

PRECISE DEFINITION OF SOFTWARE COMPONENT SPECIFICATIONS

John Horst, Elena Messina, Tom Kramer, & Hui-Min Huang

Intelligent Systems Division
The National Institute of Standards and Technology

Bldg. 220 Rm. B-124, Gaithersburg, MD USA 20899
voice: (301)975-{3430, 3510, 3518, 3427} FAX: (301)990-9688

{john.horst, elena.messina, tom.kramer, hui-min.huang}@nist.gov
http://isd.cme.nist.gov/

Abstract: A set of generic specification categories is presented which can be used to
comprehensively define any software component within a certain class. With these cat-
egories as a template, a specific set of formal specifications can be generated for each
component. Specifications for a particular component (an algorithm that estimates the
position and orientation of a physical object using visual sensing) have been defined in
EXPRESS, an information modeling language. A few example natural language speci-
fications are presented for this particular component.

Keywords: Components, Computer vision, Formal languages, Formal specification,
Software engineering, Software metrics, Software performance, Software specification,
Software tools

1. INTRODUCTION

The following is the software system development
sequence that this research addresses:

• A new software component is created, and the
component developer (i.e., the vendor) wants see it
widely used

• A software systems developer (i.e., the user) ex-
amines the component (typically via a prose docu-
ment) to see if it satisfies the requirements of a
particular application

This development process is inefficient. In the near
term, the situation would improve substantially if the
vendor could more precisely communicate to the
potential user the functionality and performance of
the software component. Ultimately, it would be
good to automate this process using design and simu-
lation tools which can exploit ‘smart’ components.

At best, a software component user has access to a
research report and commented source code for the
component. Research reports commonly present the
component in its most favorable light and may neglect
to mention various important aspects of the compo-
nent of critical importance to a potential user, in part
because there are no standards for how a component
should be specified in a research report. Similarly,
source code (even with copious and meaningful com-
ments) may not reveal a host of critical factors of
importance to the user. These include complexity,
input data constraints, environmental constraints,
upstream computing requirements, and computing
system constraints. These and other aspects of the
component may decide whether the component will
or will not work for the user. Improving the efficiency

of this process will become increasingly critical to
competitiveness for many industries.

In the hardware development world one sees a design
process something like the following: A circuit
designer seeks to design a new printed circuit board.
Perhaps through a design/simulation tool, the
designer chooses chips and chip sets for a board
design based upon published specifications (e.g., in a
hardware definition language like VHDL) detailing
performance characteristics. This hardware system
design process is possible because 1) specifications
exist that comprehensively define the performance of
hardware components and 2) software models of the
hardware components are defined by chip vendors
and hardware system design/simulation tools are
available that use those models to design systems.
Our research seeks to enable a similar design process:

• A vendor creates a new software component and
develops a set of specifications

1

 with the aid of a
software tool. These specifications would fully
describe the component using a combination of
natural and formal languages. The vendor publish-
es these specifications on the web in the form of
static data and/or program ‘applets.’

• A potential user, armed with system requirements,
searches the web for components meeting those re-
quirements. The user examines the vendor’s com-
ponent through its specifications either by viewing
a natural language version or reading a formal lan-
guage version through the use of a simulation/de-
sign tool. The user might conceivably execute (on

1

‘Specifications,’ means component specifications as
opposed to overall software system specifications.

a trial basis) all or part of the component through
program ‘applets.’

Using formal component specifications, a software tool
for software system design and simulation would be
able to perform very high-level system simulations. For
example, such a tool might simulate input error propa-
gation through a set of connected components using
data described in the specifications. This can be viewed
as high fidelity simulation early in the design process.
Meaningful simulations performed early in the design
process improves design efficiency.

