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A Unique Sensor Fusion System for Coordinate Measuring Machine Tasks
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Abstract
This paper describes a real-time hierarchical system that combines (fuses) data from visio

touch sensors to simplify and improve the operation of a coordinate measuring machine (CMM) us
dimensional inspection tasks. Our emphasis is on sensory processing techniques that can aid
applications rather than on the analysis of CMM performance measurements. Our system cons
sensory processing, world modeling, and task decomposition modules. It uses the strengths
sensor-- the accuracy of the CMM scales and the analog touch probe and the global information pro
by a low resolution camera--to simplify the inspection task while maintaining CMM accuracy. In
experiment described, the vision module performs all computations in image coordinate space.
system fuses data obtained from the vision system in image coordinates with the velocity and
position provided by the CMM controller.The fused information provides feedback to the m
controller as it guides the  probe during a raster scan.

We also describe a method for combining information from the vision system and the probe in
time to simplify the data acquisition process required for camera calibration tasks. We autonom
register 2-D and 3-D points as the probe moves along a pre-programmed path. These correspo
points are used as input to a calibration algorithm

Keywords:  calibration, computer vision, Coordinate Measuring Machine (CMM), Real-time Contro
System (RCS), sensor fusion, touch probe.

1. Introduction

A coordinate measuring machine (CMM) is a highly accurate multi degree-of-freedom robot
used for dimensional inspection of manufactured mechanical parts. Dimensional inspection in
measuring the relative geometry of surface features and determining whether they are within tole
Examples of geometries evaluated by such a system include shapes of smooth surfaces, distances
edges, positions of holes, and diameters and shapes of holes. Virtually all CMMs in use today use
trigger probes. While extremely accurate, the data acquisition rate of touch-trigger probes is ver
usually about one point per second. This type of probe is not suited for gathering dense surfac
important for measurement of parts with complex geometries, or for locating part edges which c
important measurement information.

To overcome the deficiencies of current CMM technology, we are performing experiments to inc
the speed and flexibility of CMM’s data acquisition while maintaining accuracy, and to simplify
measurement process. As part of this effort, we are investigating the interaction of a video camera
analog touch probe within a hierarchical control system for controlling probe motion. We have deve
vision algorithms which enable a CMM to sense how it interacts with objects in the 3-D world.

Because of the low resolution of the camera, visual data are not accurate enough to use for prec
measurements. However, vision can provide position estimates of features of interest on the part.
real-time vision, the probe can be guided to features of interest, and probe measurements can then
the inspection data. Probe motion is controlled by using feedback from the vision system as it trac
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moving probe. This allows parts to be measured even if an accuratea priori model is not available.When
CAD models are available, vision processing can be used to register the part with the model and t
avoid the need for precise positioning of the part prior to inspection.

As the probe scans across a surface, the motion of the probe is controlled by information from
sensors: the camera, the machine scales, and the probe itself. Vision provides information about p
of part features (e. g. edges, holes, grooves, protuberances) as well as the image coordinates of th
The machine scales, when used in conjunction with vision, provide the distance of the probe from
features. The probe data provide the displacement of the probe from the part surface. By combin
sensor information, we are able to demonstrate the ability to scan part surfaces quickly and to use v
detected edge proximity as feedback to control arm motion.

In the following section, we discuss the strengths and weaknesses of camera sensors and touch
Section 3 describes the hierarchical control system architecture. Section 4 describes the hardw
software used in the testbed. Section 5 describes the integrated vision-probe surface scanning exp
the vision algorithms used, and a brief discussion of other experiments being performed in the testbe
conclusions and future research are discussed in Section 6.

2.  Vision and Touch Sensors

To use the combination of camera and touch probe to its best advantage in an inspection ta
compare the strengths and weaknesses of each sensor. In this discussion, we do not assume the u
magnification lenses. A camera is a non-contact sensor and, therefore, camera measurements
impact on part inspection accuracy. Although camera data are generally noisy, an image con
between 65,000 and 262,000 pixels can be read in 16 milliseconds (msec) Image processing alg
can then locate and measure global features of interest in the scene such as object edges, corn
centroids.

