
Software Models for Standardizing the Human-Machine 
Interface Connection to a Machine Controller 

 
 

John Michaloski 
National Institute of Standards and Technology 

 
Sushil Birla and Jerry Yen 
General Motors Corporation 

 
 
ABSTRACT 
 
In manufacturing, the Human Machine Interface (HMI) handles the human 
interaction with a machine controller. Currently, in computer numerically 
controlled (CNC) machines, most HMIs are tied to a CNC using a 
proprietary connection that leads to non-reusable, vendor-specific, 
application software resulting in costlier integration. With a standard 
HMI-Controller Application Programming Interface (API), users should 
be able to reduce costs by shortening the development cycle associated 
with each vendor’s software/hardware interface. A worldwide effort 
among a variety of participants in the CNC standards community is 
underway to develop a single HMI-Controller API. This paper will review 
a series of potential API approaches for the HMI-Controller connection as 
a progression from a flat name space library to a component-based 
technology. Included is a discussion on the approach selected by the 
worldwide HMI-Controller API effort.  
 
KEYWORDS: Human-Machine Interface, MVC pattern, Computer 
Numerically Controlled (CNC) machine, object-oriented, control, 
standard, user-interface, data model, proxy agent 

 
 
BACKGROUND 
 
In manufacturing, the Human Machine Interface (HMI) handles the connection between 
the human and a machine controller.  The HMI is responsible for supervisory command 
and control as well as status monitoring. The extent of HMI functionality can be 
summarized by three canonical features a HMI must support. First, the HMI must have 
the capability for soliciting and displaying information reports about the state of the 
controller, such as current axis position. Second, the HMI must have command 
capabilities, such as the ability for the user to set manual mode, select an axis, and then 

 Commercial equipment and materials are identified in order to adequately specify certain procedures. In no case 
does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, 
nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.  

This publication was prepared, in part, by a United States Government employee as part of their official duties and is, 
therefore, a work of the U.S. Government and not subject to copyright. 



jog an axis. Third, the HMI must alert the user when events occur, in other words, handle 
unsolicited information reports.  

These different aspects of an HMI are best understood when viewed as a generalization 
of the traditional model-view-controller (MVC) architecture, a well-known object-
oriented design pattern for Graphical User Interfaces (GUI) [5,7]. The MVC architecture 
contains three parts: a MODEL, a VIEW, and a CONTROL. Figure 1 shows the relationship 
between the human, the MVC components and the machine controller.  

View Control

Human

Model
(Data and
Events)

Controller
Data

Server

Machine ControllerHMI Subsystem

 

 Figure 1. Relationship of MVC Design Pattern to HMI Machine Control 

In the MVC architecture, the VIEW corresponds to the front-end or visual presentation 
with which the user interacts, for example, either a GUI or a teach pendant. The MVC 
CONTROL is not the same as the machine controller, but instead refers to an object that 
determines what happens when the user interacts with an HMI VIEW component – for 
example, what occurs when the user clicks a button control.  Different MVC CONTROL 
modes correspond to different presentation views. For example, there can be a VIEW for 
configuration, calibration, error handling – as well as normal operation.    The MVC 
MODEL corresponds to the back-end or database, and manages whatever data or values 
the HMI uses – such as the feedrates, velocities, and current axes values. The MODEL also 
provides translation services in order to resolve HMI and Controller data representation 
differences. An additional element between a Controller and the MODEL may exist (as 
indicated by the shaded box), which we call a DATA SERVER. A DATA SERVER is an 
optional piece of software and corresponds to the broker design pattern [1]. The DATA 
SERVER filters data communication by selectively extracting and injecting data into the 
controller. The DATA SERVER usually operates at a slower frequency than the Controller. 

There is a worldwide unification effort underway to standardize the HMI-Controller 
connection. The primary participants include: (1) Japan FA Open Systems Promotion 
Group (JOP) [6], (2) Open System Architecture for Controls within Automation Systems 
(OSACA) [7], and (3) Open Modular Architecture Controller (OMAC) HMI workgroup 
[10]. Each group has proposed its own solution to standardizing the HMI-Controller API. 
The effort to unify these contrasting approaches is called the “Global HMI API Project.”   

The Global HMI API Project is not attempting to standardize all elements of the MVC 
architecture. The Global HMI API Project is not concerned with the VIEW as pertaining 
to “look or feel” of an HMI.  The MVC VIEW should be driven by the needs of the 
customer. The Global HMI API Project is not concerned with defining the CONTROL of 
views presented to the user and the CONTROL for a given view.  Once again, the MVC 
CONTROL should be established by the needs of the customer. 