Initially, these software component specifications
would be used by human developers for software com-
ponent verification, i.e., does the component under con-
sideration meet system requirements. Ultimately, such
specifications are intended for use by software system
design and simulation tools which analyze, simulate,
and integrate independently developed software compo-
nents according to explicit system requirements. For
example, such a tool could simulate time of execution
of a set of connected components using data described
in the specifications. For example, such a tool could
simulate input error propagation through a set of con-
nected components using data described in the specifi-
cations. Software component specifications are
analogous to existing specifications for hardware com-
ponents that describe their functionality sufficient for
use in hardware system simulation tools. This process
(software system composition using component specifi-
cations) would occur naturally on the internet. Specifi-
cation data and program segments (applets) would be
easily and securely accessed by systems developers and
software system composition tools.

2. COMPONENT SPECIFICATIONS IN THE
LITERATURE

Specifications, formal or informal, for software compo-
nents are addressed in at least three areas in the litera-
ture, 1) analysis of algorithms (Hofri, 1995),
2) software engineering (Vick and Ramamoorthy,
1984), and 3) software metrics (Grady and Caswell,
1987). Our interest in component specifications differs
slightly from the treatment of the same in these other
areas as will now be discussed.

The analysis of algorithms literature seeks to improve
the understanding of algorithms in order to suggest
improvements and uncover trade-offs. For example, if
one can precisely define algorithm complexity and opti-
mality, a more intelligent comparison can be made with
competing algorithms of the same class (i.e., those that
solve the same problem). Impetus for the development
of suboptimal, but efficient approaches can come from
such analysis. This literature is often interested in the
precise details of analysis, such as precise definitions
for algorithm complexity and development of proofs for
optimality.

Software engineering is concerned with the specifica-
tion of components from the standpoint of software sys-
tems design, implementation, and maintenance.
Component specifications are therefore of interest in as
much as they help to define resources (e.g., labor, tools,
computer memory, and processor horsepower) and to
uncover trade-offs critical for successful system design
and maintenance.

Software metrics research seems to be even further
removed from an analytical interest in algorithms and is
concerned with things like how many lines of code are
in a component, how well the code is documented, how
many person months are required for design, implemen-
tation, testing, and maintenance, and similar measures.

Our research has most in common with software engi-
neering’s approach to component specifications. None-
theless, there is a uniqueness to this research which can
be summarized as follows, 1) develop

standardizable

categories for

comprehensively

 describing components,
2) instantiate these categories for a variety of compo-
nents, 3) investigate formal information modeling lan-
guages (or specification languages) to define the
specifications, 4) focus on the use of component specifi-
cations to allow software system developers to more
efficiently utilize components, 5) investigate the use of
component specifications by design/simulation tools in
order to make the software system design process more
efficient, and 6) investigate the use of specifications on
the web.

3. MODELING SPECIFICATIONS

A critical goal of this research is to use a formal infor-
mation modeling language to record information about
particular components in the specification categories
outlined in section 4. The EXPRESS language devel-
oped as part of ISO standard 10303 (generally known as
STEP) appears to be adequate for much of the informa-
tion (ISO, 1994a).

The EXPRESS language allows the definition of types
of data either as TYPES (similar to types in C or C++)
or as ENTITIES (similar to structs in C or C++). As
compared with C or C++, EXPRESS is richer in provid-
ing for constraints on data, and making it easy to spec-
ify a range of choices for a data type. EXPRESS,
however, does not provide methods and is not com-
pilable into an executable computer program. Tools for
automatically generating C++ class definitions and
access functions from an EXPRESS schema are avail-
able. The C++ code generated may be incorporated in a
computer program. A graphical representation of an
EXPRESS schema may be obtained using the
EXPRESS-G language and available tools which gener-
ate EXPRESS-G diagrams from EXPRESS schemas.

An EXPRESS model of the generic specifications,
given in section 4, has been built. Using this model, par-
ticular components may be described in STEP Part 21
exchange files (ISO, 1994b). Tools which can automati-
cally read Part 21 files into a computer program (or
write them out) are also available.