The problems associated with using camera data can be divided into two classes: geometric co
problems and radiometric constraint problems [1]. Geometric constraints include visibility, field of v
depth of field, and pixel resolution. The radiometric constraints include illumination, specularity (gl
dynamic range of the sensor, and contrast. Section 4 briefly discusses our use of polarizing filte
polarized lighting to reduce specularity.

Touch trigger probes used in most CMM applications are contact sensors. They are highly ac
measuring sensors, and there is very little noise associated with their data [2]. However, the da
extract are of a local nature; they only apply to the specific points touched. Since information is rea
point at a time, the touch probe is unsuitable for rapid high-density data acquisition. Touch probe sy
are also crash prone if the part being inspected is not exactly in accordance with the CMM progra

To take advantage of the strengths of both the camera and the touch sensor and to overcom
individual shortcomings, our system is designed as an integrated vision touch probe system. Single
systems are limited in their ability to sense and identify meaningful features under varying conditions
use of multiple sensors to perform a task overcomes the problems caused by relying on a single s
input, but creates other problems concerning the interpretation and possible merging (fusion)
outputs generated by these sensors. Our system combines the strength of a vision system, the a
quickly generate global information, with the strength of a touch probe, the ability to obtain hi
accurate measurement information. Before describing our application, we describe the s
architecture.
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3. Integrated System Architecture

The parts inspection testbed is designed according to the architecture guidelines of the Re
Control System (RCS) described in [3].  The architecture defines a hierarchy of controller nodes, 
with an assigned set of responsibilities that include sensory processing (SP), world modeling (WM
behavior generation (BG)(Figure 1). Several locations at NIST and industry have adopted RCS for

ing robot controllers.  It has been used on welding, deburring, measuring, and milling machine rob
The inspection testbed uses the RCS libraries to control the CMM, probe and vision systems. Eac
operates on a different time and space scale. RCS is conducive to rapid prototyping, code-reuse a
current software development.  The current system implements the four lowest levels of RCS con
servo, prim, e-move andtask.

4. Testbed Environment

The CMM controlled by the system is a four degree-of-freedom Cordax1(Figure 2). The rotational
degree of freedom associated with the table has been disabled for our experiments. The CMM table
in the Z direction, and the arm moves the probe in positive or negative XY directions. The cont
positions the CMM table and the probe in a coordinate system relative to a pre-defined origin in or
position the probe.

We have experimented with several different probes in this system Currently, this compleme
probes includes a simple 1D LVDT, a 3 DOF LVDT from API, a capacitive sensor from ExtrudeHone

1. Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately spec
the experimental procedure.  Such identification does not imply recommendation or endorsement by NIST, no
does it imply that the materials or equipment identified are necessarily best for the purpose.

SP                        WM                        BG

Figure 1 . RCS Controller Node

LVDT Probe

Z

X

Y

Part to be
Measured

Camera
System

Figure 2. Testbed: CMM Probe and Camera
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a laser triangulation probe from Sensor Adaptive Machines, Inc. (SAMI). A kinematic base has
attached to the base of each probe to facilitate the connection of each probe to the pan-tilt wrist. The
system consists of a miniature cylindrical (“lipstick”) black and white CCD camera with a 12 mm l
The camera is mounted on the CMM table, but it is stationary relative to the part on the table and gen
both SVideo and NTSC output. The SVideo output is fed into a Sun Video digitizer mounted in a
Ultrasparc workstation running Solaris 2.5. Images are digitized to 8-bit grey-scale at a resolut
320x240 pixels.