The primary emphasis of the Global HMI API Project is to define a MVC MODEL API 
that allows the exchange of data and events between the HMI and the machine controller. 



Currently, the MODEL connection between most HMI and Controllers is proprietary. 
There are difficulties associated with a proprietary connection including increased 
training costs for maintenance and operation, non-reusable, vendor-specific, application 
software, and higher integration costs. Preferably, one common HMI-Controller API 
should exist for all CNC devices, so that users should be able to shorten the development 
cycle associated with each vendor’s software/hardware interface and have wider range of 
software/hardware choices available.  

The goal of the Global HMI API Project is to unify the work of existing HMI 
standardization efforts. This means agreeing to a common approach, common 
modularization, common names, common data types, common event models and a 
common data exchange mechanism. Some requirements have been established in 
determining the final approach. The API should be independent of the data transport 
hardware (e.g. communication link) between an HMI and a Controller. The HMI API’s 
should be platform independent. Further, an object-oriented approach is preferred as it 
directly promotes extensibility, modularity and reusability. 

Numerous solutions exist to unify the different HMI-Controller approaches. This paper 
will review a series of potential API methodologies including: 
 

• Legacy Solutions 
• “Flat” C API Name Space 
• C++  “Wrapper” Classes 
• Centralized Dictionary Component “Wrapper” 
• Distributed Components 
• Distributed Components with Presentation Views 

 
 

The JOP, OSACA, and OMAC approaches will be used as illustrations of the different 
HMI API methodologies. The paper concludes with a discussion on the Global HMI API 
Project selection of the Centralized Dictionary Component “Wrapper” as its HMI API 
methodology. 
 
LEGACY SOLUTIONS 
 
In general, legacy HMI-Controller products implement the MVC MODEL as a 
“dictionary” containing data and events for communication. The overall legacy HMI-
Controller interaction is shown in Figure 2. The MVC MODEL is a DICTIONARY that acts 
as a data server and brokers data communication. The primary purpose of the 
DICTIONARY is to provide a simple mechanism for binding and naming.  We will assume 
the HMI understands that the DICTIONARY is a linked library (e.g., Microsoft Dynamic 
Linked Library or DLL, Unix shared library). To bind, the HMI loads the library by 
name. For data naming, the library exports a list of predefined data and event names. The 
DICTIONARY resides on the HMI platform and can be static or active. 

HMI
Interaction

with
Controller

Linked
Library

Dictionary
with

Limited Data
ExchangeServices

Existing
CNC

Kernel

Custom
Hardware

and Software
Link

 

Figure 2. Legacy HMI 



A purely data exchange model would have the MVC MODEL act as a static repository 
or dictionary of information, with no active role in the shipping or receiving of data. In 
the static model, events and data are identical and each side would poll for new events. 
This static approach could be implemented as a DLL without threads that maps variables 
into some predefined buffer in Interprocess Communication (IPC) shared memory.  

To enable dynamic event handling, the DICTIONARY must become an active process in 
order to forward events. Asynchronous event notification could be in the form of 
callbacks or interrupts. In this approach, the DICTIONARY is a hybrid because it allows 
both pushes and pulls on its data and events. One implementation of dynamic event 
handling is with a threaded DLL that communicates to the Controller via some 
proprietary transport mechanism.  
 
Flat C API Name Space 
 
The flat name space is a legacy approach that defines the API with C function calls and is 
illustrated in Figure 3. An advantage to a C API is its universal applicability. In general, 
linking C libraries generated by different C compilers is possible because of the existing 
ANSI C standard. Event notification in this approach would be through the use of C 
callback functions.  

Model:

Data
Dictionary

Axis1Pos
Axis1Vel
Axis2Pos
Axis2Vel

EstopEvent
StartEvent

HMI

DLL

Data Server

Axis Group

Axis 1 Axis 2

Controller

 

Figure 3. Flat Name Space HMI-Controller Architecture 

JOP adopts this approach as it provides a simple, yet flexible, approach to HMI-
Controller interaction. A drawback to defining C API is that it does not support object-
oriented capabilities and hence offers no inherent encapsulation or modularity.  
 
C++ Wrapper Classes 
 
A C++ object-oriented wrapper design wraps each data element in the DICTIONARY as a 
separate object. Instead of one or more C API functions per data element, a C++ wrapper 
groups the wrapper methods into one class definition. The DICTIONARY then “presents” 
objects to the HMI, as represented in Figure 4 by bubbles originating from the 
DICTIONARY.  OSACA uses the wrapped object approach because it allows every object 
to seamlessly embed OSACA communication support. 

