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Motion boundary extraction and optical flow computation are
two subproblems of the motion recovery problem that cannot be
solved independently of one another. These two problems have
been treated separately. A popular recent approach uses an iter-
ative scheme that consists of motion boundary extraction and opti-
cal flow computation components and refines each result through
iteration. We present a local, noniterative algorithm that simul-
taneously extracts motion boundaries and computes optical fiow.
This is achieved by modeling 3-D Hermite polynomial decompo-
sitions of image sequences representing the perspective projection
of 3-D general motion. Local model parameters are used to deter-
mine whether motion should be estimated or motion boundaries
should be extracted at the neighborhood. A definite advantage of
this noniterative algorithm is its efficiency. It is demonstrated by
a real-time implementation and supporting experimental results.
(€ 1998 Academic Press

Key Words: motion analysis; segmentation; real-time implemen-
tation.

1. INTRODUCTION

This paper studies the strengths and weaknesses of recent mo-
tion boundary detection and motion segmentation algorithms
and proposes a local, noniterative al gorithm for motion bound-
ary detection as well as its real-time implementation. This al-
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gorithm extracts motion boundaries and computes optical flow
at the same time. We apply a quantitative evaluation scheme for
boundary detection to show that our algorithm is accurate in lo-
cating motion boundaries. The flow portion of the algorithm is
presented in another paper |28].

In general, the motion recovery problem involves two major
subproblems: optical flow computation and motion segmenta-
tion. Optical flow computation quantitatively measures the mo-
tion associated with perceived objects; motion segmentation,
on the other hand, qualitatively distinguishes diftferent moving
objects. The fact that they are dependent on one another, as de-
scribed in the following paragraph, has complicated the general
motion recovery problem.

Due to the aperture problem, early motion estimation algo-
rithms [21, 22] usually enforced a smooth flow field as an addi-
tional constraint. Recent approaches use spatio-temporal filters
[13, 18, 28], often with large support, to estimate image prop-
erties and then solve for optical flow. In either case, on or near
motion boundaries, this smoothing or filtering renders the esti-
mation incorrect, In other words, motion estimation is not accu-
rate until we know where the boundaries are. On the other hand,
motion boundaries are defined as motion field discontinuities.
{The motion field is qualitatively equivalent to the optical flow
field |45].) Due to the aforementioned optical flow error around
motion boundaries, the requirement of a dense flow field, and
noise in the optical flow field, motion boundaries are very dif-
ficult to extract and/or locate from optical flow. Researchers
have used other image cues, for example, accretion and deletion
[34], or normal flow |21], to detect motion discontinuities, but
they provide only partial information about the motion. In other
words, motion boundaries cannot be located accurately without
a dense and accurate optical flow field.
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TABLE 1
Similarities between Model-Based Boundary Extraction and Edge Detection

Motion-model-based

Method

boundary extraction

Edge detection

Image intensity model
Filtering

Model parameters used
Postprocessing

Residual
Residual profile matching

Translation, expansion, and rotation
3-D Hermite polynomial filters

Step edge, ramp edge, or ridge edge
Directional Gaussian derivatives

S/N ratio

Nonmaximum suppression, hysteresis

Even though they are two aspects of a single problem, opti-
cal flow computation has received much more attention in the
literature than motion boundary extraction. Existing methods
for motion boundary extraction are approached through opti-
cal flow algorithms. A popular technique is to use an iterative
scheme that consists of two components: optical flow estimation
and motion boundary extraction. The basic idea is to refine hoth
components” results through iteration. This approach is time-
consuming and sometimes does not converge. We believe that
optical flow and motion boundaries are of equal importance and
we take the approach to producing both cutputs at the same
time.

Our idea is to understand and analyze the image intensity pat-
tern in a sequence generated by a perspective camera undergoing
3-D motionrelative to the objects in the scene. The objects them-
selves may be moving. The resulting nonlinear motion equation
is quite complex. Fortunately, we discovered [29] that Hermite
polynomial decomposition of the images enables us to translate
the complex nonlinear motion equation to a set of linear motion
constraint equations of image decompositions of different or-
ders. Conceptually, the Gaussian derivative behavior of Hermite
polynomial filters mimics the visual receptive fields [15, 47]
of primates. Algorithmically, the separability of Hermite poly-
nomial filters facilitates an efficient real-time implementation.
Using a least-square error method on the overdetermined linear
system of motion constraint equations, we compuie the motion
parameters and the residual. An analytical study of the residual
is shown to reflect the likelihood of a motion boundary. Using
an optimal filter on the residual, we can easily locate motion
boundaries.

Using the residual for motion boundary extraction offers sev-
cral advantages over using flow. First, the residual is a scalar,
so it avoids the difficulty of handling vector field discontinuities
while providing equivalent information about motion bound-
aries, e.g., whenever one component of the flow is discontinu-
ous, the residual is high. Second, flow values on the boundaries
are not accurate and are very noisy and thus require smoothing
for boundary extraction. This extra smoothing may cause local-
ization error, Third, the residual is computed using a 3-D motion
medel, so, in theory, it corresponds to real motion boundaries
and not flow variation due to rotation or expansion.

