
 

Findings and Recommendations for a Software 
Development Process

 

Intelligent Systems Division

 

Elena Messina
David Coombs
Tom Kramer

John Michaloski
Fred Proctor

Will Shackleford
Keith Stouffer

Tsung-Ming Tsai



   
Table of Contents

1.0 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

2.0 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

3.0 Scope  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

4.0 Some Software Engineering Definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

5.0 Findings and Proposed Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

6.0 The Sandia Software Development Process Models  . . . . . . . . . . . . . . . . . .11

7.0 Developing an ISD Process Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

8.0 Overall Recommendations for Short-Term Actions . . . . . . . . . . . . . . . . . . .19

9.0 Conclusions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

10.0 References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

Appendix A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1
Page ii



 

Page iii 



       
Abstract

Researchers in the Intelligent Systems Division (ISD) at the National
Institute of Standards and Technology frequently develop software-
intensive advanced prototype systems with applications in
manufacturing and defense.   Given the reliance on software for the
majority of the programs within this division, it is critical that the
software be of high quality and effective.   The Software Development
Process Project was initiated within ISD to assess the current state of
software development practices and to chart a course for improvement.
This paper summarizes the findings of the team that was assembled to
perform this investigation.   Issues discussed range from development
tools and infrastructure to division-wide software life cycle process
definition.    A brief set of recommendations is presented at the
conclusion.

Keywords: software development, life cycle, software process

1.0 Introduction 
Software development is a key activity within the Intelligent Systems Division (ISD) of the

Manufacturing Engineering Laboratory at the National Institute of Standards and Technology
(NIST). Researchers in this organization develop software-intensive advanced systems with a
variety of applications for industry and defense. Given the reliance on software for the majority of
the programs within this division, it is critical that the software developed be high quality and
effective.

The Software Development Process Project (SDPP or SDP) was initiated within ISD to assess
the current state of software development practices and to chart a course for improvement. A team
was formed with representatives from various groups and projects to present a balanced picture of
the various facets of software development within the division. This document presents the find-
ings of the group and suggests follow-on activities.

The document begins with some definitions of concepts that will be used in later sections. The
major findings regarding the current state of ISD software development are then enumerated.
Each one of these points is scrutinized. Appropriate actions are proposed, along with the potential
benefits. The next sections discuss in depth the issue of a software development process model. A
brief description of the software process models adopted by Sandia National Laboratories is
included.This provides a benchmark and an example of a process model in use. A proposed pro-
cess model for software development in ISD is then formed. The elements comprising the model
are described and project categories are proposed. The relationship of the proposed process model
to the ISD project management model is clarified. The document concludes with a section sum-
marizing the overall short-term recommendations for the division. As an exercise in imagination
which unifies a lot of the points covered in this document, a vision for ISD software development
a few years hence is submitted as an appendix.   
Page 1 



            
2.0 Goals
The goals guiding the Software Development Process Project team were the following:

• Improve the understanding of the software development processes and require-
ments within ISD

• Develop software process model(s) for the division which improve the efficiency
and quality of projects

• Begin deploying methodologies and tools to support software processes and to
improve efficiency and quality of projects

The project was undertaken to discover how software is currently developed and to determine
perceived bottlenecks or weaknesses in the current approach. 

3.0 Scope
The SDP Project investigated typical software activities by project teams. The project did not

attempt to assess project development issues, such as scheduling, requirements analysis, or
resources. Hardware issues were not discussed, unless they affected software development. The
discussions were biased toward “research” types of applications, although some consideration
was given to software that is distributed to other organizations.

The type of software development activities performed within ISD are not generally discussed
by the software engineering community. Most of the focus for software process discussions and
studies within the software engineering community is based on the assumption that some type of
“product” is being built. We typically build prototype systems. We aim to demonstrate or test
some underlying algorithm or principle, rather than provide a practically defect-free piece of soft-
ware with a flashy Graphical User Interface (GUI) to our paying customers. This, of course, is an
exaggeration. However, the “center of gravity” for our projects is certainly skewed towards proto-
type demonstration systems.

Another aspect that complicates this endeavor is the nature of our organization. By education,
experience, and career interest, most of the researchers who write software are not software engi-
neers, nor is this a full-time activity for most of them. The ISD organization’s modest size and
finite budget also bound our options for change.

4.0 Some Software Engineering Definitions
There are many perspectives to a software-based endeavor. We describe some of the major

perspectives of “software” in this section and distinguish between them.

4.1 Software Engineering

Software Engineering is establishing and using sound engineering principles to obtain eco-
nomical software that is reliable and works efficiently on real machines [1]. Software Engineering
encompasses methods, tools, and procedures to provide a paradigm to enable developers to build
high-quality systems and to enable managers to achieve control over the development  [2].

4.2 Software Methodology, also known as Software Methods
Page 2 



             
Software methodology provides the technical foundation for the software. Methodology is
an organized, documented set of procedures and guidelines for one or more phases of the software
life cycle, such as analysis or design. Many methodologies include a diagramming notation for
documenting the results of the procedure; a step-by-step  approach for carrying out the procedure;
and an objective (ideally quantified) set of criteria for determining whether or not the results of the
procedure are of acceptable quality. 

4.3 Software Process, also known as Software Procedures

Software procedures define the following: the sequence in which methods will be applied,
the deliverables that are required, the controls that help ensure quality and coordinate change, and
the milestones that enable software managers to assess progress [2].  

4.4 Software Tools

A software tool is a program primarily used to create, manipulate, modify, or analyze other
programs, such as a compiler, an editor or a cross-referencing program. Tools provide automated
or semi-automated support for methods.

4.5 Software Development Environment

The software development environment refers to the infrastructure supporting the mechan-
ics of building, testing, and updating software, particularly when several people collaborate.
Intuitively, the complexity of an environment which supports multiple developers working con-
currently on the same software system is greater than for stand-alone, individual efforts. 

