
PROPOSED DRAFT Proceedings of ASME International:
20th Computers and Information in Engineering (CIE) Conference

September 10-13, 2000, Baltimore, Maryland

Paper Number Here

Implementation of VRML/Java Web-based Animation and Communications for the
Next Generation Inspection System (NGIS) Real-time Controller

William Shackleford
National Institute of Standards and Technology

100 Bureau Drive, Stop 823
Gaithersburg, MD 20899-8230

(301) 975-4286
william.shackleford@nist.gov

Keith Stouffer
National Institute of Standards and Technology

100 Bureau Drive, Stop 823
Gaithersburg, MD 20899-8230

(301) 975-3877
keith.stouffer@nist.gov

ABSTRACT
The Next Generation Inspection System (NGIS) project is

a testbed that consists of a Cordax Coordinate Measuring
Machine (CMM), advanced sensors, and the National Institute
of Standards and Technology (NIST) Real-Time Control
System (RCS) open architecture controller. The RCS
controller permits real-time processing of sensor data for
feedback control of the inspection probe. The open
architecture controller permits external access to internal data,
such as the current position of the probe. A remote access web
site was developed to access this data to drive a Virtual
Reality Modeling Language (VRML) model of the Cordax
CMM. The remote access web site contains a client-
controlled pan/tilt/zoom camera which sends video to the
client as well as the VRML 3D model of the CMM that is
controlled by the NGIS controller located at NIST. This
remote access web site allows a client to monitor a remote
inspection with a PC and an internet connection.

INTRODUCTION
The Next Generation Inspection System (NGIS) project is

a testbed that consists of a Cordax Coordinate Measuring
Machine (CMM), advanced sensors, and the National Institute
of Standards and Technology (NIST) Real-Time Control
System (RCS) open architecture controller. The goal of the
NGIS project (involving a consortium of compainies
organized by the National Center for Manufacturing Sciences)
is to increase the speed and flexibilty of data acquisition using
CMMs while still maintaining today’s accuracy.

NOMENCLATURE
CMM - Coordinate Measuring Machine
EAI – External Authoring Interface
NGIS - Next Generation Inspection System
NML - Neutral Messaging Language
RCS – Real-Time Control System
VRML - Virtual Reality Modeling Language

NGIS COMMUNICATIONS
The communications requirements for NGIS are

somewhat complex. The controller consists of a hierarchy of
modules based on the NIST RCS Reference Model
Architecture[1][10]. Each module in the hierarchy reads
commands and posts status each cycle and may send
commands and read the status of a number of subordinate
modules. Within the NGIS controller these cycle times vary
from 2 milliseconds for the module that reads the touch probe
data to 100 milliseconds for the modules that process images.
The size of the messages involved vary from less than 100
bytes for the servo control module to 300 kb for images. The
modules are also distributed among 3 different operating
systems: SunOs, VxWorks, and Windows NT [2],[3].
Although it would be possible to use many different
communications packages for the different channels, using a
single communications package for the majority of the
channels makes the controller easier to understand and
promotes better software maintainability.

DISCLAIMER: Any mention of commercial products within
this paper is for information only; it does not imply
recommendation or endorsement by NIST.

WorkStation

Task (DMIS Interpreter) Fixture

Tool

Key:

Shared Memory

TCP/IP

Operator Interface

rcsngis2svr

Diagnostics Tool

VME Backplane(VxWorks)
emovesvr

Emove

Simulated
Emove

Prim

Servo

Handheld

Terminal

Bit3

Windows NT PC
pcprobes

Actuator Output or
Sensor Input

Camera

Module

Sun

Control Shell
Emove/Prim/
Servo
SP - WM - BG

Coordinator

SV_Process CMMVision

Option 2

NGIS_TDsvr

Diag. Tool

Man-Machine Interface

Framework Project

NML Server

WebBrowser

VRML/Java
3D

 Animation

Web Server

Touch Probe

pccordax

Cordax Motors/Encoders

Control Shell PEPR
Camera

Computer or Backplane

Sun

Bus Extender

tcpproxy

Figure 1: NGIS Communications Paths

Figure 1 shows a diagram of the communications paths in
the NGIS controller. There are several different subsystems
that may or may not be used in a particular inspection,
demonstration or experiment depending on the version of the
software being used and the focus of the particular inspection.
A complete explanation for the purpose of these modules is
beyond the scope of this paper. However there are several
important observations to be made:

1. All of the shared memory and TCP/IP connections shown
here use an Application Programming Interface (API)
called the Neutral Messaging Language (NML).