In fact, our concept of motion boundary extraction in a spatio-
temporal image is similar to edge detection [8] in a spatial im-

age. Both methods are based on a model for the image intensity
and noise. Both use image filtering techniques initially to ex-
tract model parameters and then use the parameters to locate the
likely candidates for discontinuities. Both perform some post-
processing to refine the results. The similarities are summarized
in Tablel and illustrated in Fig. 1. Motion boundary extrac-
tion is more difficult than edge detection because the motion
model needs to include a combination of translation, expansion,
and rotation, while the edge detector needs only a single im-
age discontinuity model such as step edge, ramp edge, or ridge
edge.

The appeal of a local, noniterative approach lies in its poten-
tial speed. However, its accuracy should not be compromised. To
measure the accuracy, we need an evaluation scheme to compare
different motion boundary extraction algorithms. Since recent
approaches combine optical flow and motion boundary detec-
tion, evaluation has often been performed based on the final
optical flow, This has the disadvantage of not distinguishing the
source of error, which may be inaccurate optical flow or inaccu-
rate motion boundary location. In other words, evaluation based
on segmented optical flow does not suggest a direction for im-
provement. Hence, we employ a quantitative evaluation scheme
applied only to motion boundary extraction. This scheme takes
into account not only the probabilities of detection and miss
but also localization error. It was originally developed for edge
detection [20].

Our algorithm is designed with a real-time implementation in
mind. With the 3-D Hermite polynomial separable filters and a
recursive ridge filter design inspired by Sarkar and Boyer [39],
as will be explained in Section 5, we have implemented an al-
gorithm on a general purpose machine (80 MHz HyperSparc
10 Themis board) using a DataCube MV200 image process-
ing board for digitizing and subsampling images. The running
speed is about 4-5 frames per second on 64 x 64 images. In
addition to motion boundary extraction, the optical flow is also
computed,

Our work is indebted to many previous studies referred to in
Fig. 2. An arrow in the diagram represents an idea (as annotated)
extracted from the work.

The rest of the paper is organized as follows. Section 2 sur-
veys previous methods and their strengths and weaknesses. The
motion model and our algorithm are introduced in Section 3.
The evaluation scheme and experimental results based on it
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FIG.1. Analogy between motion-model-based houndary extraction and edge detection.

are presented in Section 4. Section 5 describes the real-time
implementation and its results. Section 6 concludes the paper
with a statement of our contributions and its potential applica-
tions.

2. PREVIOUS WORK

Braddick’s psychological experiments on random dot motion
[7] set the stage for vision research on motion boundaries. It
verified the humans’ capability in perceiving boundaries clearly
using only motion cues. The existing work on motion boundary
extraction or segmentation is summarized in Table 2, This survey
is not exhaustive but represents typical work in this area, which
will be elaborated in the following subsections.

2.1. Noniterarive Algorithms

Early research on motion boundary extraction or motion seg-
mentation can be roughly characterized as based on a nonitera-
tive approach. These algorithms can be put into three categories
[12, 42] based on whether the motion boundary extraction is
performed prior to, simultaneously with, or after the flow field
estimation (Refer to Table 2.)

The approaches that extract motion boundaries prior to flow
field estimation employ “motion primitives™ [42], usually nor-
mal flow [21], as a basis. Hildreth’s work [21] is one of the
first major contributions in the field. The method is based on
the intensily zero-crossing contours, which are different from
motion contours, and may well cross motion boundaries. Trav-
eling along a contour, the algorithm detects a boundary point

Kearney, Thompson, Liu, et al. [28] Canny [8]
Boley [24]
3-D general .
. motion model Computational
Error analysis and approach

confidence measures

Motion-model-based
boundary extraction

Recursive filter for

Hermite polynomial

residual profile matching
(used in real-time implementation)

filters
Evaluation
Hashimoto and Sklan-
sky [17] Heyden [20]

Sarkar, Boyer [39]

FIG. 2. Summary of previous work contributing to our work.
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TABLE 2
Summary of Current Motion Boundary Extraction Algorithms

Noniterative schemes

Motion boundary extraction

vs flow estimation Algorithm by

Iterative schemes

Techniques Algorithm by

Prior to Hildreth [21],

Spoerri and Ullman [42}

Mutch and Thompson [34],
Schunck [40],
Shizawa and Mase [41],
Bouthemy [6]

Potter [38], Nakayama and
Loomis [36], Adiv [2],
Thompson, Mutch, and
Berzins [44], Murray and
Williams [33], Dengler [12)]

Simultaneous with

After

Pyramid linking/
Region growing

Hartley {16].
Debrunner and Ahuja [11]
Koch, Marroguin and Yuille [25],
Murray and Buxton [32).
Hettz and Bouthemy [19],
Konrad and Dubois [26]

Darrel and Pentland [9],
Jepson and Black [23]

Markov random
field with binary
line processes

Robust estimation

Tracking and nulling Bergen et al. [4)

as the sign of the normal flow changes. The method has two
limitations [21]: first, it does not detect boundaries when the
neighboring moving objects are traveling in about the same di-
rection; second, it requires that there be two edge points with
the same orientation in the contour. In addition, due to the use of
contours, the boundaries detected are sparse, which is restrictive
for general applications. Spoerri and Ullman [42] pioneered the
approach of statistical tests on motion primitives to inferring
motion boundaries. This method is quite appealing for the di-
versity of statistical tests offered, but the motion primitives do
not always provide sufficient information about the boundaries.
The experiments show detection capabilities but the localization
errors are significant even in synthetic images.

