. Proceedings of the 7th International Workshop on Computer Aided Systems Theory and Technology 1999 (EUROCAST'99), Vienna, Ausiria, Sept. 29 - Oct. 2, 1999

REPRESENTATION OF THE RCS REFERENCE MODEL ARCHITECTURE USING
AN ARCHITECTURAL DESCRIPTION LANGUAGE

E. Messina, C. Dabrowski, H. Huang, J. Horst

National Institute of Standards and Technology
100 Bureau Drive, Stop 8230
Gaithersburg, MD USA 20899-8230
Tel. +1-301-975-3510, FAX +1-301-990-9688

E-mail: elena.messina @nist.gov

1. INTRODUCTION

The Real-Time Control System (RCS) provides a reference model architecture for the
construction of intelligent systems. RCS specifies construction of complex systems based
on computational nodes that contain the same basic processing elements. Researchers at
the National Institute of Standards and Technology (NIST) have been investigating better
means of documenting and communicating the RCS architecture. NIST is interested in
tools that help verify conformance to RCS and promote reuse within the RCS community.
An investigation was conducted into the use of Architectural Description Languages
(ADLs) as a means of providing a more rigorous description of RCS and potentially
addressing the communication, conformance validation, and reuse requirements.

2. THE REAL-TIME CONTROL SYSTEM REFERENCE MODEL ARCHITECTURE

The Real-Time Control System reference model architecture has been used to develop a
variety of complex systems, particularly in manufacturing automation (Albus, 1995).
Recently, a variant, 4-D/RCS (Albus, 1997) has been selected as the software architecture
for the U. 8. Department of Defense Demo III Unmanned Vehicle Program (Shoemaker and
Bornstein, 1998). This version of RCS was chosen to be represented by an ADL.

RCS prescribes a building-block approach to designing and implementing systems. The
building blocks are control nodes that contain the same basic elements in order to
accomplish complex behaviors. These elements, shown in Figure 1, are behavior generation
(BG), world modeling (WM), value judgement (VJ), and sensory processing (SP). Each
node receives goals from its superior and, through the orchestration of BG, WM, V], and
SP, generates a finer-resolution set of goals for its subordinate nodes. The RCS control
node uses an estimated state of the world, generated via SP and WM, to assess its progress
with respect to the goals it was given and to make necessary adjustments to its behavior.
BG’s sub-modules are the job assigner (JA), a set of plan schedulers (SC), a plan selector
(PS), and a set of executors (EX). One SC and EX exist for each subordinate controlled by
a particular RCS node. JA decomposes incoming commands into job assignments for each
of its subordinates. Each SC computes a schedule for its given assignment. JA and SC
produce tentative plans based on available resources. PS selects from the candidate plans
by using WM to simulate the execution of the plans and VJ to evaluate the outcomes of the
tentative plans. The corresponding EX executes the selected plan, coordinating actions

among subordinates and correcting for errors between the plan and the state of the world
estimated by the WM.

. Commanded
Behavior Task (goal)
tvalualed Generation from superior
Plans

Commanded Actions for
Subordinate Nodes

Figure 1 - An RCS Control Node

3. ARCHITECTURAL DESCRIPTION LANGUAGES

3.1 General Concepts

A software architecture may be considered an abstract specification of a system’s
functional components, their behavior and external interfaces, and interconnections. ADLs
typically provide a defined language and syntax with which to specify the following main
categories of architectural elements. 1.) Software components: definition of the interface
messages and commands accepted and sent, constraints on the interface, and behavior of
the component in response to events or messages; 2.) Connections between components:
an architecture may, at minimum, be defined by connection of messages emitted by one
component and received by another. Constraints on message content and sequences may
also be specified; 3.) System Behavior: ADLs may provide support for specifving the
behavior of component interfaces, connections, and internals; and 4.) Architectural Styles:
ADLs may provide support for constraining how components can be connected and what
system topologies may be described. E.g., in RCS each node has a single supervisor. Some
ADLs also provide mechanisms for formal verification of internal consistency and
completeness of the architecture specification. Certain ADLs permit execution of the
architecture specification, enabling designers to evaluate the sequencing and behavior of
their system design. ADLs may provide tools for verifying whether the design for an
implementation architecture conforms to a reference architecture or not.

3.2 Rapide

Rapide (Luckham, 1996) is an ADL and tool set developed at Stanford University. We
selected this ADL due to its capabilities for representing and simulating real-time system
designs and for supporting most of the features described in section 3.1. Within Rapide, a
system architecture is defined by connections between interfaces of components, whose
internals are defined by module specifications. Component interface types can be defined,
including events generated and received by the components and a description of the
component’s behavior. Constraints can be defined for an interface, such as dependencies
between events or limitations on parameter values. The internal behavior of a moduie

defines how it responds to events received by the interface, generates events sent by the
interface, and obeys constraints defined in the interface. Rapide provides language support
for defining event types, causality, and behavioral constraints. Features exist for
representing parallelism and non-deterministic behavior. The defined architecture can be
executed in simulation. Partially Ordered Set of Events (POSETs) are aggregations of the
event dependencies generated through simulation and can be used to evaluate the execution
and compare a concrete architecture to an abstract reference model.