4.6 Configuration and Code Management

Configuration management entails controlling the releases of and changes to software items
throughout the life-cycle. Similarly, a source code management system helps program developers
track version history, releases, and parallel versions.

4.7 Quality Assurance

Quality assurance refers to the procedures in place to ensure that a system meets the require-
ments. The measures of quality are correctness, maintainability, integrity, and usability. If quality
is measured, traditionally, it is measured after a system is built. A more modern approach involves
considering all or most aspects of quality throughout the life cycle.

4.8 Life Cycle of Software

A discussion of process typically includes a description of a software life-cycle model. A
software life-cycle model describes the stages and procedures involved in developing a software
system.  They include the following:

• System engineering and analysis - probe and establish requirements for all system elements;
allocate some subset of the requirements to software; perform top-level design and analysis

• Software requirements analysis - focusing on software elements, establish the requirements;
understand the information, function, performance, and interfaces; document these and
review with “customer.”
Page 3



  
• Design - translate requirements into a representation of the software that can be assessed for
quality before coding begins; document the data structures, software architecture, proce-
dural details, and interfaces.

• Coding - translate design into executable form

• Testing - ensure that program behavior agrees with expected, correct results

• Maintenance - modify an existing software system to correct defects, or to accommodate
new requirements.
The classic life-cycle model is the waterfall, shown in Figure 1. This model prescribes

sequential flow through the various stages of software development listed above. Although there is
some provision for feedback, this model does not adequately allow for modifications based on
new information gained throughout the development.   Errors inserted in earlier phases may not be
discovered until later ones, when it is more difficult and expensive to correct them.

An important element for any life-cycle model is the inclusion of explicit criteria for exiting
one phase and entering the next. For example, a criterion would be a clear statement requiring the
completion of design reviews for all modules prior to progressing from the “design” to the “cod-
ing” phase. Such a statement defines the distinct project phases and the agreed-upon conventions
for completion of a phase. Defined criteria make assessing and reporting the status of a project
somewhat clearer. Compare a statement such as “We have completed the design for 25 out of 35
modules” to “We are about half done with the project.” The former statement more clearly defines

Figure 1: The Waterfall, or Classic Life Cycle

Systems
Engineering

Analysis

Design

Code

Testing

Maintenance
Page 4 



  
the status; the latter is qualitative.   Project managers who have many years of experience have
encountered projects whose status seems to stabilize at 80% done.   A finer granularity for report-
ing would help pinpoint just where the bottlenecks occur [3]. 

In 1988, Boehm introduced a new model for representing software development called the
Spiral Life Cycle [4]. It is illustrated in Figure 2. This model supports prototyping to uncover
issues early and to allow for customer and management evaluation before too much resource is
committed. The spiral model also provides a more explicit phase for assessing the current state of
the project. The Boehm view of software engineering iterates through four phases, each time
moving the project closer to the desired final state. The four phases are: planning, risk analysis,
engineering, and customer evaluation. They are described below:

• Planning - determining objectives, alternatives, and constraints. The initial planning encom-
passes first-pass requirements gathering. In later iterations, planning takes into account new
data, such as schedule slippage or customer feedback.

• Risk Analysis - dissecting alternatives and identifying or resolving risks. In later iterations,
this is based on new data, similarly to the planning phase.  At the end of this phase, the risks
and their potential for resolution are assessed.   A decision is made whether to continue with
the next iteration of the project or not (“go, no-go”).

• Engineering - incorporating the latest constraints, refining the product design and imple-
mentation.

• Customer evaluation - assessing the results of engineering and reviewing new design, sched-
ule, prototype, or other outcome.

Figure 2: The Spiral Life Cycle

Planning Risk 
Analysis

Evaluation Engineering

<Go, no-go decision

Toward a completed
system
Page 5



               
This approach is attractive because a project is not allowed to move forward indefinitely
before managers and developers discover that it has strayed beyond the customer expectations or
budgetary constraints. The “build a little - learn a little” approach may also encourage forward
movement. 

5.0 Findings and Proposed Responses
To determine the amorphous issue of assessing “software development” within ISD, the team

held wide-ranging discussions to ascertain the key issues. Topics were suggested as discussion
items. If a topic proved to be fruitful, follow-up discussions or action items resulted. 

The discussions led to a set of conclusions about software development practices and needs.
The list below enumerates these conclusions. Further amplification is provided in following sec-
tions.

5.1 ISD currently follows an ad-hoc process.

Discussion:   There are no stated guidelines to define stages in a software project or determining
progress. For example, there are no guidelines to decide when to use prototyping. There is no
standard software engineering methodology or process in place for a project to follow.

Proposal:   ISD should adopt a project classification system and associated process models.
Projects should be assigned one of the decided-upon broad categories, based on the defined dis-
crimination factors. Each level or category has a process model that a project will adopt. The key
factor is management support for the importance of adhering to a process.   Studies show that
“Senior Management must believe software process improvement is both achievable and neces-
sary and must insist on performance. It is not enough for Senior Management to just say they sup-
port software process improvement.” [5] What typically happens is that, despite everyone’s best
intentions, “when push comes to shove, the [project] work wins out and the process improvement
often dies.” [5]   A proposed ISD model is described in Section 7.0.

Benefits:   If certain guidelines are provided, the decision process can be streamlined to determine
the appropriate course a project should follow. Expectations are clarified, and better communica-
tion can result. Duplication of effort should also be reduced by ensuring that broadly-applicable
tools are leveraged across projects. Elucidating options and available techniques or tools will help
disseminate best practices that currently reside in “islands of knowledge.” The proposed processes
are intended to be evolutionary and not dogmatic. Flexibility is desirable, as is adaptability based
on trial and error.

5.2 C++ and a unix-based model for configuration management and for development are
“standard.” 

Discussion:   The convergence upon a single implementation language should simplify develop-
ers’ lives and make some of the desired changes, such as reuse, more feasible.

Proposal:   This is an acceptable status quo for now. The trend in industry is toward PC-based
systems. So ISD must consider how to support a heterogeneous development environment at a
future date.

