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ABSTRACT

The NIST robot vehicle, a HMMWV with sensors and computer controlled

actuators, detects and avoids obstacles while it drives off road at speeds

up to 35 km/h.  During tests the vehicle drives through the back fields of

NIST detecting large obstacles up to 50 m away.  Obstacles are sensed

using a 30¡x60¡ field of view laser range scanner.  The planner computes

smooth, obstacle free paths that follow an operator s commanded path.   
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INTRODUCTION

Many challenges must be overcome before robot vehicles can drive off road effectively.

Most pressing is sensing and modeling the terrain and planning safe paths through it

while under the real-time constraints of a fast moving vehicle.

Although challenging, the benefits are substantial, especially for the military where

robot vehicles would remove humans from high risk missions.  The current autonomous

vehicle research effort of the U.S. DOD s Joint Robotics Program is the Demo III program.

NIST is supporting the Demo III program in the areas of control architecture, terrain

sensing, modeling and path planning.  

Mobility algorithms and control modules are developed and tested on the NIST outdoor

mobility test bed, a robotic HMMWV.  See Fig. 1.  The NIST vehicle has electric actuators

on the steering, brake, throttle, and transmission.  A Kalman filter estimates vehicle

position using inertial, dead reckoning, and GPS sensors.  To detect obstacles the vehicle

uses a LADAR, a laser range scanner, that produces a 128 by 64 pixel range image once per

second.  The control software is then ported to a different vehicle that is used on the
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Demo III program.  This vehicle,

termed the XUV, is a custom, state

of the art platform and has a broader

array of sensors than the NIST

vehicle.

This work describes the control

structure used on the NIST vehicle,

how it senses obstacles, creates

local obstacle maps, and plans paths

through them.

CONTROL STRUCTURE

The NIST robot vehicle uses a hierarchical controller that follows the NIST Real-time

Control System, RCS, methodology [1].  Sensor processing modules sense the state of the

vehicle and the surrounding environment.  Sensory data flows to world modeling modules

which update the estimated state of the vehicle and its surroundings.  The world model is

then used by behavior generation modules to plan actions and to execute the resulting

plan.  Planned paths and actions are stored in the world model and can be used by the

sensor processing modules to direct sensor attention or processing cycles to locations in

the environment that are more critical.

The current RCS implementation on the vehicle is shown in Fig 2.  Sensor processing

and world modeling modules are on the left and behavior generation modules are on the

right.  Four levels of the hierarchy are implemented: Servo, Prim, Autonomous Mobility

(AM), and Vehicle levels.  A LADAR (a laser scanner) produces a range image from which

obstacles are detected.  At the subsystem level, the obstacles are placed and tracked in a

scrolling map that extends 50 m from the vehicle.  Using the current obstacle map, the

planner computes the shortest obstacle free path that drives the vehicle to the path

commanded by the vehicle level.  The AM level cycles at 4 Hz.  Lower levels then

compute steering and speed commands and servo the electric actuators.    

At the vehicle level, sensed obstacles are combined with a priori maps in a 500 m map.

The vehicle level planner then selects the lowest cost path that achieves the mission goals

that were specified by a human operator.  The vehicle level replans at 1 Hz.

The obstacle detection and planning modules are addressed in more detail below.

Obstacle Detection

To detect obstacles, the vehicle uses a rugged commercial LADAR that produces a 128

by 64 pixel range image once per second.  The sensor has a maximum range of 50 m and a

measurement resolution of 6 cm.  This is being upgraded to the LADAR used on the

Demo III vehicle, a sensor with similar image size but a significantly faster update rate,

up to 60 Hz.  Each pixel in the range image is classified as Ground  if it is traversable

terrain, as Obstacle  if it is non-traversable, and Cover  if it is an object higher than the

Figure 1. The NIST Robotic HMMWV



top of the vehicle [2].  

Classification is determined by processing each column in the range image

independently.  The x, y, z coordinates are calculated for each pixel with a valid range.

Progressing from the bottom pixel, the height and slope from the closest ground pixel is

calculated.  If the slope and height is small, the new pixel is classified as ground.  If the

height and slope are greater than threshold values of 30¡ and 0.3 m respectively, then the

new pixel is classified as an obstacle.  If the height above ground is greater than the

vehicle height, the pixel is classified as cover.  See Fig 3.  Future work includes

identification of other terrain features such as tall grass.