2. NML provides a convenient means of defining interfaces
between modules, which is especially important given the
large number of compatible alternative subsystems
created by different teams.

3. The majority of communications occurs via shared
memory which allows the processes to communicate with
minimal delay with real-time determinism.

4. Special processes called NML servers provide access to
the shared memory buffers to remote processes via TCP
and isolate the real-time modules from the delays
associated with TCP.

5. Because NML is open-source it could be modified to
incorporate additional physical communication protocols.

For example, NML was modified to support the Bit3 bus
extender between the PC and the VME backplane .

6. The 3D animation in the web browser can be configured
either to use simulated position values from the Sun or to
get the real positions directly from the VxWorks board.

7. Because of security restrictions in most web browsers it is
necessary to run the tcpproxy process on the web server to
forward position messages from the controller to the
animation.

There were several levels in the controller where position
data suitable for the 3D animation was available. However, the
emove status level which is approximately in the middle of the
controller is a good choice for several reasons. The same data
is available in both simulation and when moving the real
machine. When moving the real machine, the data is sensed
from the encoders or scales on the machine rather than being a
calculated value of where the machine is supposed to be. The
controller updates this position every 30 milliseconds, which
is more than enough for smooth animation. The data is also
already being converted to the eXternal Data Representation
(XDR) so the format is not processor specific and being sent
via TCP, which makes it much easier to access in Java.

MODELING THE CORDAX CMM IN VRML
The Virtual Reality Modeling Language (VRML) is a

recently ratified ISO standard (ISO 14772) [4] file format for
the description of geometry and behavior of 3D computer
graphics. VRML is the most widely used open file format for
integrating 3D computer graphics with Web based content.
We are using VRML as the primary interface technology for
the representation of interactive virtual worlds. VRML
provides a robust foundation upon which 3D application can
be built that are portable and distributable via the World Wide
Web. It defines most of the commonly used semantics found
in today's 3D applications such as hierarchical
transformations, light sources, viewpoints, geometry,
animation, fog, material properties, and texture mapping. One
of the primary goals in designing VRML was to ensure that it
at least succeeded as an effective 3D file interchange format.

The Cordax CMM was originally modelled using a
robotic simulation package from Deneb Robotics called
TeleGRIP. This simulation package allows for design,
evaluation, and off-line programming of robotic workcells,
incorporating real world robotic and peripheral equipment,
motion attributes, kinematics, dynamics and I/O logic.

Figure 2 VRML Model of the Cordax CMM

In order to view the 3D model of the CMM within a web
browser, the model must first be translated to VRML. A
translator program was written by Qiming Wang and Sandy
Ressler of the Information Technlogy Laboratory (ITL) at

NIST which can be used to translate devices and workcells
generated by the TRGIP to VRML[9]. The translation
includes the geometry information as well as the kinematic
information of the device. Figure 2 shows the translated
VRML model viewed within a web browser using a VRML
plugin such as Cosmoplayer or Blaxxun Contact.

CREATING JAVA INTERFACE FILES FROM EXISTING
C++ CODE

To use the controller interfaces from within a web
browser, they must be converted to Java. Creating Java
interface files from existing C++ code could be fairly tedious
without a tool to automate the process. Although the
languages are very similar, there are some important
differences that make conversion more difficult.

1. Java does not allow macros (#define’s) so any
macros used in the C++ classes to be converted have
to be expanded out in the Java interface.

2. Java does not allow typedefs. There are two ways to
handle the typedefs. For small one-line typedefs like
“typedef unsigned long uint32;” it is easiest just to
replace the name with the full type information in the
typedef. For others such as “typedef struct { double
x,y,z; } pose;” it is better to create a Java class with
the same name as the typedef.

3. Java does not allow enums. However, it is usually
very helpful to convert the constants defined in the
enum to static final int’s in the Java interface.

4. Java does not allow unsigned integer types (except
for char). Usually one can just remove the “unsigned”
tag and use a signed integer of the same size.
However if the very large values of the unsigned
integer are really being used it may be necessary to
convert to a larger integer type.

5. Java uses “byte” instead of “char”. (A Java char
corresponds to an unsigned short since Java uses
Unicode rather than ASCII characters.)

6. Java allows only one public class in each .java file.
Since all the interface classes should be public
instead of one or two C++ header files many Java
files each with a different class are needed.