The approaches that extract motion boundaries simultane-
ously with flow field estimation include [34], [40], and [41].
Mutch and Thompson [34] use the simple and elegant fact that
motion around occlusion boundaries induces accretion and dele-
tion so that a local no-match between successive frames can
signal occlusion boundaries, whereas a match can be used for
estimating optical flow. This algorithm detects only occlusion
boundaries. It does not detect, for instance, the boundaries be-
tween two neighboring objects moving in parallel directions or a
rotating object where no accretion or deletion occurs. Schunck’s
algorithm [40] makes an important contribution by offering con-
straint line clustering to break the motion boundary/optical flow
dilemma. The basic idea of the algorithm is to use local consen-
sus, instead of smoothing, to determine flow values. The motion
boundaries are actually detected from the flow field discontinu-
ities. We categorize this algorithm as performing simultaneous
estimation and segmentation because of its special treatment in
handling boundary flow. The algorithm has a tendency to pro-
duce high localization error on motion boundary “corners.” The
clustering technique is heuristic and is prone to numerical insta-
bility. Shizawa and Mase [41] are the first to present “multiple-

flow constraint equations,” a generalization of the common op-
tical flow constraint equation, to deal with motion boundaries
and/for transparent motion. Their algorithm generates not only
flow but also a measure of the degree of multiplicity of mo-
tion. When a pixel’s associated multiplicity is determined to be
greater than one, it is a motion boundary or where transparent
motion occurs. This method unifies rather than distinguishes
motion boundaries and transparent motion. However, it is more
suitable for transparent motion than motion boundary extraction
because of the assumption of additive multiple flows, which is
less valid around motion boundaries. Bouthemy’s [6] work on
moving edge detection extends our understanding of edge de-
tection to the spatio-temporal image domain. To extract motion
boundaries from moving edges, one must apply some motion
modeling.

Approaches that extract motion boundaries after flow field es-
timation are more popular. Global techniques such as the Hough
transform (Adiv [2]), region growing (Potter [38]), and pyra-
mid linking (Dengler [12]) have been used. Local techniques
include center-surround filters (Nakayama and Loomis [36]),
direction reversals of the Laplacian operator on the flow vec-
tor fleld (Thompson, ef al. {44]), and condition number of the
linear ieast-square system by applying the structure from mo-
tion model on flow field (Murray and Williams [33]). These
approaches offer only a partial solution to the motion estimation
problem because the boundary depends heavily on the accuracy
of the optical flow. However, they provide algorithms suitable
for one component of an iterative scheme. Such schemes are
described next.

2.2, Iterative Approach

The iterative method of motion estimation is an approach de-
veloped more recently. It has both optical flow estimation and
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segmentation components. These components interact with one
another and improve their individual results during the course
of the iteration. Pyramid linking, Markov random fields with
line processes, robust estimation, and tracking plus nulling tech-
niques have been proposed. Iterative metheds tend to be more ac-
curate than noniterative methods but are time-consuming. Note
that there are algorithms that use iterative schemes to com-
pute optical flow only. We do not label them as iterative meth-
ods here since they do not include the segmentation compo-
nent.

Hartley’s algorithm [16] uses an iterative pyramid linking
technique for flow field segmentation. Segmentation is done by
hierarchical linking and the flow field is computed and smoothed
by fitting a linear or quadratic flow field model to the current flow.
The algorithm is efficient and always converges but its overall
accuracy depends heavily on the initial flow values, Debrunner
and Ahuja use a region growing technique to segment feature
points based on their motion in a long image sequence. If the
features are sufficiently dense, this method should be adequate
for boundary extraction.

The use of a Markov random field model for flow has been
proposed by Koch ef al. [25], Murray and Buxton [32], Heitz
and Bouthemy [19], and Konrad and Dubois [26]. They han-
dle flow discontinuities by introducing a binary line process to
discourage smoothing across boundaries. The results of these
algorithms are generally good. The computational cost, how-
ever, is formidable (usually hundreds of iterations, or image
sweeps).

Robust estimation techniques have been proposed by Darrel
and Pentland [9], Jepson and Black [23], and Black and Anandan
[5]. They use a multilayered motion model (“mixture model”
[23]) and thus are capable of handling loosely occluded scenes
{e.g., tree leaves) or transparent motion. The main idea is to esti-
mate the dominant motion(s) in a window while rejecting incon-
sistent constraints as outliers so as to minimize their influence
on the results, The results are promising when the algorithms
converge.

Instead of using a layered motion model, Bergen er al. [4]
model the addition of motions of differently moving image pat-
terns (not necessarily square, as dictated by the window). A
simple tracking and “nulling” mechanism is used to separate
and estimate individual motions. In other words, image regis-
tration and residual motion estimation are iterated. This algo-
rithm has potential for high-speed implementation on a system
with warping hardware. The results are reasonably good but the
algorithm may not always converge, depending on the noise
level,

The resuits of the iterative methods seem good and they usu-
ally solve the global motion segmentation problem, but they
have two major problems. The first is the computational load.
The second is that the convergence rate depends on the scene,
noise, and motion, Moreover, some of these algorithms may not
converge at all,

3. MOTION-MODEL-BASED BOUNDARY
EXTRACTION

The basic idea of our motion-model-based boundary extrac-
tion method is to fit the local image properties with a 3-D motion
model. The necessary elements of the scheme are a motion model
which is based on arbitrary 3-D motion, a method for estimating
image properties, for which we use Hermite polynomial decom-
position of images, and a procedure to extract motion model
irregularities as boundaries. The following subsections briefly
present the derivations of these three elements; the details can
be found in [29] and [28].