4. SPECIFICATION OF AN RCS CONTROL NODE IN RAPIDE

4.1 Abridged Example Specification

For our study, we prepared a specification of an RCS control node and its constituent
components BG (JA, SC, EX), WM, VI, and SP. For each component, an interface and
module specification were created (Dabrowski et al., 1999). Connections between the
components were defined, along with some behavior specifications that enabled simulation
of the architecture. The entire specification was over 1000 lines of Rapide code. A brief
excerpt illustrating the Job_Assignor Interface is shown in Figure 2. Incoming and outgoing
events are defined via the ACTION IN and OUT statements. JA accepts a task
(Do_Task) containing a command frame defining what is to be accomplished. Through
Fetch_Task Frame, JA receives a Task Frame containing the information necessary to
perform the task assigned. JA outputs a command to its subordinate SCs to create
schedules. The behavior definition indicates the event causality. Event; ||> Event, is the
syntax in Rapide for indicating that Event; causes Event; to occur. The receipt of a
Do_Task command triggers a request for the task information (Fetch_Task Frame). 7Task
is a variable placeholder for the task and ?TF is the variable for the Task_Frame. When a
Task Frame is received (RCV_Task Frame), a command to decompose the task frame into
commands for the various subordinates is triggered. An example of a constraint on the
behavior is shown. The || notation indicates causally independent events. The constraint
says that Do_Task and Schedule Job are not allowed to be independent of each other.

TYPE Job Assignor_Interface IS INTERFACE;
ACTION
IN
Do _Task (Task : Task Command_ Frame),
RCV_Task_Frame (Task : Task_Command Frame; TF : Task Frame),
ouT
Schedule Jeb (Job : Task_Command Frame),
Fetch Task Frame (Task : Task_Command Frame),
Decompose Task_Frame (TF : Task_Frame),
BEHAVIOR
(?Task : Task_Command_Frame) Deo_Task {?Task) ||> Fetch_task_frame (?Task);
(?Task : Task Command_ Frame; ?TF : Task_Frame}
RCV_task_frame (?Task, ?TF} ||> Decompose_task_frame (?TF);;
CONSTRAINT
NEVER (?Task : String; ?Job: String) Do_Task (?Task) |! Schedule_dJob{?Job}:
END;

Figure 2: Excerpt from the Rapide specification of Job Assignor

4.2 Results of Experiment

A specification of the RCS control node was successfully constructed using Rapide. All of
the main aspects of the RCS reference architecture were representable and executable in

simulation. To date, this is the most rigorous representation of the RCS reference model
architecture. ~ The specification was presented to a group of RCS domain experts,
unfamiliar with ADLs. After overcoming their unfamiliarity with the notation, they were
able to understand the specifications, aided by the simulation capabilities in Rapide. Their
assessment of the specification found that it captured RCS correctly. The process of
generating the specification itself was beneficial. The domain expert working on the study
extended the RCS reference model to include behaviors and interfaces that were created for
the Rapide specification. For example, the Fetch Task Frame operation preceding task
decomposition in JA was not explicitly part of the RCS reference model, but was found to
be significant enough to be added to it. The experiment included a verification that a system
design conformed to the RCS reference model. In Rapide, this is accomplished via mapping
of events from the concrete design to the abstract architecture. The concrete and abstract
architectures are executed in simulation. Their resulting POSETs are compared and
inconsistencies are flagged. This approach found a violation of the constraint on causal
dependence between Do_Task and Schedule Job in a concrete architecture.

5. FUTURE DIRECTIONS

We successfully built a specification of the RCS reference model architecture in the Rapide
ADL. This effort yielded the most formal definition of RCS thus far and provided
advantages such as simulation capabilities, some conformance validation, and insights into
extensions to the reference model. Research areas remain that could yield benefits to the
specification of complex architectures such as RCS. These include being able to specify
structure, better means of communicating system behavior, stronger support for real-time
computation, more rigorous checks on conformance, and syntax extensions to make
specifications more accessible to application domain experts. Finally, addition of defined
language features for enabling systematic reuse of architecture specifications would
promote the use of ADLs in software engineering design environments.

6. REFERENCES

Albus, J. 8. (1995) The NIST Real-time Control System (RCS) An Applications Survey.
In: Proc. of the AAAI 1995 Spring Symposium Series, Stanford Univ., Palo Alto, CA.
Albus, J. 8. (1997) 4-D/RCS: A Reference Model Architecture Demo III. National

Institute of Standards and Technology, Gaithersburg, MD, NISTIR 5994.

Dabrowski, C., Messina, E., Huang, H., Horst, J., (1999) Using Architectural Description
Languages to Formalize the NIST 4-D/RCS Reference Model Architecture. National
Institute of Standards and Technology, Gaithersburg, MD, NISTIR to appear.

Luckham, D. (1996) Rapide: A Language and Toolset for Simulation of Distributed
Systems by Partial Ordering of Events. Stanford Univ. Palo Alto, CA. CSL-TR-96-705.

Shoemaker, C., Bornstein, J. (1998). Overview of the Demo III UGV program. In: Proc. of
the SPIE Robotic and Semi-Robotic Ground Vehicle Technology, Vol. 3366.

DISCLAIMER - Certain products are identified in this report to describe our study
adequately. Such identification does not imply recommendation or endorsement by NIST.