7. Java does not allow objects of classes to be
embedded within other classes as C++ does. Instead
one can insert a reference that needs to be initialized
with the new operator.

Fortunately, the Neutral Messaging Language (NML) that was
used for communications within the controller also provides a
tool to automatically convert classes in C++ header files to
Java files. The tool can be run in two modes. An interactive
mode that can be accessed as a Java applet
(http://isd.cme.nist.gov/proj/rcs_lib/CodeGen.html) that is
easier to use for one-time only conversions. A non-interactive
standalone version that can be used within a makefile for
keeping Java interface files synchronized with the C++ header

files they depend on. The C++ classes used for
communicating with the emove level is listed in Figure 2.

// Declare NML/CMS status message
class.
 class emoveStatus: public
RCS_STAT_MSG
{
 public:
 emoveStatus();
 void update(CMS *);
#ifdef JAVA_DIAG_APPLET
 EMOVETYPE statusType ;

/* status type */
#else
 int statusType ;

/* status type */
#endif

 double emoveToolPoseTranX ;
 double emoveToolPoseTranY ;
 double emoveToolPoseTranZ ;
 double emoveToolPoseRotS ;
 double emoveToolPoseRotX ;
 double emoveToolPoseRotY ;
 double emoveToolPoseRotZ ;
 int emoveCS ;
 int statusReportNumber ;
 int emoveTermCondition ;
};

Figure 3

Figure 3 shows the automatically generated Java
interfacclass:

public class emoveStatus extends
RCS_STAT_MSG
{
public int statusType = 0;
public double emoveToolPoseTranX = 0;
public double emoveToolPoseTranY = 0;
public double emoveToolPoseTranZ = 0;
public double emoveToolPoseRotS = 0;
public double emoveToolPoseRotX = 0;
public double emoveToolPoseRotY = 0;
public double emoveToolPoseRotZ = 0;
public int emoveCS = 0;
public int statusReportNumber = 0;
public int emoveTermCondition = 0;

// Constructor
public emoveStatus()
{
super(8050);
}

public void update(NMLFormatConverter
nml_fc)
{
super.update(nml_fc);
statusType =
nml_fc.update(statusType);
emoveToolPoseTranX =
nml_fc.update(emoveToolPoseTranX);
emoveToolPoseTranY =
nml_fc.update(emoveToolPoseTranY);
emoveToolPoseTranZ =
nml_fc.update(emoveToolPoseTranZ);
emoveToolPoseRotS =
nml_fc.update(emoveToolPoseRotS);
emoveToolPoseRotX =
nml_fc.update(emoveToolPoseRotX);
emoveToolPoseRotY =
nml_fc.update(emoveToolPoseRotY);
emoveToolPoseRotZ =
nml_fc.update(emoveToolPoseRotZ);
emoveCS = nml_fc.update(emoveCS);
statusReportNumber =
nml_fc.update(statusReportNumber);
emoveTermCondition =
nml_fc.update(emoveTermCondition);
}
}

Figure 4

The update function is needed to convert from XDR to the
data format used by the particular Java Virtual Machine
(JVM) the user is running. The code however is designed to
work with any JVM.

This class is then used in Figure 5 with the regular
NMLConnection class to read the emoveStatus data:

emove = new NMLConnection(new
emoven(),"emoveSts","CordaxApplet",
"http://isd.cme.nist.gov/~stouffer/Ope
ratorInt/cordax/ngis.nml");
. . .

msg = (emoveStatus) emove.peek();

Figure 5

(See [5] for the complete API.)

Some CORBA development systems provide automatic
tools that generate Java and C++ code from IDL. This would
not have been very helpful here, since this requires modifying
or adding a wrapper to the C++ controller and hand-coding the
IDL.

WEB-BASED JAVA COMMUNICATION WITH THE
CONTROLLER VIA NML

In general the communications between an NML client
and server is fairly simple. First the server starts, reads a
configuration file that tells it whether to use TCP or UDP and
which port, then binds the port and listens for requests. Then a
client starts, reads the same configuration file that tells the port
whether to use TCP or UDP and which host the server is
running on, connects to the appropriate port and sends
requests to the server. The client can send requests to write a
message, read a message only one-time, or read a message and
automatically be sent updates whenever the data changes or at
a particular rate.
Figure 6 shows the relevant portion of the configuration file
used by the server and animation client. The file format is
explained in more detail in [6]:

Buffers
Name Type Host size

neut? RPC#
buffer# MP . . .