3.1. The Computational Model

We have developed a general motion model by considering
any point P =(X,Y,Z)" in a 3-D space undergoing steady
rotation (S2y, Ry, 2z) and translation (T, Ty, Tz) per unit time
as seen from a viewer by perspective projection with focal length
f. We derive [28]

Ix,y,)=Fx+to+yx+py +8x% + £XY),
yHHB — px +yy+ixy+ey’h, (D)

where

Ot:—f(a%JrQy), ﬁ=—f(%-9x),

i Q. s=—-1o Lo
Y ==, p=iiz, = —gady, £ = DX,
Z f f
This quadratic image motion equation can be simplified to the
following affine model [35, 46] with the assumption of small
rotation and/or reasonable focal length

Ix,y,D=Fx+tla+yx+py), y+H{f—px+yy) ()

We then use Hermite polynomial decompositions of the image
to represent the local image properties.
The nth Hermite polynomial H,(x) is a solution of

d*H, 5 dH,
dx? o dx

+2nH, =0 (3)

The H,(x) are derived by Rodrigues’ formula [17]

n
2

H(x) = (fl)”e’”d—e*’ . 4
dxn

By substituting G(x) (with variance o'2) for ™" in (4), we
generalize to Hermite polynomials with respect to the Gaussian
function. Let these Hermite polynomials be denoted by H.,(x).
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The scalar product of two functions and the L,-norm of a func-
tion with G(x) as a weight function are defined as

(a,b)z[mG(x)a(x)b(x)dx and |all = {a, a)"%. (5)

The orthogonality of {H ,(x)} can be expressed [17]
{(Hn H,) =0 " nl8 . (6)

The 3-D case of Hermite polynomials is especially simple
because they are separable
Hijilx, y,0) =H(x) -H j(y) - H (0). (7

We use the following Gaussian derivative theorem to derive
motion constraint equations,

TroeoreM 1. A one-dimensional sigral I{(x) can be decom-
posed in terms of Hermite polynomials as

10y =31 Hux)

T (8)
G
Then
If\' = (]!Hk) = (I(k)’HO)#
where
&
[(k} — d_l
dx*
Expand both sides of Eq. (2) with Hermite polynomials,
(s %] 0 o0 r 7 o0 oo o8 F 7
Hiji Hj
1 k ! = F& k !
Z;,Z(},Z; YU el ;;; TN )
then
Lije = UL H ) = Fijie = (F, H 9

due to orthogonality.
Equating /;;; to Fj;; and using Theorem 1, we derive (see [29]
for details)
Lijt = algpyjo + Blig+no + v + e
+ oG s -0 + Fle-nii+n0)
+yotTgynjo + Lo

+ PO L1 00- (10)

It is clear from Theorem 1 that the Hermite polynomial de-
compositions are computed by filtering the image with Hermite

polynomial filters. Withina 3-D locﬂal window, we estimate (I ;)
with the discrete approximation {{,;;(x, y, 1)}, that is, the 3-D
convolution of the sampled Hermite polynomial filters with the
image sequence. We use this filiering scheme and the motion
equation (10) to derive a linear system of equations. In linear
least squares form,

E =min| As + b, (11)

where
oo
24 f]Ol
B Cop= {0[1 ,
Y TETY
P fu
Fopy
(12)
RIUIRLT: o2({ 300 + Foz0) 0
fwo Tro 02(F300 +1120) +1 100 ~f ot
A o Fior 2P0 +13w) + oo T o0
Fao Tog 0%(Taop +120) + 20200 20100 |
fao T 02 (Fmo+1s0) + 200 Faoo —Fono
Fio oo o (Fao+a0) + 270 200

The higher order decompositions are not used because they are
relatively small [28] and susceptible to noise in the image.

The residual of our algorithm is £ = min|lAs + b||. The resid-
ual error results from the approximation errors of our computa-
tional model in describing the physical world. Specifically, the
causes of these errors are:

1. The assumption of the motion model is viclated in the
local window, i.e., the window covers more than one moving
object. Occlusion and multiple independently moving objects
in a window can cause this problem.

2. The assumption of constant image brightness is violated,
1.e., the image intensity pattern changes over time due to sensor
noise, change in the viewing angle, shadows, etc.

3. Quantization or truncation error, Quantization errors re-
sult from digitization of the image intensities and sampling of
the Hermite polynomial fiiters. Truncation errors are introduced
when we use a limited spatial support to compute {/}.

We model the above errors as perturbations or noise to the
linear systern [27]

E =minf(A + N)§ + (b + AD)||, (13)

where NV and Ab denote errors,
We prove in Appendix A that the magnitude of the residual
E is linearly proportional to the noise magnitude |Ns + Ab||
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FIG. 3. (a) Motion boundary, (b) typical residual profile across boundary.

according to

E~ ||(7 — A(ATA)7TAD)||Ns + Ab|. (14)

Now that we have established the relation between residual
and noise, we show how to use the concept of the residual pro-
file to relate noise with motion boundaries in this model-based
approach.