A major problem with C++ wrappers is that they restrict data access to C++ enabled 
HMIs. Furthermore, C++ implementations are vendor specific since exporting C++ class 



and method names (known as demangling) is not standardized. Without a universally 
supported C++ demangling convention, this C++ wrapper approach degrades to 
“exporting” a flat C name space. 

 

Estop
Event

StartEvent

Axis2Vel

Axis2Pos

Axis1Vel

Axis1Pos

M
o

d
el

D
ic

tio
n

ar
y

HMI

Data Server

Axis Group

Axis 1 Axis 2

Controller

 

Figure 4. C++ Wrapper Model 

 
COMPONENT SOLUTIONS 
 
The next logical step would be to use a “pure” C++ object-oriented approach, which 
would tie Controller objects to DICTIONARY objects. Unfortunately, a C++ object-
oriented approach would suffer from the same demangling drawback as the C++ wrapper 
approach. A more flexible solution is to use a component-based approach. A component-
based approach differs from object-oriented programming, which is a way to build 
object-based software components. By contrast, component-based software can be 
created using many different programming languages, all of which can then work with 
each other. Component based technology, such as the Component Object Model (COM) 
[4] or the Common Object Request Broker Architecture (CORBA) [3], would allow an 
HMI to communicate with the Controller in a programming language-independent, 
object-oriented manner.  The API are defined in a neutral programming language, such as 
the Interface Definition Language (IDL) and translated into the different programming 
languages.  

For our component-based discussion, we will focus on COM technology, although 
CORBA offers similar functionality. COM defines globally unique interfaces to solve the 
naming problem and for handling version control. For binding, COM offers a systematic 
way for discovery, activation and connecting components. COM defines a peer-to-peer 
event model, known as connection points, that can be used for event subscription and 
notification. Implementing the HMI to Controller connection in a component-based 
approach can be done in several alternative ways, which will be explored in detail. 

 
Centralized Dictionary Component Wrapper  
 
The simplest migration to a component-based approach would be to would wrap the 
centralized DICTIONARY in COM.  This assumes the desire for a centralized dictionary, 



which is reasonable, since specifying a complete interface for a CNC machine as a 
dictionary would increase across-the-board standardization. Figure 5 illustrates wrapping 
a legacy dictionary as a COM component.  

COM

Workpieces

Tools

Programs

Messages

Program
Control

Axes
Status

Data Server

Axis Group

Axis 1 Axis 2

Controller

M
o

d
el

D
ic

tio
n

ar
y

HMI

 

Figure 5. Dictionary Wrapped as COM Component 

It would be expected that vendors still employ a data server, which may use an 
underlying COM model, but would not be exposed to the HMI. In this model, the DATA 
SERVER is integrated into the Controller and performance issues are handled by the 
vendor.  The major drawback to this approach is that it is a limited form of component-
based technology. Because so much of the information is merged into one component, 
this diminishes the scope of plug-and-play capability and restricts the use of some of 
emerging component-based features covered later in the paper.  
 
Distributed Components 
 
A transition to a component-based approach raises doubts about the need for a centralized 
dictionary. In a distributed component-based approach, the HMI could directly access 
any Controller component. Instead of a single data server, each Controller component 
provides its own data services through a proxy server [12].  A component proxy server is 
an essentially “free” by-product of component-based technology that comes in support of 
location transparency. Figure 6 illustrates the distributed component-based approach. 

COM

     proxy

                  proxy
Axis Group

Axis 1 Axis 2

Controller

HMI

axis
group

methods
AxisGroup

axis
methods Axis1

axis
methods Axis2               proxy

 

Figure 6. Distributed HMI-Controller COM model 



A distributed approach assumes that each Controller component exposes COM 
interfaces. Since COM components are location transparent, the HMI can bind to a COM 
component anywhere, be it in-process, local-process or remote process. The most likely 
case is remote binding because it would be assumed that the HMI and the Controller 
would reside on different platforms.  

The primary benefit to the decentralized COM components would be the increase in 
reusability of components. An exciting consequence of component-based technology 
occurs when a component provides “introspection” so that it can be visually manipulated 
in Integrated Developer Environment (IDE) builder tools. ActiveX [2] and Java Beans 
[13] are two technologies that enable reusable component deployment from within IDE 
builder tools. Introspection allows for easier component reuse corresponding to less 
costly HMI development as well as greater HMI extensibility and customization.  

The primary drawback to decentralized components is the uncertainty of real-time 
controller performance generally resulting from poorly designed proxy agent use, for 
example, if the HMI samples Controller data at too high a frequency. 
 