B emoveSts SHMEM abyss 2048
0 0x203fd6bf 17
16 38858 TCP=4575 disp

Processes
Name Buffer
Type Host Ops server?

timeout master?
cnum
wspl(0)
P CordaxApplet emoveSts REMOTE
abyss R 1 1.0

 1 7

Figure 6

TCP PROXY
One feature that complicates things somewhat is that the

web browsers usually prevent Java applets running inside
them from connecting to any hosts other than the web server
they were loaded from. Also more and more institutions are
adding firewalls that prevent any host outside the wall from
directly contacting hosts inside the wall. Tcpproxy is a fairly
generic program that knows nothing about NML or the NGIS
controller but simply forwards TCP data from one host to

another in order to provide a very limited bypass of these
security restrictions.

The Tcpproxy is started on the web server with command
line arguments indicating the host with the NML server and
the TCP port number. It binds that port on the web server and
listens for connections. Each time a client connects it connects
to the NML server on the controller. It forwards any requests
made by that client to the server and any data sent by the
server back to the client in such a way that neither the client
nor the server is aware that tcpproxy is involved at all.

LOW BANDWIDTH CONNECTION
When a client visits the web page, a VRML model of the

Cordax CMM is downloaded to their machine. Once the
VRML model of the Cordax has been downloaded to the
client’s machine, only the joint positions need to be sent
across the socket from the controller (server) to the web
browser (client) to move the joints of the VRML CMM model
to the current controller position. All of the graphics are
handled on the client machine. This low bandwidth is usually
handled easily, even on a slow network connection.

CONTROLLING THE CORDAX VRML MODEL WITH
THE CONTROLLER

For communication between a VRML world and its
external environment an interface between the two is needed.
A proposed standard is called the External Authoring
Interface (EAI) [7] ,which defines the set of functions on the
VRML browser that the external environment can perform to
affect the VRML world. In essence, the EAI provides a
method for developing custom applications that interact with,
and dynamically update a 3D scene. These outside
applications "talk" to the VRML scene. The interface
described here is designed to allow an external program
(referred to here as an applet) to access nodes in a VRML
scene using the existing VRML event model. The EAI Spec
has been submitted to the VRML Review Board (VRB) [8] for
ISO formalisation. Cosmoplayer 2.1 and Blaxxun Contact are
two VRML browsers that incorporate the EAI.

The VRML model of the inspection cell contains a model
of the Cordax CMM that is controlled by the real world NGIS
controller. This is accomplished by the NML connection
between the client’s web browser and the real world controller
located at NIST. The current position of the measurement
probe, which is stored in the world model buffer in the
controller, is collected by a Java applet on the web page. The
applet then updates the VRML model of the Cordax via the
EAI of the VRML browser. Figure 7 shows the remote access
web site was developed that contains a client-controlled
pan/tilt/zoom camera which sends video to the client as well
as the continually updated VRML 3D model of the CMM.
This remote access web site allows a client to monitor a
remote inspection with a PC and an internet connection.

Figure 7: NGIS Remote Access Page

JAVA APPLET -> VRML PLUGIN COMMUNICATION
CODE

Figure 8 contains a piece of the VrmlTrans.java code which
defines a externally controllable VRML translational joint

public class VrmlTrans
{
 Node myNode;
 EventInSFVec3f translation;
 String nodeName;
 float current[];

 public VrmlTrans(String name,
Browser browser)
 {
 myNode =
browser.getNode(name);
 translation = (EventInSFVec3f)

myNode.getEventIn("set_translation");
 }

 public void updateValue(int axis,
float newValue)
 {
 float current[] =
((EventOutSFVec3f)
(myNode.getEventOut("translation_chang
ed"))).getValue();

 if (axis == 1)
 current[0] = newValue;

 if (axis == 2)
 current[1] = newValue;

 if (axis == 3)
 current[2] = newValue;

 // Update position to VRML
through the EAI

translation.setValue(current);
 }
}

Figure 8

Figure 9 contains a small piece of the CordaxApplet.java file
which handles the communication between the real NGIS
controller and the VRML model of the Cordax

public class CordaxApplet extends
Applet implements Runnable
{
 emoveStatus emoveStatusData;
 NMLConnection emove;
 boolean stayAlive;
 Thread myThread;
 String err_msg;