3.2. Residual Profile

We show that the residual profile across a motion boundary
follows a specific pattern and is very different from the residual
profiles arising from brightness changes or quantization errors.
We then use a spatial filter that matches this profile to extract
motion boundaries.

Figure 3a shows a motion boundary neighborhood. A dashed
square represents a local window used to compute Hermite poly-
nomial decompositions and the residual for the center pixel. By
sliding the window across the boundary, we can compute and
plot the residual profile. A typical residual profile is shown in
Fig. 3b. It has a big plateau centered on the motion boundary.
The width of the plateau is about the same as the local window
size. This is because only in that region does the local window
cover the boundary.

Brightness changes and quantization errors, on the other hand,
are usually scattered in the image; it is much less probable for

binary ground truth
motion boundary image

binary detected
motion boundary image

Gaussian Convolution

TABLE 3
Summary of Quantitative Performance Measure

Schunck’s  Thompsen et al.’s
Algorithms Cur algorithm algorithm algorithm
Performance measure 5.85 7.86 10.32

them to form residual profiles like those of motion boundaries.
Also, since tesiduals arising from motion boundaries are larger
than those arising from the other two sources, their profiles
should be very prominent.

Based on the above findings, we can extract motion bound-
aries using a ridge edge detector [8].

4, EVALUATION AND EXPERIMENTS

It is important to evaluate motion boundary extraction sepa-
rately from optical flow. This makes clear what component of
the motion estimation algorithm needs to be improved.

A good quantitative evaluation scheme for motion boundary
extraction should account for the probabilities of detection and
miss as well as the localization errer. We reviewed several exist-
ing schemes and found that Heyden’s method of evaluation [20]
is best suited for motion boundary extraction purposes. It has
the following nice properties. First, it penalizes long streaking,
i.e., large gaps of missed boundaries. Second, it penalizes thick
edges. Third, there is no need to perform a search for correspon-
dences between detected and ground truth motion boundaries.
This evaluation scheme is sketched in Fig. 4. The performance
measure is the RMS of the Gaussian smoothed difference im-
age, The Gaussian convolution of the difference image is the
crucial step that achieves the above advantages. Note that in this
scheme, a better algorithm will yield a smaller output quantity,
with zero as its minimum.

In order to make comparisons, we also implemented algo-
rithms developed by Schunck [40] and Thompson et @/, [44]. The
Hermite pelynomial filter size used in our method is 21 x 21 x 7
(inx, y, #).

The first image we used is shown in Fig. 5a. It is a sequence
composed of a baby face traversing laterally in front of a mov-
ing random dot background. The approximate flow map and

Performance
Measure

D

FIG. 4. Heyden’s quantitative evaluation scheme.
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FIG. 5.

the motion boundary ground truth are shown in Figs. 5b and 3¢,
respectively, This image sequence is synthesized to contain
curved motion boundaries, which are common to real world
scenes but present difficulties for most motion boundary extrac-
tion algorithms.

InFig. 6, we show our algorithm s residual map and Schunck’s
and Thompson’s flow fields. They represent the bases upon
which these algorithms extract boundaries. Thompsen’s flow
field (Fig. 6¢) is smooth across boundaries as expected, while
Schunck’s flow field (Fig. 6b) is noisier right on boundaries but
more accurale near boundaries.

Next we show the detected boundary and true motion bound-
ary for the three algorithms. In Fig. 7, the dark edge represents
the true motion boundary while the white edge represents the
boundary detected. Note that when the true boundary is de-
tected, the color of the edge becomes gray. These images are
obtained by subtracting the ground truth boundary image from
the detected boundary image as dictated by Heyden’s evaluation
scheme.

In Fig. 7b, it can be seen that Schunck’s algorithm suffers from
boundary drift caused by noise on the boundary as well as local-
ization errors in the corners, as mentioned in [40]. On the other

(a) Moving face on random dots, (b) approximate flow field, (¢) motion boundary.

hand, when the motion boundary is a straight line, Schunck’s
algorithm performs better than the other two. In Fig. 7¢, it can
be seen that Thompson’s algorithm suffers from flow noise away
from boundaries. Since it uses a direction reversal technique sim-
ilar to zero crossings, spurious edges are detected, Otherwise,
the localization is very good. Our algorithm’s boundary is better
at corners and essentially free of the major problems of the other
two. Table 3 summarizes the quantitative performance measure
computed by Heyden’s evaluation scheme.

The next image we use is the Yosemite fiy-by sequence shown
in Fig. 8. This is a synthesized sequence in which the observer
is approaching the scene and motion boundaries exist between
objects at different depths. As can be seen by the flow field
(Fig. 8b), two prominent motion boundary curves exist. One
separates the sky from the mountains, and the other separates
the domed mountain in the lower left corner from the other
mountains. The boundary ground truth is not available. In Fig, 9,
we show the results of the three boundary extraction algorithms
overlaid on the original image. The white edge points represent
the extracted boundaries.

All three algorithis indeed extract the boundaries that sepa-
rate sky and mountains. Our algorithm is no better than the other

s

F1G. 6.