5.3 Tools to help real-time system development are needed.

Discussion:   There is a lack of software tools within the division. Although tools provide no
Page 6 



                 
magic, they make a difference in productivity and quality. Examples of tools that would be benefi-
cial include state diagram and state table generation utilities, timing tools, modeling tools, and
communications tools that generate and automatically test communication channels. 

Proposal:   The Systems Team currently provides support via built-in capabilities that are avail-
able with the Communication Management System (CMS) package. Additional requests for tools
or utilities supporting real-time code development are being collected. A “buy-or-build” decision
can be made for each item. A simple process for submitting requests or ideas to the Systems Team
currently exists: informal verbal requests are made to representatives of the Systems Team. If the
number of “customers requests” increases sufficiently to justify more formality, a simple e-mail
request system can be established to log and track the requirements. The systems team should also
provide the division with regular updates on planned enhancements to their tools. Periodic mail-
ings to the isd-tech distribution list would be appropriate.

Benefits:   Development efforts can be reduced by having available tools to support real-time sys-
tems. Reliability of systems can be strengthened by using tools addressing real-time software
development. Metrics on the performance of systems would be achievable. Having the Systems
team be the focal point for these tools would eliminate duplicate efforts and build focused exper-
tise.

5.4 Knowledge and experience are not effectively leveraged.

Discussion:   Expertise is scattered throughout ISD. Knowledge gained with certain tools or sub-
systems is not necessarily shared with others who could benefit. This is not a malicious withhold-
ing of information. Even in our process discussions, sharing of experiences occurred. There is no
standard forum for sharing experiences, or even for developers to be aware of someone else’s
experience in a given area.

Proposal:   The ISD internal World-Wide Web page is a good start toward a focal point for infor-
mation sharing. The team members suggest better use of e-mail queries. A newsgroup for ISD
technical discussions is an alternative, but it is not recommended, because it would have very low
traffic, and developers are reluctant to have to launch a newsreader application.

Benefits:   Information-sharing can lead to more effective implementation and dissemination of
best practices. Airing questions and issues can also indicate which areas of software, tools, or
even theory need more attention. For instance, if a particular utility draws a lot of questions, this
may indicate that it either needs better documentation or a better interface.  It may also be defec-
tive.

5.5 Better documentation is needed on all fronts.

Discussion:   A desire for better communication creates the need to document utility libraries,
such as matrix math, that people commonly use. We also need better documentation of code that
we develop and others could use. Beyond just module documentation, developers also need exam-
ples of how to use or build systems, like the Enhanced Machine Controller (EMC).

Proposal:   More focus is being given to documentation.  RCS documentation is now available on
the ISD Web page. This is a big step forward. 

Additional documentation issues include:
• An on-line listing of all software available in the division (or available from other sources,

such as MSID) should be developed and maintained.
Page 7



             
• On-line documentation should be searchable.
• With standardization of module/function header comments, automated documentation

extraction is possible.
• We should experiment with tools which generate c++ class documentation in HTML for-

mat.

Benefits:   On-line listing of existing utilities and tools can make software development more effi-
cient and allow for the reuse of code. 

5.6 The development environment is challenging.

Discussion:   It is complicated to set up a new project’s development environment (e.g., make
files), even if it builds upon an existing one. Beyond that, design, development, and integration
mechanics are difficult when there are several developers who must coordinate their activities.

Proposal:   New documentation on how to build RCS systems will help. The Systems Team will
take a stronger role in providing application development environments. They are looking at mod-
ifying the development environment mechanics:

• use the Revision Control System code management system, which is newer and believed to
be better than Source Code Control System (SCCS)

• have the developer’s local environment be able to reference object libraries in centralized
locations, simplifying the “make” maintenance.

• provide better means of “checkpointing” releases (see Item 5.7 below).

Benefits:   Developers perceive that too much time is spent figuring out how to build a system.
Any improvements in this area can increase the efficiency of the organization. The reworked envi-
ronment should facilitate development of systems by several researchers who need to work on
related code. 

5.7 Code configuration management needs to be more flexible.

Discussion:   Developers need better configuration control to be able to get back to a known, sta-
ble point. Currently, complications arise if one has to provide a customer with a correction or
update on an older version of software. Better configuration management tools should help with
notification of changes, fixes, new releases of RCS or other shared software.

Proposal:   There are several concerns regarding configuration management. The adoption of
Revision Control System code management may facilitate addressing these concerns. Additional
recommended considerations for configuration management design are:

• Understand and enumerate the various possible states a project can be in (in development,
integration, final testing, initial release-release N).

• Understand and enumerate the various possible states in which a developer’s local environ-
ment can be (e.g., totally self-contained within a single developer’s environment; single
developer has some local code, references some code in a centralized location; multiple
developers share some local code; multiple developers share some local code, but reference
some code in a centralized location).

• Understand and enumerate the platform configurations.
• Determine the expected longevity of a project. Will code be shipped outside NIST? If so,

we may need to maintain it at a future date. If so, we need to track the various releases and
archive the source and objects.
Page 8 



                 
• Once the variables are enumerated and understood, a rational plan for which directories
need to exist and their inter-relationships can be developed. It is desirable to limit the prolif-
eration of configuration management models.

Benefits:   A revamped configuration management system can allow checkpointing of systems
more readily. Earlier, working versions of a system can be retrieved.   An appropriate directory
structure can facilitate the integration and collaboration among developers.  Projects with simpler
needs should not be burdened with a lot of complexity in the directories and configurations.

5.8 The definition of Quality Assurance is currently vague.

Discussion:   Within ISD, Quality Assurance typically consists of testing at the end of develop-
ment. The extent and means of testing are left up to the individual. New systems must be quality
assured (especially if delivered to outside parties), and software which is used within others’ sys-
tems needs to be stable. Hence, if a CMS function changes, existing systems should not break.