AM Mapping

The elevation and feature classification are placed in a map with 0.4 m square grid cells

that extends 50 m from the vehicle [2].  The map is north oriented and scrolls as the

vehicle moves.  The various features are integrated over time, computing confidence and

filtering out spurious false detections.  On the Demo III vehicle, data from the various
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Figure 2. Mobility Software Architecture.  A priori data and sensed obstacles feed

maps for path planning.



terrain sensors are fused in this

mapping process. For each

planning cycle, a copy of the

obstacle map is rotated from a

north-oriented into a vehicle-

oriented map and is sent to the

planner.  

Fig. 4. shows a display used

for debugging and analysis.  It

displays attributes of the world

model such as obstacles and

cover and displays the current

paths.

AM Planning

The AM planner selects the

shortest obstacle free path that

takes the vehicle along its

commanded path [3].  To do

this, the planner begins with a

web of potential path segments

that extend out to 50 m.  If there

are no obstacles, the vehicle can

drive on any combination of

these path segments.  

There are two types of path

segments, straight and curved.

Curved segments extend 20 m

from the vehicle.  Each is a

series of clothoid segments

which are kinematically feasible

based on the turn rate of the

steering wheel.  These paths are

simulated offline for different

initial speeds and steering wheel positions.  Initial steering position is a major factor

influencing the paths the vehicle can travel.  Fig. 5 shows allowable paths with initial

steering wheel position to the right and at two different velocities.

Straight path segments are used from 20 m to 50 m.  Although not kinematically

feasible, they are computationally simpler.  At 4 Hz the path will be replanned before

the vehicle would reach the straight line path segments.  Although smaller obstacles are

not seen at these ranges, the straight line path segments will steer the vehicle away from

larger obstacles.

Figure 3. Each column in the laser range image

is processed and each range pixel is classified as

ground, obstacles, cover, or unknown.
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The planner then selects the best combination of segments leading to the goal.  It does

this by first pruning all the segments blocked by obstacles.  Then it searches through the

remaining segments to find the least cost path.  Path pruning is optimized by

precomputing some of the data.  First a curve-to-cell  table is computed.  For each path

segment this table lists the map cells that the vehicle would pass through if it traversed

that segment.  The width of each swath is at least as wide as the vehicle and is made

wider for path segments that will be either driven faster or are further away from the

vehicle.  This table is inverted to obtain the cell-to-curve  table which is later used

online to quickly determine which path segments are blocked by obstacles.  

Vehicle Level

The vehicle level models the terrain and plans paths out to 500 m [4].  The world

model is a multi-layered map with 4 m grid cells.  Data comes from both sensed obstacles

in the AM level maps and from a priori digital terrain maps.  The planner creates a web of

potential path segments.  The world model then computes the cost to traverse each

segment accounting for obstacles, slope, visibility to potential enemy locations, etc.  The

segments are fixed to the ground and their traversal costs are only updated if they

intersect newly sensed obstacles.  New segments are added at the leading edge of the map

and are removed from the trailing edge as the vehicle moves.

Changes to cost functions used in the world model cause the vehicle to exhibit different

behaviors.  For example, making roads and smooth terrain low cost would cause high

speed routes to be chosen, while making tree lines and low visibility areas low cost

would cause stealthy routes to be chosen.

40 km/h

20 km/h

Figure 5. Vehicle oriented paths extend out 50 m.  Path segments from 0 to 20 m are

smooth paths that depend on velocity and initial steering wheel position.



CONCLUSIONS

These techniques enable the vehicle to travel over rolling meadows at speeds up to 35

km/hr (10 m/s) while avoiding obstacles that are well within the vehicle’s current sensing

capabilities, such as large trees and shrubs.  Smaller obstacles are harder to detect and

require slower speeds.  The higher frame rate LADARs will improve latency, allowing

faster speeds.

In general, it is probably desirable for the vehicle to select smoother terrain when

possible and to slow down as the path becomes rougher. This will require a more

sophisticated terrain analysis and planning model than the binary model used presently.

However, the more complex model should enable the system to address other challenges.

For many applications, it is necessary to maneuver the vehicle in tight quarters, in some

cases even to the point of driving through overhanging branches and pressing through

brush. It is hoped that a general solution could address the entire spectrum from high

speed driving over smooth terrain to maneuvering in tight quarters on rough terrain. 
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