(a) Residual map, (b} Schunck’s flow field, (¢) Thompson’s flow field.
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FIG.7. (a) Ouralgorithm’s boundary, (b) Schunck’s boundary, (¢) Thompson’s boundary.

two in this area. However, the other boundary that separates the
domed mountain from the background mountains is not as easy
to extract because the motions on the two sides are in the same
direction but have different magnitudes. Note that this kind of
motion field is typical in the image sequences captured by a for-
ward moving observer. In Fig. 9b Schunck’s algorithm fails to
extract these boundaries because the noise on both sides over-
whelms the small variation in flow. In Fig. 9c Thompson’s algo-
rithm fails to extract these boundaries because the presmoothing
and filling of the sparse field smooths out the small flow varia-
tion. On the other hand, our algorithm extracts some portion of
this boundary curve (Fig. 9a).

5. REAL-TIME IMPLEMENTATION

The Hermite polynomial decomposition is efficient due to
its separability (6). We have exploited this property to design a
real-time algorithm. Its implementation is illustrated in Fig. 10.

FIG. 8.

The Datacube MV200 is employed because it can digitize and
subsample the image at frame rate. All other processing is run on
an 80 MHz HyperSparc 10 board. The design of a recursive ridge
edge detector is the other aspect of the algorithm that makes the
implementation efficient,

The recursive ridge edge detector is based on the function,

FOy=(1+bt —p2e™® fort>0
(15
and f(r) = f(—1) fort < 0.

As illustrated in Fig. 11, we design this function to have a
slope of 0 at the origin and a zero-crossing at (5 + 1)/2b,
which can be adjusted by changing b. It emulates the optimal
symmetric ridge edge detector by Canny [8].

It is a recursive filter because we can derive a recursive relation
hetween input x(¢) and output y(#). Considering only the causal
component of the filter function, i.e., f(r) for ¢ > 0, using the

LR

(a) Yosemite fly-by, (b) Yosemite fly-by flow field.
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The filter is applied in both the x and y directions to find ridges
of any orientation by thresholding on the maximum response of
the two, The details of applying such recursive filters can be
found in [39].

The major reason why we choose to use the recursive fil-
ter is that it is efficient. Canny’s optimal ridge edge detector
has a large filter support (because of the width of the ridge)
and therefore the filtering is time-consuming. The second rea-
son is that the recursive filter is flexible in the selection of
multiple response criteria [39]; that is, we can easily select
a different b in Eq. (15) to change the filter shape to match
ridges of different sizes. The residual ridge size is dependent
on the window size of the Hermite polynomial filter as ana-
lyzed in the residual profile. In the Canny approach, on the other
hand, the optimal filter needs to be laboriously recomputed and
generated. Our recursive filter, however, is not optimal for de-
tecting ridge edges. This is a sacrifice we must make for real-time
performance.

For the experiments described below, we use only the 3-D
translation motion model with the first three linear equations
in (12), and the Hermite polynomial filter size is 13 x 13 x 5.
The input image size is 64 x 64. The recursive ridge detector is
a 2-D separable filter and (0.25, 0.5, 0.25) is the mask we use
perpendicular to the ridge direction. The recursive function is de-
signed so that the zero crossings are at 4, i.e., b =8/(~/5+ 1).
The implementation runs at roughly 4 frames per second. The
following figures illustrate the results. In these figures, the upper
left image displays the scene, the lower left image displays the
boundary map, and the image on the right displays the flow in
needle map form.

Figure 12 illustrates the results of an arm moving in front of a
stationary background. Note that the arm is a deformable object
so the flow appears nonuniform. However, the boundary map
captures the arm, despite the lack of texture in some portions of
the arm.

Figure 13 illustrates the results of a head moving in front of a
stationary background. The flow and boundary in this case both
reveal the shape of the head in its entirety.

Figure 14 illustrates the results of boundary detection in the
case of motion parailax. The scene contains two moving ob-
jects, a book in the foreground and a face in the background,
and the camera is stationary. Although the two objects are phys-
ically moving at the same speed, their motions as perceived by
the camera are different due to motion parallax. The result dis-
Z-transform, we derive tinguishes the boundary of the book even though the motion
parallax, as evidenced by the flow field, is small.

FIG.9.  (a)Ouralgorithm’s result, (b) Schunck s result, (¢) Thompson’s result.

¥(t) = cpx(t) +ax(t — D4+ oax(t =2+ Byt — 1)
+ fay(t — 2)+ Bay(t — 3), (16) 6. CONCLUSION

Motion boundary extraction algorithms are as important as
motion estimation algorithms for the complete motion recov-
. o 2 b _ _ 42,,-25 ety problem. However, the interdependency of these two classes
=1 a =240 w=(1-b=b9e™0 ¢ algorithms poses a computational dilemma that renders any
Bi=-3¢" =3¢ and By = —e (17) partial solution inaccurate. Indeed, the only way to soive the

where
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FIG. 10. Real-time implementation of our optical flow and boundary extraction algorithm.

moticn recovery problem is to simultaneously address both mo-
tion segmentation and motion estimation. While recent research
has focused on iterative methods, we propose a method based on
a general motion model. This method is local, noniterative, and
simultaneously deals with both motion estimation and motion
boundary extraction.

The motion-model-based approach fits the local 3-D image
pattern to a motion model and outputs a boundary likeiihcod
measure, the residual, which may be used to extract motion
houndaries when we inspect its profile in the spatial domain.