The software is constructed on top of a heterogeneous operating system environment. It is de
according to the guidelines described in [4]. Currently, the CMM is controlled under VxWorks
probes are controlled either under VxWorks or Microsoft Windows NT, the vision system is contr
under Solaris, and the user interfaces are controlled under Java Virtual Machine. In most t
development environments, this number of operating systems would make the cost of maint
communications libraries prohibitively expensive. The system uses the RCS Neutral Manufac
Language (NML) and the Communication Management System (CMS) to overcome this problem.
and CMS allow many different processes running on different computers to communicate with
another. CMS supports single read/write channels and read/write channels with multiple reade
writers. In addition, it supports queueing messages, backplane, shared memory, and i
communication. The NML libraries are available free from NIST and are compilable under VxWo
Solaris, Lynx OS, and the many forms of Microsoft Windows. [5]

Lighting conditions and specularity create image processing problems for this application since
of the parts being measured have highly reflective machined surfaces. The glare and reflection
overhead lighting introduce shadows and artifacts that interfere with the image processing algor
Efforts to reduce specularity in this environment must be practical as well as effective. We
introduced a relatively simple and inexpensive technique, polarization of light, to reduce specu
Sheets of polarizing filters attached to the fluorescent light fixtures in the laboratory serve as polari
the light source. In addition, we have a rotatable polarizing filter attached to the camera lens
adjusted to select light polarized at 90 degrees from the overhead filters. The use of polarizing filter
not eliminate the problems of specularity, but it greatly reduces many of these effects [6][7].

In addition to using filters to reduce specularity, we have designed and installed a diffuse illumin
The illuminator is suspended over the CMM work area and consists of a large shield and an indep
light source. The shield blocks scattered light from the overhead light sources but allows auxiliary lig
to be introduced to the work area.

5.  Vision-Probe Experiments and Algorithms

The experiment is a visually servoed raster scan of a piston surface. We assume only that we kn
initial probe position and that the start position and goal edge are in the camera’s field of view. Th
can be placed anywhere in the camera’s field of view. Visual tracking is used to guide the probe
piston edge. We fuse information generated by the vision system with data generated by the m
scales and the probe. The fused information is used to guide the movement of the touch prob
performs a raster scan inspection across the surface of a piston part. Vision provides information
positions of part features of interest (e.g. edges,) recognizes the probe, and tracks its position as it
the part. All vision data are represented in 2-D image coordinates and the camera is not calibrate
probe data provide displacement from the part surface, and, in conjunction with the machine sca
probe position. Probe data are expressed in a 3-D coordinate system relative to a pre-defined origin
to the CMM table. When the fused visual-probe information determines that the probe is within a
defined distance from the edge, the controller is preprogrammed to move a fixed offset in thez direction
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from that position and resume scanning in the opposite direction (Figure 3). Visual tracking is term
after a pre-programmed number of scans is completed.

Visually derived feedback for the system consists of the 3-D distance between the current posi
the probe and the goal edge. The vision system performs the following processing steps to provi
information.

(1) Segmentation of the part surface to be scanned from the total scene.
(2) Extraction of pixels representing edge or perimeter points.
(3) Fitting edge pixels to lines or curves.
(4) Defining the initial probe position in image coordinates via a human-machine interface.
(5) Tracking the probe as it moves along the part’s surface.

The following sections briefly describe each step in the vision processing.  See [8] for further deta

5.1. Segmentation

The first step in vision processing requires that the part being inspected be separated or seg
from other things in the field of view. Segmentation algorithms are scene dependent: there is no
segmentation algorithm that is always successful. Our initial experiments used block parts; subs
experiments used a  piston.

We segmented the block from the workplace scene by using a simple thresholding algorithm .
working with the piston, a connected component algorithm was used to segment the piston fro
background after the thresholding process. Usinga priori knowledge about the part, we are able
identify the region that represents the part surface. (Reference [9] contains descriptions of thresh
operations, edge extraction algorithms, and the connected component algorithm.)

5.2. Extraction of Edge Pixels

A number of edge detection algorithms can be used to extract those pixels that represent edg
edge is defined as the transition between a dark and a light region, or, conversely, a light and a dark
When a part is cleanly segmented from any background information, an edge detection algorith
easily label all points representing its boundary points. When using the connected component alg
for segmentation, a boundary tracing algorithm [10] is used to extract the edge pixels represent
boundary points on the region of interest.

Figure 3.Path of Raster Scan
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5.3. Line or Curve Fitting

A Hough transform (described in [11]) is applied to the extracted edge points of a step-block to
points into straight lines. The lines computed by the Hough transform represent the edges or bound
the block.