Proposal:   Quality cannot be tested into a system. It is much higher payoff to be conscious of
quality throughout the entire lifecycle of a project. The software process should define the kind of
quality assurance that is required for a given project category. Better use can be made of utilities
such as code coverage analyzers and memory leak detectors. Design reviews and use of existing
components can ameliorate the situation as well.
The process will encourage projects to begin testing integrated components as soon as possible.
Following the “build-a-little, test-a-little” paradigm, early integration testing is advocated.  A
formal, rigorous definition of quality criteria is not currently attempted.

Benefits:   Introducing quality assurance earlier in the development cycle results in cost savings
for the division. By having a framework of quality assurance tools and techniques, developers will
have concrete options in validating their systems. Everyone in the division can have access to the
same “toolkit” of techniques and tools and share expertise.

5.9 There is a tendency to get into RCS theory discussions when reviewing software
design

Discussion:   A clearer understanding of the difference between RCS architecture and purely soft-
ware design is needed. 

Proposal:   The division’s awareness of the difference between the RCS reference architecture
and the software design, which addresses implementation, is growing. We need to continue going
in this direction. The HPCC Reference Architecture Project will solidify RCS to a great extent and
provide a more concrete reference architecture upon which to build. That should reduce the RCS
theory discussions when implementation issues are being presented.

Benefits:    By focusing on software design which follows an accepted RCS theory, meetings
would be more productive. In fact, having a strong reference architecture with some supporting
tools should lead to faster progress and better quality.

5.10 It is challenging to reuse existing code.

Discussion:   For as many systems as ISD builds, very little software is reused. Perceived factors
reducing the ability to reuse software are: platform portability complexities, lack of documenta-
tion for existing software, and software is not built with “generality” in mind. Machine-dependent
assumptions may be buried throughout the code. This makes it difficult to locate all such instances
Page 9



               
and modify them to support another configuration or machine. 

Proposal:   Several initiatives are already in place to increase reuse. Stressing the benefits of reuse
throughout the organization is necessary to reap the rewards. A fair amount of discipline is
required to successfully implement reuse. 
Areas in which the Systems Team is helping to promote reuse:

• better documentation of existing utilities
• more portable code
• better support via the proposed process 

The HPCC Reference Architecture project is developing an architecture, both in the concep-
tual and engineering sense, which can be leveraged for reuse.  Note that reuse need not apply
solely to existing code.   Reuse of designs, data structures, and objects provides significant bene-
fits as well.

As new systems are built under the new regime, reuse should be encouraged and tracked.
The software process should make this a natural part of doing business. The ISD project reviews
should include explicit queries regarding reuse. The project review team should include at least
one individual capable of evaluating reuse opportunities.

Portability-friendly practices should be publicized. Greater awareness by developers of gen-
eral things to avoid, such as hard-coding degrees-of-freedom, can lead to more reusability.

Browsing existing software is an important aid to portability. A web search for certain key-
words, for example, should be possible.

Benefits:   Reusability benefits the organization because it reduces the amount of development
necessary in a new project. Reusing a module that already has been exercised in one or more sys-
tems already increases the reliability of the system.

5.11 An “endorsed,” or “suggested” toolset is desirable, as long as support for these tools
is available.

Discussion:   Currently, projects independently investigate available tools and either decide to
purchase a tool or do without. The decision is often made in isolation from other activities, past,
present, or future. The outcome is a proliferation of similar tools, or a compromised result, caused
by purchasing the cheapest option - or none at all - due to insufficient funds. One example cited is
a GUI-building toolset.

Proposal:   Certain individuals or groups should be given explicit responsibility for supporting
tools which are used division-wide. This means that they will be allowed budget and resources to
provide the support. At this time, we do not specify individuals or groups, except to mention that
the Systems Team already plays this role for certain development tools, like gnu and Centerline.
Similar support should be provided for CAD, GUI, and other tools.

Benefits:   Centralizing the expertise reduces the overall cost of support to the organization. Sup-
ported tools also have a better chance of being more thoroughly and widely used. 

5.12 Different types of software projects require different “rules” to live by.

Discussion:   Due to the varied nature of the projects in the division, it would be counterproduc-
tive to decree a “one-size-fits-all” process model. See section 7.0.

Proposal:   We propose a multi-tiered approach to project classification. Each tier will have a pro-
cess that imposes a level of rigor appropriate to its scope and nature. 
Page 10 



          
Benefits:   By not endorsing a single process model, there is a greater chance for acceptance and
adoption within the organization. Demonstrating understanding of the organization’s multiple fac-
ets increases confidence in the viability of the recommendations. Tailoring process models to the
needs of a project is also advantageous.   The intention is to enhance the overall effectiveness of
the project teams, not merely introduce process for its own sake.

5.13  Any recommendations need to consider the research nature of our work.

Discussion:   Again, it would be counterproductive to impose too much rigor into our environ-
ment. Too much energy would be expended on areas where there would be minimal returns for the
project’s goals. See item 5.12.

6.0 The Sandia Software Development Process Models

6.1 Looking at What Another Lab Does

Sandia National Laboratories initiated an effort to investigate and define the Software Devel-
opment Process Methodologies used within their organizations  [6]. A team of software develop-
ers from various organizations regularly met to produce and promote a core set of software
development processes. A detailed description of the process methodologies was produced for the
overall laboratory. The Intelligent Systems and Robotics Center (ISRC) developed a specification
for all software development activities within that division, referencing the Sandia-wide methods.
Because this division is roughly our counterpart at another federal research lab, we looked at the
process components and categorization used by Sandia’s Intelligent Systems and Robotics Center. 

Conformance to the Process is addressed by having adherence to the guidelines in every man-
ager’s performance agreement. 

6.2 Sandia Process Categories

The categories Sandia used are listed in Table 1 and are defined as follows:

I. Production: Software that will be distributed to external agencies, to the public domain, or
distributed where a software failure could have real or perceptual consequences. Example:

Table 1: Sandia Software Process Categories

Rigor Category Name

highest I production

. II prototype

. III research

lowest IV rapid response
Page 11



                           
DOE pit handling systems intended for production use, which are part of the Nuclear Weap-
ons Complex projects.