The distinctive advantage of our local approach is its speed.
It is demonstrated by our real-time implementation. This is ul-

timately important for obstacle avoidance and navigation appli-
cations.

APPENDIX A
Let A and b, defined in {12), contain no noise, thatis N = 0
and Ab = (. Then each equation of the system should hold,
so [43]
E=As+b=0 and s=—(ATAY 1ATh. (18)

Let the noise-contaminated solution be § and the new residual

-20 -15 -10 <5

FIG. 11.

0 5 10 15 20

Recursive ridge detector.
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be £, and assume that N « A and Ab <« b elementwise, i.e.,
NNT = 0and NAb = 0, Then

F=—[(A+N)T(A+NN(A+ N (b+ Ab),and (19)
[(A+NT(A+N)!

~ (AT A[ + (ATA)HATN + NT D!

~ 1 — (AT AT ATN + NT AT A s0 (20)

Fr —(ATAY AT+ (AT AN ATN + NTAYATA) AT D

—(ATA)INTH — (ATAY AT A 21
Using (18). this can be simplified as
§rs—(ATA)'ATNs —(ATAY "AT AP and
As 2= (AT AY AT Ns — (AT A AT Ab. (22)

For the residual, substituting § into (13) and using (18), we
derive

E~|(A+N)s— AATATATNs
—AATAT'ATADb + b+ Ab||
~ (I — ACAT Ay TATHNs + Ab)|

~ |7 — AAT A)TIAT|IINs + AB. (23)

ACKNOWLEDGMENT

The authors thank Dr. Bill Thompson for his advice on implementing his
beundary extraction algorithmm. We also thank Mr., David Jiang for implementing
Schunck’s constraint line clustering algorithm. The real-time display of the flow
needle map is provided by Dr. Ted Camus at National Institute of Standards and
Technology.

REFERENCES
1. L E. Abdou and W. K. Pratt, Quantitative design and evaluation of enhance-
ment thresholding edge detectors, Proc. J[EEE 67(5), 1979.

. G. Adiv, Inherent ambiguities in recovering 3-D motion and structure from
a noisy flow field, IEEE Trans. Pattern Anal. Machine Intell. 11(5), 1989,
477-489.

. I.L.Barron, D. I. Fieet, and S. S. Beanchemin, Performance of optical flow
techniques, [nt. J. Comput. Vision 12(1), 1994, 43-77.

. T Bergen, P. Burt, R. Hingorani, and . Peleg, A three-frame algorithm
for estimating two-component image motion, /EEE Trans. Pattern Anal.
Machine Inteil. 14(9), 1992, 886-896.

. M. Black and P. Anadan, The robust estimation of multiple motions: para-
metric and piecewise-smooth flow field, Comput. Vision Image Understand-
ing 63(1), 1996.

. P. Bouthemy, A maximum-likelihood framework for determining moving

edges, IEEE Trans. Pattern Anal. Machine Intell. 11(5), 1989.

0. . Braddick, A short-range process in apparent motion, Vision Res. 14,

1974, 519-527.

. J. Canny, A computational approach to edge detection, I[EEE Trans. Patters
Anal. Machine Intefl. 8(11), 1986, 679698,

. T. Darrel and A. Pentland, Robust estimation of a multi-layered motion rep-
resentation, in Proceedings of IEEE Workshop on Visual Motion, Princeton,
NJ, 1991, pp. 173-178.




100

10.

1.

14,

15.

20.

21

22.

23

24,

23.

26.

27,

28.

L. Davis, Z. Wu, and H. Sun, Contour-based motion estimation, University
of Maryland TR-1179, June 1982.

C. Debrunner and N. Ahuja, Motion and structure factorization and segmen-
tation of long multiple motion image sequences, Proceedings of the IEEE

Ewropean Conference on Computer Vision, Sania Margherita Ligure. Italy,
1992, pp. 217-221.

. J. Dengler, Estimation of discontinuous displacement vector fields with the

minimum description length criterion, in Proceedings of the IEEE Con-
ference on Compurer Vision and Pattern Recognition, Lakaina, HI, 1991,
pp. 276-282.

- D. L Fleet and A. L. Jepson, Computation of component image véloc-

ity from local phase information, fnr. J. Comput. Vision 5(1), 1990, 77—
104.

C. Giardina and E. R. Dougherty, Morphological Methods in Image and
Signal Processing, Prentice Hall, Englewood Ciiffs, NJ, 1988.

N. M. Grzywacz, and A. L. Yuille, A model for estimate of local image

velocity by cells in the visual cortex, Proc. Roy. Soc. London, A 239, 1990,
129-161.

- R. Hartley, Segmentation of optical flow fields by pyramid linking, Pattern

Recognit. Lett. 3(5), 1985, 253-262,

. M. Hashimote and J. Sklansky, Multipte-order derivatives for detecting

local image characteristics, Comput. Vision Graphics Image Process. 39,
1987, 28-55.

- D.J. Heeger, Optical flow using spatiotemporal filters, Int. /. Comput. Vision

1(4), 1988, 279-302.

. F. Heitz and P. Bouthemy, Multimodal estimation of discontinuous optical

flow using Markov random fields, IEEE Trans. Pattern Anal. Machine Intell.
15(12), 1993, 1217-1232.