Distributed Components with Presentation Views 
 
A natural consequence of components supporting introspection is allowing components 
to provide their own MVC VIEW as can be done with ActiveX controls. An ActiveX 
control can draw itself in its own window, respond to events (such as mouse clicks), and 
be managed through an interface that includes (data) properties and (event) methods.  
ActiveX components are network independent and can be used in Windows applications 
or over the Internet in Web Pages. ActiveX controls have properties that allow the user to 
change the appearance of the control, change certain values of the control, or make 
requests of the control, such as accessing a specific piece of data that the control 
maintains. Now, the HMI becomes an ActiveX control container, which manages a set of 
ActiveX controls. Figure 7 illustrates the use of ActiveX in the HMI-Controller 
architecture. The open-architecture standards workgroup, the OMAC API [11], 
champions the notion of introspection-capable components that can provide different 
presentation views based on their state, such as normal, maintenance, or error. 

 

HMI as an ActiveX Container

              proxy

             proxy

Axis Group

Axis 1 Axis 2

Controller

methods
porperties

Active X
Axis2

pos,vel

                
  proxy

methods
porperties Active X

Axis1
pos,vel

methods
porperties Active X

AxisGroup
start, estop

 

Figure 7. HMI-Controller Architecture using ActiveX 



The major advantage of the ActiveX approach is the cost-savings due to the ease of 
HMI generation, customization and scripting. Very little code needs to be written to get 
the initial HMI component interaction working properly, at least in comparison to 
traditional approaches. An integrator would buy and then integrate a set of Controller 
components with ActiveX support that could then be used during HMI design as well as 
HMI run-time. The level of programming skill required is reduced because of the 
simplicity of using an IDE, such as Visual Basic. The major drawback to this approach is 
the lack of a standard look and feel for HMI components.  

 
DISCUSSION 
 
We have shown there are numerous approaches to standardizing the HMI-Controller API. 
Each approach has its advantages and disadvantages, so there are tradeoffs in selecting a 
single approach. The Global HMI-Controller Project has selected a COM component-
wrapper of the centralized dictionary as the approach for its standardization effort. 
Arguably, the HMI would only be realizing some of the benefits of COM software 
technology.  On the plus side, the advances in technology are readily achievable for 
vendors of legacy HMI-Controller products. Further, the component dictionary wrapper 
approach reaps many of the component-based lifecycle benefits, such as discovery, 
activation and binding, without raising numerous performance and compliance issues. 
 
REFERENCES 
 
1. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M.,  “Pattern-Oriented Software 

Architecture: A System of Patterns,” John Wiley and Sons Ltd, Chichester, UK, 1996 
2. Chappell D., “Understanding ActiveX and OLE A Guide for Developers and Managers,” Microsoft 

Press, Redmond, WA, 1996 
3. Common Object Request Broker Architecture, Object Management Group, Framingham, MA, 1995. 
4. COM Specification, Microsoft  Corporation,  http://www.microsoft.com/com 
5. Gamma, E., Helm, R., Johnson, R., and Vlissides, J., “Design Patterns: Elements of Reusable Object-

Oriented   Software,” Addison Wesley, Reading, MA, 1994 
6. Japan FA Open Systems Promotion Group,  http://www.mstc.or.jp/jop 
7. Krasner, G., and Pope, S.,  “A Cookbook for Using the Model View Controller User Interface 

Paradigm in Smalltalk-80,” Journal of Object-Orientated Programming, 1(3):26-49, August/September 
1988 

8.  “Microsoft Interface Definition Language (MIDL),” Microsoft Corporation, 
http://msdn.microsoft.com/isapi/msdnlib.idc?theURL=/library/psdk/midl/mi-laref_1r1h.htm.  

9. Open System Architecture for Controls within Automation Systems (OSACA) Association, 
http://www.osaca.org/ 

10. Open, Modular, Architecture Controls (OMAC) Users Group  HMI Working Group, 
http://www.arcweb.com/omac/ 

11. Open, Modular, Architecture Controls (OMAC) Users Group API Working Group,   
http://www.isd.mel.nist.gov/projects/omacapi/  

12. Shapiro, M., “Structure and Encapsulation in Distributed Systems: The Proxy Principle,” In 6TH 
International Conference On Distributed Computing Systems, IEEE Computer Society Press, pp. 198-
204, May 1986 

13. Voss, G., “What is a Java Bean,”  
http://developer.java.sun.com/developer/onlineTraining/Beans/Beans1/simple-definition.html 