The EXPRESS model of the specifications is intended
to provide a structure for organizing and representing
all (or as much as possible of) the information about a
component, for use by a partially or fully automated
software system composition tool (a generally applica-
ble fully automatic composition tool is not expected to
be feasible in the near future). This model is not
intended to provide a set of blanks for a component
developer to fill in manually (although the model should
be useful in designing a set of blanks). The primary
objective of this model is to support an interactive sys-
tem in which a human makes many of the major deci-
sions.

This model provides many places where natural lan-
guage entries are expected. The model serves to orga-
nize these natural language descriptions. The model
also provides several places where either natural lan-
guage or computer language might be used. The idea is
that if computer language text is provided, it can be
handed to a language processor for the language used.
By providing the two alternatives (formal or natural lan-
guage), a wide range of meaning is allowed by natural
language and more precise meanings can be expressed
in the formal language.

The intent is that one exchange file using this
EXPRESS model will suffice for representing either a
single component or a set of related components.

It would be possible (but difficult and tedious) to repre-
sent specific computer languages in EXPRESS, so that,
for example, routines and data structures could be
defined in detail, not just as strings, in Part 21 files. This
is not worth the trouble at this stage in the research, and
may never be. The approach used in this model is to
identify the language and if it has been used for each
particular routine or data structure. If the language has
been used, a parser for that language could then be used
to deal with the strings.

The authors have examined other languages, such as Z
(Zed) for modeling components (Diller, 1994). Z
appears to be superior to computer languages in some
respects, particularly to specify what a component is
supposed to do. Z does not, however, give us many of
the easily-used capabilities of EXPRESS. Hence, Z or
other similar languages have not been used.

STEP Part 21 files are quite difficult for humans to read.
They may be artfully formatted, alleviating some of the
difficulty, but knowing the EXPRESS model which cor-
responds to a particular Part 21 file is required to under-
stand the file. Such files will be hard to read regardless
of how artfully printed. The authors anticipate having
some intermediary between Part 21 files and humans.
The simplest type of intermediary is a reformatter that
would put the information from the Part 21 file into a
more readable kind of file capable of holding the same
information, such as EXPRESS-I. A more sophisti-
cated intermediary would be a software tool allowing
human entry of component specification information at
a high level of abstraction.

4. GENERIC COMPONENT SPECIFICATION
CATEGORIES

Generic, comprehensive, and reasonable specification
categories for describing software components are com-
monly found in the literature on software engineering
(Vick, 1984) and the analysis of algorithms (Hofri,
1995). This paper takes a fresh look at such categories
based on the research focus described in section 2.
Such a set of generic categories is now defined. These
generic categories are conceived as a template and are
intended to be used by the component vendor to define
a useful summary of the operation and performance of a
particular component in the class. This template is pre-
sented as a series of questions in each category.

Problem definition: What problem is this component
intended to solve?

Applications and competing components: What are the
potential and known application areas for this compo-
nent? For each application area, give a set of competing
components with references.

Input data: is the input data to the component? What
input data sets were used in the testing? What are the
dimensional units of the input data? What is the format
of the input data? Are the representations chosen for
the input data consistent with the expected or typical
upstream components? What are the input parameters
required (if any) and what meaning do they have for the
operation and performance of the component? Are
there any input parameters that allow the user to specify
the type and/or format of the output?

Output data: What are the outputs of the component?
What is the format of the output data?

How are the various formats for the output data speci-
fied? For instance, if the output data is contained in
files, what are the file formats? Are there any input
parameters that allow the user to specify the type and/or
format of the output? Are the representations chosen
for the output data consistent with the expected or typi-
cal downstream components?

Transfer and feedback relations: How do the inputs
relate to the outputs, i.e, what are the transfer and the
feedback relations? If one can describe these relations
analytically, describe these equations, e.g., are they lin-
ear or non-linear, and state these equations, e.g., define
meanings of variables and write out all relations. Under
what conditions are the equations over-determined or
under-determined?