F. Heyden, Evalnation of edge detection algorithms, in Proceedings of
the [EEE Conference on Computer Vision and Paitern Recognition, 1992,
pp- 618-622.

E. Hildreth, The Measurement of Visual Motion, MIT Press, Cambridge,
MA, 1984.

B.K. F. Homand B. G. Schunck, Determining optical flow, Arrificial Iniell.,
17, 1981, 185-204.

A, Jepson and M. Black, Mixture model for optical flow computation, in
Proceedings of IEEE Conference on Computer Vision and Partern Recog-
rition, New York, NY, 1993, pp. 760-761.

J. K. Keamey, W. B. Thompson, and D. L. Boley, Optical flow estimation;
An error analysis of gradient based methods with local optimization, [EEE
Trans. Pattern Anal. Machine Inteil. %, 1987, 229-244.

C. Koch, }. Marroquin, and A. Yuille, Analeg “neural” networks in early
vision, Proc. Nat. Acad. Sci. 83, 1992, 4263-4267.

J. Konrad and E. Dubois, Bayesian estimation of motion vector fields, JEEE
Trans. Pattern Anal. Machine Intell. 14(9), 1992.

H. Liu, T. Hong, M. Herman, and R. Chellappa, A Reliable Opti-
cal Flow Algorithm Using 3-D Hermite Polynomials, NIST IR-5333,
Dec. 1993,

H. Liu, T. Hong, M. Herman, and R. Chellappa, A General Motion Model
and Spatio-tempoval Filters for Computing Optical Flow, University of
Maryland-TR -3365, NIST-IR 5539, Nov. 1994 [Also, fat, J. of Comput.
Vision, to appear]

LIU ET AL.

29.

30.

31

32

33.

34.

35,

36.

37.

38.

40.

41.

42.

43.

45.

46.

47,

H.Liun, T. Hong, M. Herman, and R. Chellappa, A generalized motion model
for estimating optical flow using 3-D Hermite polynomials, Proceedings of
the International Conference on Pattern Recognition, Jerusalem, Israel,
1994, pp. 360-366.

H. Liu, T. Hong, M. Herman, and R. Chellappa, Motion-Model-Based
Boundary Extraction, University of Maryland TR-3414, Feb. 1995, [Also,
Proceedings of IEEE International Symposium on Computer Vision, Coral
Gabhles, FL, Nov. 1995, pp. 587-592].

H. Liw, A General Motion Model and Spatie-temporal Filters for 3-D Mo-
tion Interpretations, Ph.D. dissertation, University of Maryland, Sept. 1995.
D. Murray and B. Buxton, Scene segmentation from visual motion using
global optimization, IEEE Trans. Pattern Anal. Machine Intell. 9(2), 1987,
220-228.

D. Murray and N. 8. Williams, Detecting the image boundaries between
optical flow fields from several moving planar facets, Pattern Recognit.
Lert. 4(2), 1986, 87-92.

K. Mutch and W. Thompson, Analysis of aceretion and deletion at bound-
aries in dynamic scenes, IEEE Trans. Pattern Anal, Machine Inteli. 7(2),
1685, 133-138.

H. H. Nagel, Direct estimation of optical flow and of its properties, in
Artificial and Biological Vision Systems (G. A. Orban and H. H. Nagel,
Eds.), 1974, pp. 193-224,

K.Nakayama and J. M. Loomis, Optical velocity patterns, velocity sensitive
neurons, and space perception: A hypothesis, Perception 3, 1974,

R. Nelson and Y. Aloimonos, Qbstacle avoitdance using flow field diver-
gence, [EEE Trans. Pattern Anal. Machine Intell. 11(10), 1989, 1102-1106.
J. L. Potter, Velocity as a cue to segmentation using motion information,
IEEE Trans. Systems, Man, Cybern. 5, 1975, 390-395.

. 5. Sarkar and K. L. Boyer, On optimal infinite impulse response ridge

detection filters, IEEE Trans. Pattern Anal. Machine Intell. 13(11), 1991,
pp. F154-1171.

B. Schunck, Tmage flow segmentation and estimation by constraint line
clustering, IEEE Trans. Pattern Anal. Machine Inteli, 11(10), 1989, 1010-
1027,

M. Shizawa and K. Mase, A unified computational theory for motion trans-
parency and motion boundaries based on eigenenergy analysis, in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
Lahaina, HI, 1991, pp. 289-295,

A. Spoerri and 8. Ullman, The Early Detection of Motion Boundaries,
A. I. Memo No. 935, Al Lab, MIT, 1987,

G. W. Stewart, Introduction to Matrix Computation, Academic Press, New
York, 1973.

. W. Thompson, K. Mutch, and V. Berzins, Dynamic occlusion analysis in

optical flow fields, [EEE Trans. Pattern Anal. Machine Inteil. 7(4), 1985,
374-383,

A. Verri and T, Poggio, Motion field and aptical flow: Qualitative properties,
{EEE Trans. Paitern Anal. Machine Intell. 11(5), 1989, 490498,

P. Werkhoven, and §. ]. Koenderink, Extraction of motion parallax structure
in the visual system I, Biol. Cybern, 63, 1990, 185-191.

R. A. Young, Simulation of human retinal function with the Gaussian deriva-
tive model, in Proceedings of IEEE Conference on Computer Vision and
FPartern Recognition, Miami Beach, FL, 1986, pp. 564-569.