To fit the edge pixels extracted from the circular piston surface to a curve (Figure 4), we use a
squares fitting algorithm. In the image plane, the projected image of the piston appears elliptical in
and therefore the points are fit to an ellipse rather than to a circle. The resultant symbolic representa
the feature boundary is used to determine the intersection point of the probe trajectory and th
boundary.

5.4. Initial Probe Position

In determining the initial position of the probe, we assume that the controller always places the
in a pre-defined 3-D position somewhere on the part’s surface. The part is not fixtured in this exper
the fixed 3-D position can lie anywhere on the part surface. Using a man-machine interface, the s
operator determines the approximate location of the probe in 2-D image coordinates by examini
image. We compute a vector in the image plane in the direction of motion using knowledge of the
position and motion. The intersection in the image plane of the motion vector and the nearest pa
represents an initial estimate of the probe’s 2-D goal point. The distance between the initial positio
the goal position is measured in pixels in the image plane.

5.5. Tracking

We track the probe in 2-D as the arm moves towards its goal position using the predicted probe
velocity and sum of absolute differences (SAD) correlation algorithm [9]. A predictive filter is use
filter and predict the probe position and velocity at the next time interval [12][13][14]. The predictio
based on a weighted sum of the current position and velocity and a history of past positions and vel
Depending on the weights used, the predictions can be tuned to be more responsive to new readin
respond smoothly over time. At each processing iteration, the search direction and window used
SAD correlation are recomputed based on the predicted probe image position and velocity. The siz
search window is determined by the probe velocity magnitude, and the direction of search is biased
direction of velocity. The probe position is computed to be the position which yields a minimum valu
the sum of absolute differences over the search space. The correlation template is updated each
reflect the current grey scale information representing the probe position.

Figure 4. Piston Surface
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5.6. Discussion

Visual feedback to the system consists of updates of the 2-D distance between the probe a
nearest edge. Both the current position and the intersection point on the edge are updated each pr
cycle. The world model fuses the visual information with the 3-D position and velocity informa
supplied by the CMM in order to predict the 3-D distance remaining between the probe and the part’s

We have demonstrated that we can successfully perform multiple scans of the piston surface
visual feedback with a non-calibrated system. The path of the probe is not preprogrammed. Ou
requirement is that the probe start position be on the piston surface and that the entire surface be v
the camera field of view. During the raster scan, data are collected for analysis after a run. Thi
includes the probe measurements, controller variables such as position, velocity, and acceleration
data, and fused data. We have shown that it is possible to gather dense probe data quickly while per
multiple scans. (As mentioned earlier, it was not in the scope of this experiment to analyze the prob
collected during the scans; our primary objective was to demonstrate the interaction of a vision sens
a CMM.) We varied the speed of the CMM arm as it performed the scan and achieved a maximum ve
of 30 mm/sec. At velocities greater than 30 mm/sec, the probe overshot the piston edge because th
insufficient time for the controller to decelerate after the vision system detected the part boundary.
5 is a graph of the logged 2-D distances to the piston edge as the scan is performed. The x axis rep
time and the y axis is the distance in image coordinates (pixels) to the edge. The distances measur
for two reasons: (1) the length of the scan varies as the probe measures different widths across the
and (2)  the measured distance is a function of the time required for the controller to halt.

Figure 6 is a graph of the probe measurements read during a typical scan of the surface. The
represents time in seconds; the y axis is the probe measurement in millimeters. 174 probe readin
recorded in 5.2 seconds.
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Figure  5. 2-D Plot of Distances to Boundary during Multiple Scans
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5.7. Autonomous Data Collection for Calibration

We are also investigating fast, easy to perform, methods for registering image space with CMM
in order to calibrate our camera. Calibration algorithms compute the position and orientation of a a c
in the 3-D world as well as the camera’s optical characteristics. Once the camera calibration is know
position of any object visible in those cameras may be back projected into the 3-D world to determ
3-D position and orientation. Part locations and the location of the CMM are specified in 3-D. Dista
to objects are determined using Cartesian calculations. Under calibrated vision, all manipulation pro
requiring vision are transformed from the 2-D domain into 3-D Cartesian-based manipulation prob
This gives us the ability to visually servo the arm to features of interest and to inspect and follow linea
curved contours.