Input data constraints: What are the constraints on the
format and nature of the input? There may be con-
straints on the nature of the input beyond what is inher-
ent in the nature of the component. For example, the
number of elements in an array might be constrained to
be even, or the difference between input numbers might
be constrained to be greater than some value, or the
number of input values might be constrained to be in
some range.

Environmental constraints: ‘Environment’ means ‘fac-
tors external to the computing system and its data which
affect the performance of the component.’ If the task of
the component is to examine or manipulate physical
objects, what are the constraints on the format and
nature of those objects? For instance, what are the
rigidity, size, shape, color, surface finish, or illumina-
tion conditions? If there is a sensing device, what are
the constraints on the type and use of the sensing (e.g.,
structured light, CCD camera, range camera)? Does the
object need to be placed in some approximate pose?
Are there special configurations of the environment
which might cause the component to fail?

Knowledge data constraints: What are the constraints
on the format and nature of the knowledge data? For
example, can a CAD drawing in some standard format
be used for matching sensed ‘features’ to model fea-
tures?

Computing constraint: What, if any, are the operating
system requirements of the component? In what com-
puter language is the source code written? Is the source
code available? Are there any system architecture
requirements for using the component? What kind
computing hardware is required by the component?

How much RAM memory and disk space is needed?
Are there any constraints on the numerical precision of
the processing system?

Speed: Based on actual examples run on specific com-
puters, how fast does the component run? What is the
execution time of each of the subcomponents of the
component? If speed depends on the size or type of
input data, give the speed of execution for a fixed and
standard size or type of input.

Benchmarks: If there is a standard test suite (a set of
benchmarks) for components performing the same task,
what is that benchmark and how does the component
perform against it? Are there optimal components that
can produce the ideal output? How is optimality
defined for each component? Are there other measures
of performance, e.g., statistical measures? If so, how
does the component perform by these measures?

Robustness: How robust is the component, i.e., how
does the component perform in the presence of large
perturbations, i.e., replacement noise, on a subset of its
data values? How does the component perform as
replacement noise varies throughout its range, e.g., does
performance degrade smoothly or catastrophically?
Several aspects of this type of noise can vary, for
instance, the size and type of the perturbations and the
size of the subset of all data values affected. Is the com-
ponent able to perform well (or at all) if the input is out-
side of the specified region? State all models that exist
for replacement noise. For instance, what is the model
for the ‘ideal’ world? What is the model for large per-
turbations (e.g., mismatch) on this ideal world? What is
the criterion function for measuring the difference
between noisy output and ideal output
(Haralick, 1992)?

Noise: How does the component perform in the pres-
ence of small perturbations on all data values? How
does the component perform as this type of noise varies
throughout its range, e.g., does performance degrade
smoothly or catastrophically? Several aspects of this
type of noise can vary. For instance, both the size and
type of the perturbations can vary. State all models that
exist for this type of noise. For instance, what is the
model for the ‘ideal’ world, what is the model for small
perturbations on this ideal world, and what is the crite-
rion function for measuring the difference between
noisy output and ideal output (Haralick, 1992)?

Complexity: What are the relations defining computa-
tional complexity of the component (there may be more
than one such relation) as functions of the input vari-
ables? Complexity relates closely to speed. But an
analysis of complexity typically does not deal with the
initial fixed cost of the component or with the size of
the constants by which various terms of the complexity
must be multiplied. What assumptions are made in the
complexity analysis?

Convergence: Is the component iterative or closed
form? If iterative, under what (if any) conditions is
convergence guaranteed? Does the component con-
verge to the global solution?

Internal data representation: If there is some knowledge
(i.e., not input/output data) that is explicitly represented
within the component, what is the format of the repre-
sentation?

