of actions is not
restricted to them. Internally to VLPL and un-
known to the VLWM and VLVJ, these actions
are connected into graphs that allow the plan-
ner to concatenate actions and costs. In cases

where costs cannot be concatenated, complete
paths through these graphs can be sent. In our
application, placing points in a grid-like fashion
over the space of interest and randomly shifting
them creates these candidate actions. This pro-
cedure allows the inclusion of SIS and has the
benefit that pseudo randomly distributed points
over featureless areas avoids the common sym-
metry problems associated with grids.

6. These lists of actions are passed to VLWM and
VLVJ. The VLWM first refines the cost evalu-
ation function passed from the VLBG. For ex-
ample, the amount of risk to take will be com-
bined with a priori knowledge of the probability
of enemy contact and inter-visibility lines and
will result in a behavior being generated. In this
case it may be staying close to trees while avoid-
ing roads. The VLWM then evaluates the cost
of being in the initial state, traversing from the
initial state to the final state, and being at the
final state by using the simulator and VLVJ. The
costs evaluated are then sent back to the VLBG.

7. VLPL compares and strings groups of actions
to create trajectories. In our case, the optimal
trajectory within the given graph is found.

8. VLPL sends the trajectories to VLEX to exe-
cute, and the re-planning cycle starts again.

5 Current Implementation

The current implementation of the 4-D/RCS vehi-
cle level was developed for the Office of the Secretary
of Defense’s Robotics Demo IIT program. This pro-
gram will culminate in late summer of 2001 with a
user appraisal involving four robotic vehicles perform-
ing complex, autonomous behaviors. These behaviors
will mimic activities performed by a scout platoon and
will include both individual vehicle behaviors (cross-
country driving at 9 m/s, road following at 18 m/s,
etc.) and group behaviors (bounding over-watch, co-
operative target tracking, etc.).

As may be seen from Figure 2, the current VLWM
consists of three independent modules. The first
two modules, the vehicle level road KD and vehi-
cle level obstacle KD, are both based on a generic
KD/Simulation module. To customize the generic
module for a given KD overlay, an input filter or sensor
processing routine and a simulation routine must be
written. These modules accept simulation rules and
segments to simulate as their input, and send back a
measure of how well the segments conformed to the

rules. For example, if darker segments show higher
conformity, the rules “avoid obstacles” and “avoid
roads” would generate the evaluation shown in Fig-
ure 2.

The third module shown is the VJ module. This
module acts as the communications front-end for the
entire system. It receives segments and rules from the
BG and passes the required information onto the KD
overlays. It then receives the results of the simulation
and creates a final cost to be passed back to the BG
module based on rules for combining the output of the
individual KD overlays.

The current implementation of the VLBG is based
upon a graph search technique derived from Dijk-
stra search. The VLBG creates a graph where each
node corresponds to a state that the vehicle may
visit. These nodes are a combination of randomly
thrown points and special interest states like roads
and bridges. An example of such graph can be seen in
Figure 3.

In Figure 3, the car is located at the center of the
map. The size of the map is about 500 meters on
a side. The grid-like background shows the internal
representation of the VLWM, and the light colored
segments are possible actions where the vehicle will
move from one end of the segment to the other. The
dark colored segments represent segments of very high
cost as evaluated by the VLVJ. The reason for the
high cost in this case is that they cross through walls,
fences, or forest. The VLWM representation (under-
lying grid) is composed of 15,625 cells while the graph
to be searched is only composed of around 2000 nodes,
so the computational advantages are evident. In this
case, the path found by the VLBG can be seen as
a set of marbles driving NW. The distance between
the nodes in the found trajectory is under 50 meters,
therefore the subordinate level can find the accurate
(and dynamically correct) trajectory within its map,
and avoid obstacles that cannot be seen in the coarse
representation of this level. The lighter colored trajec-
tory represents the path sent by the supervisor level.

6 Conclusions

Our system has advantages over more traditional
grid-based planning systems in both cost map gen-
eration and plan generation. Traditional techniques
calculate cost maps in a grid fashion. In these cases,
directionality and time of arrival at a location are
not available at the time of the calculation of cost.
Therefore the cost functions where the directionality
or time is important cannot be evaluated. Our cost
map generation has the advantage of working on path

segments instead of grid cells. VJ and WM have at
their disposal the complete initial and final state de-
scription for an action. This gives us the ability to
have an accurate picture of our vehicle self at each
step of the segment. The vehicle self includes things
such as velocity and direction of travel, and time of
arrival at a location. This knowledge may be of fun-
damental importance in the cost evaluation. A simple
example would be that the WM has the knowledge
that an area will be exposed to artillery during a cer-
tain time window, but perfectly safe at other times.
Because the complete descriptions of initial and final
states are available to the VJ, the modification and
development of cost evaluation can be performed in
an efficient manner.

The planning system has the advantage of re-
planning cycles that are computationally inexpensive.
The evaluation of cost of future movements, in general,
is more computationally expensive than the graph
search associated with selecting the path. Our VLBG
only re-evaluates the cost of traversal where new in-
formation is received (most likely inside the sensor
range). Because the number of nodes in the graph
is small with respect to the number of cells in the grid
of the underlying map, it is easy to see that the search
performed has computational advantages over grid or
field techniques. In addition, within the graph created
by SIS and random points the path found is optimal.
In our case, the number of nodes in the search graph
does not need to be large because the subordinate level
will decide the fine movement. Thus optimal search
technique can be applied.

References

[1] J.S. Albus. Brain, Behavior, and Robotics.
McGraw-Hill, 1981.

[2] J. Albus. Outline for a theory of intelligence. IEEE
Transactions on Systems, Man, and Cybernetics,
21:473-509, 1991.

[3] J. Albus, A. Meystel, and A. Lacaze. Multiresolu-
tional planning with minimum complexity. Intel-
ligent System and Semiotics, 97.

[4] E. Dickmanns. The seeing passenger car VaMoRs-
P. International Symposium on Intelligent Vehi-
cles, 1994.

[5] J. Albus. 4-D/RCS reference model architecture
for unmanned ground vehicles. In SPIE, volume
3693, Orlando, F1., 1999.