 // Added for EAI stuff
 Browser browser;
 Node[] joint;
 VrmlTrans[] myJoints;

 public void init()
 { myJoints = new VrmlTrans[3]; }

 public void start()
 {
browser=(Browser)vrml.external.Browser
.getBrowser(this);
 myJoints[0] = new
VrmlTrans("cordax_j1", browser);
 myJoints[1] = new
VrmlTrans("cordax_j2", browser);
 myJoints[2] = new
VrmlTrans("cordax_j3", browser);

…
 }
public void run()
 {
 try { emove = new
NMLConnection(new

emoven(),"emoveSts",
"CordaxApplet",

“http://isd.cme.nist.go
v/~stouffer/

OperatorInt/cordax/ngis
.nml");

 } …

 while(stayAlive)
try{ msg = (emoveStatus)

emove.peek(); }

 emoveStatusData = msg;

 // Update the VRML model
with the new values

myJoints[0].updateValue(1,
 -
(float)emoveStatusData.emoveToo
lPoseTranY);

 myJoints[1].updateValue(2,
(float)emoveStatusData.emoveToo

lPoseTranZ);

 myJoints[2].updateValue(3,
(float)emoveStatusData.emoveToo

lPoseTranX]);
 }

Figure 9

CONCLUSIONS
The NGIS project is a testbed that consists of a Cordax

CMM, advanced sensors, and the NIST RCS open architecture
controller. The RCS controller permits real-time processing of

sensor data for feedback control of the inspection probe.
Because of the open architecture, data such as the current
probe position, can be obtained from the controller. A remote
access web site was developed to access this data to drive a
VRML model of the Cordax CMM. The remote access web
site contains a client-controlled pan/tilt/zoom camera which
sends video to the client as well as the VRML 3D model of the
CMM that is controlled by the NGIS controller located at the
NIST. This remote access web site allows a client to monitor
a remote inspection with a PC and an internet connection. The
remote access web site is currently located at
http://www.isd.cme.nist.gov/~stouffer/public_html/Operat
orInt/cordax/ngis_access.html.

Although this seems to be a fairly easy means of
allowing users some access to the machine remotely.
We still do not know how useful this type of remote
access will be. It might be used by a remote expert on a
particular part or type of metrology to verify that an
inspection is being done correctly. It could also be used
by the developer of the CMM control software as a very
cheap simulation tool. Finally this might be adapted for
monitoring a large variety of machines that have
significant 3D movement and can not be easily
monitored directly.

REFERENCES
[1] Albus, J.S., Meystel, A.M.,”A Reference Model
Architecture for Design and Implementation of Intelligent
Control in Large and Complex Systems,” International Journal
of Intelligent Control and Systems, Vol. 1, No. 1 pp. 15-30

[2] Nashman, M., Yoshimi, B., Hong, T.H., Rippey, W.G.,
Herman, M., “A Unique Sensor Fusion System for Coordinate
Measuring Machine Tasks”, SPIE Internat'l Symp. on
Intelligent Systems & Advc. Manufact. Session:Sensor Fusion
& Decentralized Control in Autonomous Robotic Systems,
Pitts.., PA, 10/97

[3] Scott, H.A., “The Inspection Workstation-based Testbed
Application for the Intelligent Systems Architecture for
Manufacturing”, Proceedings of the International Conference
on Intelligent Systems: A Semiotic Perspective, Gaithersburg,
MD, October 20-23, 1996

[4] VRML VRML2.0 Specification ISO/IEC CD 14772, 1996

[5] Shackleford, W.P., “The NML Java Programmer's Guide”,
http://www.isd.cme.nist.gov/proj/rcs_lib/NMLjava.html.

[6] Shackleford, W.P., “Writing NML Configuration Files”,
http://www.isd.cme.nist.gov/proj/rcs_lib/NMLcfg.html.

[7] External Authoring Interface Working Group:
http://www.vrml.org/WorkingGroups/vrml-eai/

[8] VRML Review Board

http://www.vrml.org/vrb/

[9] Quiming Wang, Sandy Ressler, “Translating: IGRIP
Workcells into VRML2”,NISTIR 6076, September 1997

[10] Moore M., Gazi V., Passino K., Shackleford W., and
Proctor F., "Complex Control System Design and
Implementation Using the NIST-RCS Software Library,"
IEEE Control Systems Magazine, Vol. 19, No. 6, pp. 12-28,
Dec. 1999.