Reliability: How reliable is the component? Are there
known bugs? What reliability tests has the component
passed, such as the checking provided by commercially
available reliability tools, or a theoretical correctness
proof? Example entities checked by such tools are
uninitialized local variables, uninitialized malloc'd
memory, using freed memory, overwriting array
bounds, over-reading array bounds, memory leaks, file
descriptor leaks, stack overflow errors, and stack frame
boundary errors. Has there been testing by some sort of
coverage tool, which keeps track of which code is exe-
cuted in a given session? Coverage tools give a sense
of how much of the code was exercised by other reli-
ability tests. The granularity can be at the function,
block, or line level. A coverage will give the potential
user greater confidence in a software component's reli-
ability if it had been covered 100% during testing and
errors were cleaned out of it.

Testing and analysis: What experiments have been
done with the component? If input data is varied over a
set of variables, what criteria is chosen to sample the
space of variables in order to generate sample input
data? Was Monte Carlo testing done? Are there simu-
lators available to generate input data? What kinds of
analysis have been done on the results? What kinds of
graphs and tables have been produced and what is their
format? What statistical methods have been used?

Upstream and downstream requirements: What kind of
components need to be performed prior to or subse-
quent to the execution of this component? Are the rep-
resentations chosen for the input and output data
consistent with the expected or typical upstream and
downstream components? Does anything in the compo-
nent constrain the upstream or downstream components
that must be used? The types of upstream and down-
stream components may depend on the particular area
to which the component is applied.

Parallelizability: Can the component be parallelized?
Has it been? How does parallelizing affect perfor-
mance?

Modularizability: Can subcomponents of the compo-
nent be modularized? Have they been? How might
modularization affect component performance?

Errors: What is the error criterion, e.g., least squares?
What kinds of input errors and/or internal errors does
the component detect? What does it do if such errors
are detected? Are there error recovery procedures?

Nature of interaction: How is the component used? Can
it be used by function call, or is the component part of a
system that runs in client-server mode, or some other
more complicated mode?

Coding style: How is the code written, e.g., in func-
tional, procedural, recursive, or object-oriented style?

Compliance to standards: Which (if any) standards
(published or defacto) are used and complied with?

5. NATURAL LANGUAGE INSTANTIATION OF
GENERIC SPECIFICATIONS

What is the input data to the algorithm?

An array of

N

 vectors of the following nine real num-
bers (doubles) for each ,i 1 2 … N, , ,=

where

N

 is the number of lines in the image that corre-
spond to lines in the model, is the unit vector
of parameters that solve the equation,

 for all on the ith measured
line in the image, is the position vector of
the initial point of the corresponding model line seg-
ment in model coordinates, and is the unit
directional vector of the same model line segment also
in model coordinates. Also required for input are the
parameters for perspective transformation,

, where is the vector of
translation from the origin of the machine coordinate
system to the center of the camera lens, is the
vector specifying roll, pitch, and yaw of the camera in
radians (yaw is a counter-clockwise spin around the z-
axis, pitch is a counter-clockwise spin around the x-
axis, and roll is a counter-clockwise spin around the y-
axis), and is the camera focal length.

What input
data sets were used in the testing?

Tan has
models of automobiles. The authors have a slightly
modified cube for testing which is defined in Mathemat-
ica™.

What are the dimensional units of the
input data?

 are dimensionless,
 are in meters, and are in radi-

ans. are in meters, are in radians,
and is in meters.

What is the format of the input data?

All are
input arrays are arrays of doubles.

Are the repre-
sentations chosen for the input data consis-
tent with the expected or typical upstream
algorithms?

 The expected upstream algorithm is a
sensed feature to model feature matching algorithm
and, since the Tan algorithm requires input line matches
for edges on a planar polygonal object, the matching
algorithm must produce line matches as well. However,
if point or line segment matches are all that is available
from the matching algorithm, line parameters can easily
be generated from them.

What are the input parameters required (if
any) and what meaning do they have for the
operation and performance of the algorithm?

None required.

Are there any input parameters
that allow the user to specify the type and/
or format of the output?