The camera calibration problem is known to be very difficult. In addition to algorithm
complexities, the computed calibration parameters are very sensitive to changes in camera orienta
movement. Because of this, frequent re-calibrations are needed to insure the integrity of the para
Collecting sets of corresponding 2-D and 3-D data points, the input required for calibration, is a very
prone and time-consuming operation. To facilitate this operation, we have developed an autonomo
collection system for registering sets of points in the image plane with their corresponding points in
coordinates. The calibration itself is performed using an algorithm designed by Castaño [18].
automated data acquisition procedure provides an example of the complementary integration of
outputs. The information provided by the probe and scales is completely independent of the inform
provided by the camera, but the union of the outputs provides a representation for understand
relationship between 2-D and 3-D coordinates.

To perform the data acquisition, the probe is mounted on the CMM and the camera is mounte
location where it can observe the workspace of the CMM. The visible workspace of the vision/robot/
system is initially estimated by hand. The CMM is moved under joystick control to many diffe
positions in the workspace to measure the extent of the camera’s field of view. The probe is moved
to the camera and then moved so the projection of the probe lands in the top-left, top-right, bottom-le
bottom-right corners in camera space. This defines a “front plane” to the workspace. We then mo
CMM away from the camera and perform the same operation. This operation defines a “rear plane.”
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Figure 6.  Probe Measurements Read During Single Scan
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Next, a red light-emitting diode (LED) is attached to the probe tip. LEDs are inexpensive and
easily tracked in images. All external lights are dimmed to simplify the segmentation of the LED from
background. We use simple area statistics to find the LED’s center in image coordinates. We assu
illumination profile for the LED is uniform in all directions.  The LED’s position in future frames is e
mated using a filtering/prediction algorithm described in [19].

The CMM is commanded to move the probe to each predetermined 3-D point within the fru
like space and then stop. The vision system tracks the LED during the entire movement. When the
stops, the vision system waits for the image to settle and then it records the (x, y, z) position of the
tip along with its (u, v) image position. The two sets of values are concatenated together to form (i, yi,
zi, ui, vi) quintuplets. A list of these quintuplet sets of data is used as input to the calibration algorit
Figure 7  is the projection of the original 3-D points representing the probe position back into the i
plane. The back projection uses the calculated calibration matrix. The results are overlaid on the o
LED data points. The coordinates are measured in pixels. The results of the calibration are accura
within 2 pixels for this data set. The time required for data collection and calibration is approximate
minutes.

6. Conclusion and Future Research

Our system demonstrates that vision can be used to guide the acquisition of CMM measuremen
first experiment described does not use a calibrated camera . We have demonstrated that an unc
vision system adds flexibility to a measurement task by eliminating the need for exact placement of t
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Figure 7.Projection of original 3D points onto the image plane
using the calculated calibration matrix. Results are overlaid on
original LED data points. The coordinates are in pixels.

Image Y

Image X



l data

ped a
rithm.
oints.

s (see
stbed.
ving
new
tems to
ouch
using

d
al of

5,

ov/

e

89,

be

ic
being inspected. It also reduces the need for preprogramming all CMM motions when visua
are used as feedback to the CMM controller.

For applications that require calibration of image space with 3-D space, we have develo
fast technique for registering sets of data points that are used as input to a calibration algo
The unique feature of this technique is the autonomous collection of registered 2-D and 3-D p

In order to overcome the problems caused by geometric and radiometric constraint
Section 2), we plan to introduce multiple cameras with gaze control mechanisms into the te
This will give us the ability to analyze parts and features from multiple viewpoints as well as gi
us the ability to adjust the field of view of an individual camera. We are continuing to develop
sensor-servoed scanning techniques and to experiment with strategies for using vision sys
support CMM tasks. Our ultimate goal is to demonstrate that the integration of vision and t
probes is a more effective tool than either sensor by itself, and to transfer new techniques
multiple sensors to CMM users.
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