II. Prototype: Software developed for proof-of-concept systems, projects with evolving
requirements, and test-bed systems. The consequences of a software failure are not critical.

III. Research: Software in a project where requirements and/or design issues are ambiguous. 

IV. Rapid Response: software that is quickly developed to meet short time schedule for demon-
stration purposes only. Such software is expected to have a limited life.

There is a Software Toolbox developed by ISRC, probably similar to our RCS tools. The Tool-
box can contain software from any of these categories. However, a project may not use Toolbox
software from a less rigorous category.

The level of rigor applied to a given software category directs which documents and reviews
are required for a given project. In some cases, the decision is made by the individual project
teams. 

6.3 Sandia Documents

The elemental documents that a project may have are listed and briefly described:
Software Requirements Specification(SRS) - WHAT the software must do. The appropriate

level of rigor and content for this specification depends on the particular project. 
Operator Interface Specification - describes how an operator interacts with a system.
Software Design Description - describes the major components of the software design, i.e.,

HOW the software will work. The choice of methodology and format is determined by the project
leader.

Software Test Plan - describes the specific test cases that will be used to ensure that the code,
when executed, complies with the requirements specified in the Software Requirements Specifica-
tion.

Software Test Results Summary - documents that the test plan and script were followed. If
any differences or deviations from expected results were found, they must be identified in a
defects report.

User Manuals - depending on the nature of the project, these can be one or more of the fol-
lowing: Operator’s Manual, Programmers’s Manual, and Software Maintenance Manual.

Software Project Plan - this plan, developed prior to the start of software development, iden-
tities tasks, and major milestones.

Software Configuration Management Plan (SCMP) - identifies configuration management
requirements that are unique to a given project, causing a deviation from the center-wide global
configuration management plan. 

6.4 Sandia Reviews

The types of reviews possibly required for a project are listed and briefly described in this sec-
tion. Apparently, the software project team attends all reviews and invites customers to certain
appropriate reviews. There is no discussion of how or when external reviewers are selected.

Software Requirements Specification Review - held to ensure that the system’s require-
ments are correctly and completely translated to the SRS. 

Operator Interface Specification Review - held to verify that the customer agrees with the
operator interface design.

Strategic Design Review - is held to verify that the project is consistent with the strategic
Page 12 



               
intent of the center. This high-level review, where the primary audience consists of representatives
from the Software Process Team, is used to determine several things: (1) whether the project will
reuse existing center and/or commercial software where appropriate, (2) if the project has com-
monality with other projects where collaboration may be useful, and (3) to identify portions of a
project that should be targeted for the ISRC Software Toolbox.

Software Design Description Review - verifies that the requirements in the Software
Requirements Specification are implemented in the design expressed in the Software Design Doc-
ument. One or more reviews may be held.

Software Test Plan Review - is held to ensure that every requirement in the Software
Requirements Description will be tested adequately.

Software Project Plan Review - is held to verify that the Project Plan is adequate and reason-
able.

Software Configuration Management Review - is held to verify that project specific CM is
adequate and reasonable.

Code Reviews - are held to detect defects which often cannot be found by testing and to ver-
ify compliance with the project coding standards. Code reviews range from off-line peer reviews
to formal inspections.

6.5 Sandia Required Software Activities

YES: this element must be included
REC: This should only be excluded for a good reason. It is recommended
OPT: Including this element may be appropriate for this project, but it is optional
NO: This element does not have to be included

Table 2: Sandia Project Documentation

I II III IV

Software Requirements Spec YES YES REC OPT

Operator Interface Spec REC OPT OPT NO

Software Design Description YES YES REC NO

Software Test Plan YES REC REC NO

Software Test Results Sum-
mary

YES REC REC NO

User Documentation YES REC OPT NO

Software Project Plan REC REC REC NO

Software Config. Mgmt Plan YES REC NO NO
Page 13



     
7.0 Developing an ISD Process Model
To effectively propose a process model for ISD software development to follow, several fac-

tors should be considered. Certainly, the conclusions discussed in the Findings section are impor-
tant. A balance must be achieved among honoring the flexibility that often feeds creativity, the
current culture within ISD, and the perceived benefits from a more structured process. The soft-
ware engineering world has become process-oriented, giving the false impression that instituting a
software process is a panacea that cures all ills. However, processes do not create software, people
do. This is not to say that anarchy is the way to success. The proposal emphasizes an evolutionary
and experimental approach to processes. It is helpful to think about a process as a pattern for solv-
ing a problem.

An initial model is suggested. Implementation of the model is not the end of the experiment.
The results must be tracked along the way, and adjustments made. This is an adaptive process.
The meta-model is one of “continuous improvement,” where an experiment is tried and lessons
are learned.  If an approach does not work, we figure out what to change so that it does work. A
pilot project should be selected to try some or all of the elements of our proposal. Members of the
Software Process Team would work with the project team and gather results as the project

Table 3: Sandia Project Reviews

I II III IV

Software Requirements 
Spec. Internal Review

YES YES REC NO

Software Requirements 
Spec. External Review

YES REC REC NO

Operator Interface External 
Review 

REC OPT OPT NO

Operator Interface Internal 
Review 

REC OPT OPT NO

Strategic Design Review YES YES YES NO

Software Design Review YES REC REC NO

Software Test Plan Review YES OPT OPT NO

Software Project Plan 
Review

REC REC REC NO

Configuration Mgmt Plan 
Review

REC OPT NO NO

Code Reviews REC OPT OPT NO
Page 14 



      
progresses.

7.1 Categories of Software Efforts

Within ISD there is wide variance in the types of software efforts undertaken, which is similar
to the Intelligent Systems and Robotics Center (ISRC) at Sandia.  Variables influencing a software
project characterization include:

Category of deliverable: demo only, executable released to customer, source code released
to customer, utility for use internally or externally 

Consequence of Software Failure:  are humans endangered by software failure, or would
valuable equipment be potentially ruined?