No.

What are the outputs of the algorithm and
what is the format of the data?

An array of
four doubles, , where represent the
two dimensional position and orientation of the part and

 represents the scale of the part (in case the part mea-
sured is a scaled version of the model). The remaining
three parameters, , required to fully specify the
three dimensional position and orientation are assumed
to be known and equal to zero

apriori

.

How are the
various formats for the output data speci-
fied, for instance, if the output data is
contained in files, what are the file for-
mats?

 An ANSI C-compliant array.

Are there any
input parameters that allow the user to spec-
ify the type and/or format of the output?

No.

What is the format of the output data?

All are
input arrays are arrays of doubles.

Are the repre-
sentations chosen for the output data consis-
tent with the expected or typical downstream
algorithms?

 Yes.

How do the inputs relate to the outputs, i.e, what are the
transfer and the feedback relations? If we can describe
these relations analytically, state the relations as formal
equations (defining all variables) along with some gen-
eral description e.g., are they linear or non-linear.
Under what conditions are the equations over-deter-
mined or under-determined? If the relations cannot be
expressed analytically express them in whatever form is
appropriate, e.g., high level software code.

How do the
inputs relate to the outputs, i.e, what are
the transfer and the feedback relations?

This algorithm is open loop.

If we can describe
these relations analytically, describe these
equations, e.g., are they linear or non-lin-
ear.

The transfer relationship is non-linear.

State
these equations, e.g., define meanings of
variables and write out all relations.

Form
the following matrix, , using the input data,

,

, where ,

,

, and .

Define vectors, , ,
where is the element at the

i

th row and

j

th column
of . Using the input values,

 for ,
form the following scalar coefficients for each of the N
matching lines

Using these coefficients, form the following matrices,

(EQ 1)

ai bi ci xi
0 yi

0 zi
0 α i βi γi, , , , , , , ,()

ai bi ci, ,()

aiu biv ci+ + 0= u v,()
xi

0 yi
0 zi

0, ,()

α i βi γi, ,()

tx ty tz δ ε ζ f, , , , , ,() tx ty tz, ,()

δ ε ζ, ,()

f

ai bi ci, ,()
xi

0 yi
0 zi

0, ,() α i βi γi, ,()
tx ty tz, ,() δ ε ζ, ,()

f

x y θ k, , ,() x y θ, ,()

k

z φ Ψ, ,()

MwI
tx ty tz δ ε ζ f, , , , , ,()

MwI PTIRε ζ, TL()T= TL

1 0 0 tx–

0 1 0 ty–

0 0 1 tz–

0 0 0 1

=

Rε ζ,

ζcos ζsin 0 0

ε ζsincos– ε ζcoscos εsin 0

ε ζsinsin ε ζcossin– εcos 0

0 0 0 1

=

TI

1 0 0 0

0 1 0 f–

0 0 1 0

0 0 0 1

= P

1 0 0 0

0 1 0 0

0 0 1 0

0
1
f
--- 0 1

=

ri mi1 mi3 mi4, ,()= i 1 2 3 4, , ,=
mij
MwI

ai bi ci xi
0 yi

0 zi
0 α i βi γi, , , , , , , ,() i 1 2 … N, , ,=

A x0r1 y0r2+() n⋅=

B x0r2 y0r1–() n⋅=

C r1 n⋅=

D r2 n⋅=

E z0r3 n⋅=

F αr1 βr2+() n⋅=

G αr2 βr1–() n⋅=

H γr3– n⋅=

J r– 4 n⋅=

A
F1…FN A1…AN

G1…GN B1…BN

T

=

(EQ 2)

(EQ 3)

Our desired output is , so define

 , , and (EQ 4)

and define

 and . (EQ 5)

Define the following matrices

Define the following constants

Solve the following equation using these constants,

(EQ 6)

and for each real solution, , find and that
solves the following two equations:

The optimal (,) is taken as the pair that mini-
mizes

. (EQ 7)

Under what conditions are the equations over-
determined or under-determined? Since a non-
linear least squares technique is used, equations should
typically be overdetermined. In order for the equations
not to be under-determined, there must be 3 or more
non--degenerate line matches, i.e., N ≥ 3. A line match
is degenerate if 1) (i.e., the model
line of a match is vertical to the ground plane), 2) for

, (i.e., the model lines
are parallel) and (the image
lines are collinear), or 3) if there is a single unique solu-
tion to the equation,

for and (i.e., the model lines
intersect), and (i.e., the image
lines are collinear).

How do the output values vary with respect to
the input, e.g., if it is non-linear,
describe the nature of the non-linearity.
Because the pose estimation depends on the solution of
a fourth order polynomial with at least four real solu-
tions, if there is increasing input noise and if the correct
solution of the four suddenly no longer produces the
minimum, the solution will switch to another of the four
and may cause the output pose estimation to change
suddenly in value.

What are the constraints on the format and
nature of the input? There must be three or more
non-degenerate line matches, i.e., N ≥ 3 (the degenerate
case is already defined above).

What are the constraints on the format and
nature of the environment? 1) The lighting must
be such as to avoid excess specular reflection and shad-
ows, since the algorithm is not explicitly designed to
handle replacement errors, i.e., outliers. 2) Camera cal-
ibration must have been performed a priori. 3) There
must be no roll in the camera. If there is a sens-
ing device, what are the constraints on the
type and use of the sensing (e.g., structured
light, CCD camera, range camera)? CCD camera
placed with the object fully within the field of view.

What are the constraints on the format and
nature of the knowledge data? 1) The pitch,
roll, and z-position of the part coordinate system must
be known and identically zero in the machine coordi-
nate system. 2) Model features for matching must be
linear and, furthermore, must correspond to sensed fea-
tures perceivable by standard edge detection algorithms.
This constrains the model to be planar polygonal.

What computer language is the source code
written in? Mathematica™. Is the source code
available? No (for research only). What (if any)
are the operating system requirements of the
algorithm? Mathematica runs on UNIX, MacOS,
Windows, Windows 95, MS DOS, Windows NT. Are
there any system architecture requirements
for using the algorithm? No. What kind com-
puting hardware is required by the algorithm?
Any hardware running UNIX, Macintosh, IBM-PC-
compatibles. How much RAM memory and disc space
is needed? About 8 megabytes RAM for Mac or PC.
File size is about 2 megabytes. Are there any con-
staints on the numerical precision of the
processing system? The computing system must
allow computation that is precise to at least 24 decimal
digits. This unusually high precision is due to the sensi-
tivity of the fourth order polynomial, (EQ 6), i.e., for a
certain data set, in the presence of little or no noise, the
correct solution to (EQ 6) has been found to be on the
order of 10-21, which would be detected as effectively
zero on some computing systems.

How fast does the algorithm run, based on
actual examples run on specific computers? s?

If there is a standard test suite (a set of
benchmarks) for algorithms performing the
same task, what is that benchmark and how
does the algorithm perform against it? No.
Are there optimal algorithms that can produce

B

0…0 C1…CN

0…0 D1…DN

0…0 J1…– JN–

T

=

C H1…HN E– 1… E– N

T
=

x y θ k, , ,()

k ′ 1 k⁄= x ′ k ′x= y ′ k ′y=

q1 θcos θsin(,)= q2 x ′ y ′ k ′,(,)=

D ATA ATB BTB()
1–
BTA–

a1 a2

a3 a4

= =

h ATC ATB BTB()
1–
BTC–

h1

h2

= =

c3 2 a1 a4+()=

c2 a1 a4+()2 2 a1a4 a2a3–() h1
2 h2

2–()–+=

c1 c3 a1a4 a2a3–() 2h1h2 a2 a3+()
2 a1h1

2 a4h2
2–()–

+=

c0 a1a4 a2a3–()2 a4h1 a2h2–()2–

a1h2 a4h1–()2–

=

λ4 c3λ3 c2λ2 c1λ c0+ + + + 0=

λ q1 q2

q2 BTB()
1–
BTC BTB()