Complexity of project: scope of undertaking, number of developers collaborating
Longevity of project: will the project be used only as a proof-of-concept, or is it the foun-

dation for additional work over the next few years?
Use of RCS architecture: because this is a major thrust, and we seek to develop a method-

ology for design of control systems using RCS, special attention should be paid to projects which
are either built using RCS technology or seek to further the RCS framework.

7.2 Proposed Project Categories

Believing that it would be counterproductive to have too many gradations of project catego-
ries, we propose a three-tiered system.   The criteria for discrimination among the categories are:

I. System or code will be released outside ISD; or the code is a utility which will be used inter-
nally by potentially several projects; or the system requires high reliability due to potential
danger to humans or equipment.

II. The system is not delivered outside ISD and is not meant to be a utility. However, either the 
number of developers needing coordination, the projects’s future potential, or the use of 
RCS architecture warrant a higher level of rigor.

III. The system will not be delivered outside of ISD, is not meant to be a utility, and its longevity 
is limited.
  

7.3 Elements of the Process Model within ISD

Project Design Review - Division management, project leaders, and selected technical per-
sonnel attend this review. The scope, requirements, and technical approach for the overall project
are presented. The project review will cover the entire project’s scope, which typically involves
more than purely software. During the project design review, the necessary software development
tasks should be outlined. At this time, it may be appropriate to emphasize the need for prototypes
or experiments.  The risk factors should be highlighted to guide such decisions.

Software Design Document(s)
Software Design Review(s) - The main components of the software system are described:

the requirements should be explained, the trade-offs that are being considered, the issues that are
still open. Areas, such as performance requirements and how they will be addressed, should be
covered where appropriate. It is important to have all the project team members and other techni-
cal staff who can evaluate the design and look for areas of reuse attend. If a particular subsystem
Page 15



seems to be a candidate for becoming a utility, this can be noted and explored after the review.
Several design reviews may be necessary to cover a particularly complex or large system.

For RCS-based systems, a high-level review should include an operational scenario, along
with the proposed control hierarchy.  

Issue: What language do we use to communicate software designs? A common language
and common tools across the division are highly desirable.

Operator Interface Design Document
Operator Interface Design Review - Where applicable, the Operator Interface for a system

is described in the Design Document. Mock-ups of screens, forms, and operational scenarios
should be included. The underlying design to achieve the desired operator interface is also pre-
sented. If ISD begins to use a GUI toolkit, for example, certain forms or lower-level constructs
should be reusable. This type of reuse should be sought in the review. If appropriate, a separate
audience can review the pure operator interface. For example, the recipients of the system may not
care about the implementation, but are very concerned with the mechanics of how to interact with
the system.

User Documentation
User Documentation Review - When an  API or code is delivered outside NIST, user docu-

mentation is appropriate. If some or all of the code within a project will become a utility within
the division, user documentation is also required.

Quality Plan
Quality Plan Review - If code is going to become part of the utility set or if it is going to be

used outside of ISD, reliability needs to be assured. The quality plan should describe the steps to
be taken to ensure that the code meets the requirements - in terms of functionality, performance,
and reliability. Use of tools such as Centerline, Purify, and PureCoverage are encouraged. 

a. If applicable

Table 4: Requirements by Category

I II III

Software Design Document(s) YES YES OPT

Software Design Review(s) YES REC OPT

Quality Plan Document YES REC OPT

Quality Plan Review REC OPT OPT

Operator Interface Document YESa
RECa NO

Operator Interface Review YESa OPT NO

User Documentation YES OPT NO

User Documentation Review REC NO NO
Page 16 



YES - Required NO - Not necessary
REC - Recommended OPT - Optional
REC and OPT are left to the Project Leader’s and Division Management’s discretion.

7.4 Relationship of Process Model to ISD Project Management

ISD has been developing a general project management model which is to be followed by all
division projects.   Project leaders should generate plans that indicate the main tasks, milestones,
resources, and time frames.   Projects which are to follow the ISD Software Process model should
explicitly include elements of the process model in their plans and schedules. In Figure 3, a
project’s major phases are shown as a vertical line on the right.   The phases are the fairly stan-
dard: design, code, unit test, integrate, final test.    In this example, elements of the proposed soft-
ware process are inserted as milestones within the project’s plan.   The project plan review is
shown as occurring in the early design phase. Several software design reviews may occur.   The
initial project review is shown to encompass an early software design review.   At the end of the
design phase, another, more comprehensive and detailed software design review occurs.   In the
same manner, quality plan, user documentation, and operator interface reviews are inserted into
the project’s schedule where appropriate.   The necessary documents to support the design reviews
are also shown as being part of the “deliverables” for the milestones.   This example shows a very
rigorous set of requirements for the project merely to illustrate the concept.   

More realistically, at the initial project review, the project will be placed within one of the
three categories shown in Table  4.   The requirements for deliverables and reviews would be
determined at that time.   At this early point in the project’s life, assessments of potential compo-
nents which can be reused should also be discussed so they can be reflected in the design of the
system. 
Page 17



Project Plan: E
vents in our process m

odel correspond to m
ilestones 
Figure 3: Example of Process Elements and Their Relationships to Project Plan
Successful Completion of a Review is an Explicit Milestone in Schedule

Software 
Design Review

Project Design
Review

Quality Plan 
Review

Software 
Design Review

User Docu-
mentation Re-

view

Operator Inter-
face Review

Software 
Design Review

Project 
Document

Project 
Plan

Operator I/F
Document

Software 
Design

Quality 
Plan

User 
Documentation

Code
Unit Test

Integrate
Final Test

Design

Key

 document

Review
Page 18 



8.0 Overall Recommendations for Short-Term Actions
Based on the above responses to perceived areas needing attention, we now try to unify the

concepts into a short-term plan of action.   This effort will not succeed if it is viewed as the solu-
tion to all our software development issues. The primary recommendation is to assume an experi-
mental approach to the proposed actions. Feedback throughout the process is essential to correct
the course. The attitude of the division leaders and participants should encourage and anticipate
revisions to the proposed models.

A project should be selected in the near-term to serve as a pilot.    Ideally, it would fall into
project category I or II, be RCS-based, and involve at least two developers. The potential project
team members and project manager would meet with the Software Process team to understand the
goals and discuss the pilot program. If everyone agrees, we would proceed. The project would be
classified per our project categories. The project manager would agree to adhere to the required
document deliverables and reviews. A milestone chart would be devised and maintained. Accord-
ing to the evolutionary model of software development, the longer people work on a project, the
smarter they are about it, and the milestones and schedules are refined.    Tentative formats for the
documents and review materials will be developed. It is recommended that a tool, such as Ratio-
nal Rose, ControlShell, be selected for design and documentation.   We probably can have the
Software Process project underwrite the cost of tools purchased.    The development directory
structures and configuration management will be implemented to better address the project needs.

For each of the action items and experimental approaches associated with the pilot project, the
Software Process team and the project team should receive feedback. Lessons learned will be
incorporated into the Software Development Process document (a follow-up to this).

The pilot project will incur additional costs above and beyond its initially planned budget
(pre-pilot). The project manager and project engineers will have to spend additional time on the
following activities:

• meetings and briefings with the Software Process team

• becoming familiar with general concepts which will be used

• selection of a tool

• learning to use the tool

• producing the various documents as required by the process

• participating in the various reviews as required by the process

• if reuse becomes a major priority, it will probably require more time to implement the initial 
system.

The project may indeed finish close to initially estimated time. However, note that, typically,
most projects do not complete close to the initially estimated time. Therefore, it is possible that
the process will pay off in terms of more time spent on design and review, and less time on inte-
gration and debugging.   Longer-range, the benefits should accrue. If certain portions of the pilot
project can be reused, benefits to the division begin to accumulate.   If the selected tool proves to
be useful, the pilot team will be able to continue using the tool on other projects. In this way, the
team  can serve as an educational resource for others. 

Recognizing that any project team that agrees to serve as a “guinea pig” for the software pro-
Page 19



cess will accept responsibilities above and beyond their project’s challenges, we feel that it may
be important to provide incentives to the pilot project. For example, the Software Process project
could underwrite the cost of the chosen tool. Depending on the funding scenario, the Software
Process Project could also subsidize the pilot project to account for the extra responsibilities.

9.0 Conclusions
After examining the various facets of software development within the Intelligent Systems

Division, the Software Development Process Team has produced a summary set of conclusions
and recommendations.   The set of recommendations seeks to balance the research nature of ISD’s
work with the desire for higher software productivity and quality.    A set of project classifications
with corresponding process models has been set forth. Suggested actions to address specific issues
within the development organization have also been outlined. We believe that the ultimate solu-
tion will be to embark on a controlled experiment with a pilot program. Only when these concepts
are tested, will we begin to take steps towards improving the software development process in
ISD.

10.0 References

[1] Naur, P., and B. Randell (eds.), Software Engineering: A Report on a
Conference Sponsored by the NATO Science Committee, NATO, 1969.

[2] Pressman, Roger, Software Engineering: A Practitioner’s Approach,
McGraw-Hill, Inc., 1992.

[3] Humphrey, Watts S., Managing the Software Process, Addison-Wesley,
1990.

[4] Boehm, B., “A Spiral Model for Software Development and Enhancement,”
Computer, Vol. 21, No. 5, May 1988, pp. 61-72.

[5] Wise, Cindi, “A Study: Senior Management Actions Critical for Successful
Software Process Improvement,” Process Inc. Newsheet, Vol. 1, No. 3,
December, 1994.

[6] “Preferred Processes for Software Development”, Sandia National Labs
Internal Publication, 1994.
Page 20 



Page 21



Appendix A 

A Vision of ISD Software Development in 1998

A new research project is underway. Several developers are selected to begin working on it. A
hardware and operating system platform must be chosen, and several other requirements need to
be determined. An Other Agency (OA) sponsor wants to see an RCS implementation on a parallel
processing machine with distributed nodes and a minimum of three sensors. The demonstration
must be coordinated with two other parties, Egregious Enterprises (EE) and Zap Software (ZS).
There is already a target schedule for the initial demo. What happens next?

The project leader and team members meet with the sponsor and the partners (EE and ZS).
Requirements (or constraints) are determined: software and hardware choices, based on desired
sensors and decision to support distributed and parallel hardware; minimum and maximum per-
formance targets, interfaces between major subsystems (especially to those provided by EE and
ZS), procedures for integration and testing, configuration management, and first-pass schedule for
first iteration. A spiral model is assumed.

Hardware and software choices are made. The Systems team participates in this choice, pro-
viding background information on supported systems. Given their experience and convincing
arguments, a choice which will leverage an already sanctioned platform is made. The systems
team will have to expand the communications utilities due to the distributed and parallel nature of
the effort. At this point, a project review takes place with the division management. The direction
and strategies are evaluated and approved by the management review team. This project evidently
is following technological development and implementation strategies which are consonant with
NIST, MEL, and ISD goals. Given the green light after the project review, a designated senior
member of the team produces a high-level design specification for the system and presents it in a
design review to the review team. Based on their expertise in the given domain, the design
reviewers are selected from across the division. A representative from the Systems Team is
included, as usual. This high-level design is represented using the appropriate methodology and
tools, with which most people in the division are familiar. The design review team provides input
on which existing algorithms, code, or libraries should be reused by this project. The applications
project team produces a more detailed level design of their system.

RCShell,1 a control system design tool with a graphical front-end, is used for the design and
analysis. Designers follow the RCS doctrine and build a system which has the appropriate number
of hierarchical levels. RCShell provides guidance in these design issues by asking questions
which suggest the correct operational parameters. Libraries of components are available to the
system designers: servo, sensor, matrix operations, even operator interface components can be
linked together graphically via RCShell. State tables, of course, are easily generated by RCShell.
RCShell provides facilities for defining the knowledge base / world model for the system (which
can be distributed). Communications protocols for passing commands and information can be
specified via RCShell. The inputs and outputs to the components provided by EE and ZS have an
initial definition so they can be modeled in RCShell. Because some new sensors need to be added
to the system, new components for them are designed and added to the RCShell library. The pro-

1.pronounced “RCS Shell”
Page A-1



cedure for adding a new component is fairly straightforward. 
Once the higher level design is completed, showing the hierarchy, major components, data

flow, and projected timings, a design review is held. The designated reviewers receive pointers to
review materials a couple of days beforehand, allowing them to run the review prototype ahead
of time. Thanks to RCShell, an annotated simulation of the system can be accessed in the
project’s home page through the ISD Web. This is very convenient for the California sponsor,  as
well as the other development sites. The review material includes the usual information, such as
which components are expected to be “off-the-shelf” versus which ones need to be developed,
allowing for refinement of the resource estimates and schedules. Open issues and decisions to be
made are also included in the review information. One of the major open issues is the need to
experiment with the processor configurations to see if the desired performance can be achieved
without incurring an excessive inter-processor overhead. The project home page contains the
project schedules, which are kept current on a regular basis. The ISD management can track the
project’s progress via the home page likewise.

The review prototype also includes a prototype operator interface. Using the RCShell, one
of the developers put together the various screens for the operator interaction. This allows the var-
ious team members to look at the OI and even take it for a test run, which qualifies as an Opera-
tor Interface Design Review.

The design review results in some modifications being required. The applications design engi-
neer responsible for these changes goes back to RCShell and accommodates the modifications. An
updated design and simulation is released, to be reviewed on-line by the same review team. The
changes seem acceptable to all. The schedule was modified accordingly, because an additional
component will be needed. The initial design review also points out the need to hold another
review over the algorithms that handle the sensor fusion. 

The sensor fusion algorithms are developed using RCShell, which is integrated with an exist-
ing mathematical modeling package. RCShell’s integrated documentation facility is a real boon
at this point. The updates to the design in RCShell are annotated with change history and the tool
facilitates generating module documentation. A design review is set up on the WWW, once again
allowing geographically-dispersed reviewers early access to the graphical, textual, and simulated
components of this subsystem’s design. 

• interfaces between pieces

• generating templates; defining diagnostics desired

• adding components to RCShell vs. using existing ones

• validation of new generic components added

• associativity between documentation and code

• configuration management (subsystem releases; project configuration setup in the 1st place;
notification of team members of changes to documentation/code

Note that the above is not meant to detail a completely realistic scenario, especially techni-
cally,  Rather, it is meant to provide an impressionistic view of a possible way to work at a future
date. 
Page A-2


	Findings and Recommendations for a Software Develo...
	Table of Contents
	1.0 Introduction 1
	2.0 Goals 2
	3.0 Scope 2
	4.0 Some Software Engineering Definitions 2
	5.0 Findings and Proposed Responses 6
	6.0 The Sandia Software Development Process Models...
	7.0 Developing an ISD Process Model 14
	8.0 Overall Recommendations for Short-Term Actions...
	9.0 Conclusions 20
	10.0 References 20
	Appendix A A1
	Abstract
	Researchers in the Intelligent Systems Division (I...
	Keywords: software development, life cycle, softwa...
	1.0 Introduction
	2.0 Goals
	3.0 Scope
	4.0 Some Software Engineering Definitions
	4.1 Software Engineering
	4.2 Software Methodology, also known as Software M...
	4.3 Software Process, also known as Software Proce...
	4.4 Software Tools
	4.5 Software Development Environment
	4.6 Configuration and Code Management
	4.7 Quality Assurance
	4.8 Life Cycle of Software
	Figure 1: The Waterfall, or Classic Life Cycle
	Figure 2: The Spiral Life Cycle

	5.0 Findings and Proposed Responses
	5.1 ISD currently follows an ad-hoc process.
	5.2 C++ and a unix-based model for configuration m...
	5.3 Tools to help real-time system development are...
	5.4 Knowledge and experience are not effectively l...
	5.5 Better documentation is needed on all fronts.
	5.6 The development environment is challenging.
	5.7 Code configuration management needs to be more...
	5.8 The definition of Quality Assurance is current...
	The process will encourage projects to begin testi...
	5.9 There is a tendency to get into RCS theory dis...
	5.10 It is challenging to reuse existing code.

	Areas in which the Systems Team is helping to prom...
	5.11 An “endorsed,” or “suggested” toolset is desi...
	5.12 Different types of software projects require ...
	5.13 Any recommendations need to consider the rese...


	6.0 The Sandia Software Development Process Models...
	6.1 Looking at What Another Lab Does
	Table 1: Sandia Software Process Categories
	6.2 Sandia Process Categories
	6.3 Sandia Documents
	6.4 Sandia Reviews
	6.5 Sandia Required Software Activities

	Table 2: Sandia Project Documentation
	Table 3: Sandia Project Reviews

	7.0 Developing an ISD Process Model
	7.1 Categories of Software Efforts
	7.2 Proposed Project Categories
	7.3 Elements of the Process Model within ISD
	Table 4: Requirements by Category
	7.4 Relationship of Process Model to ISD Project M...

	Figure 3: Example of Process Elements and Their Re...
	Successful Completion of a Review is an Explicit M...

	8.0 Overall Recommendations for Short-Term Actions...
	9.0 Conclusions
	10.0 References
	[1] Naur, P., and B. Randell (eds.), Software Engi...
	[2] Pressman, Roger, Software Engineering: A Pract...
	[3] Humphrey, Watts S., Managing the Software Proc...
	[4] Boehm, B., “A Spiral Model for Software Develo...
	[5] Wise, Cindi, “A Study: Senior Management Actio...
	[6] “Preferred Processes for Software Development”...



	Appendix A
	A Vision of ISD Software Development in 1998