1–
BTAq1–=

D λI2+()q1 h=

q1 q2

Aq1 Bq2 C–+ 2

α i βi,() 0 0,()=

i j≠ α i βi γi, ,() α j β j γ j, ,()=
ai bi ci, ,() a j b j c j, ,()=

pi
0 t α i βi γi, ,()+ p j

0 t α j β j γ j, ,()+=

i j≠ pi
0 xi

0 yi
0 zi

0, ,()=
ai bi ci, ,() a j b j c j, ,()=

the ideal output? No. How is optimality defined for each optimal algorithm? N/A.

How does the algorithm perform in the pres-
ence of small perturbations on all data val-
ues? Experimentation has been done in the presence
of noise on synthetic model data, a cuboid of size 3 x 2
x 1.2m3. The synthetic object was placed about 22
meters from the center of the camera. Image size was
512 x 512 pixels. Small perturbations in translation
were introduced by translating each ideal image line

segment along its normal direction. Small perturbations
in orientation were introduced by rotating each ideal
image line segment around its midpoint. The magni-
tudes t and of the translation and rotation were
assumed to be uniformly distributed over [-T, T] pixels
and [– ,]. Monte Carlo simulations were con-
ducted to discover the propagation of error. Tables 1
and 2 report these results.

How does the algorithm perform as this type
of noise varies throughout its range, e.g.,
does performance degrade smoothly or cata-
strophically? The degradation is roughly linear for
the error in all dimensions as can be seen from Tables 1
and 2. State all models that exist for this
type of noise. At each error level, 200 Monte Carlo
simulations were done, absolute error between the ideal
value of the parameter and the noisy output value is
computed, and all 200 error values are averaged.

How robust is the algorithm, namely, how does
the algorithm perform in the presence of
large perturbations (replacement noise) on a
subset of its data values? It is not designed to
perform successfully with replacement noise nor has it
been tested under such noise. How does the algo-
rithm perform as replacement noise varies
throughout its range, e.g., does performance
degrade smoothly or catastrophically? N/A.
Is the algorithm able to perform well (or at
all) if the input is outside of the specified
region? N/A. State all models that exist for
replacement noise. None

How robust is the algorithm, namely, how does
the algorithm perform in the presence of
large perturbations (replacement noise) on a
subset of its data values? It is not designed to
perform successfully with replacement noise nor has it

been tested under such noise. How does the algo-
rithm perform as replacement noise varies
throughout its range, e.g., does performance
degrade smoothly or catastrophically? N/A.
Is the algorithm able to perform well (or at
all) if the input is outside of the specified
region? N/A. State all models that exist for
replacement noise. None

What are the relations defining computational
complexity of the algorithm (there may be
more than one such relation) as functions of
the input variables? With N equal to the number
of input line matches, the algorithm complexity is
roughly 335 + 153N time intervals. What assumptions
were made in this complexity analysis? We
assume that square roots, divides, adds, and multiplies
are roughly equivalent in time complexity. These times
can be significantly dependent on the type of computing
architecture employed. Decision steps were counted as
10 time intervals and there were two of them: 1) deter-
mining which of the four solutions to the quartic (EQ 6)
are real and 2) determining the optimal (,) the
minimizes (EQ 7).

Is the algorithm iterative or closed form?
Closed form. If iterative, under what (if any)
conditions is convergence guarenteed? N/A If
iterative, does the algorithm converge to
the global solution? N/A

of pixels translation error 2 4 6 8 10 12 14 16 18 20

pose error (x only) in meters 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.64 0.72 0.8

pose error (y only) in meters 0.04 0.09 0.14 0.19 0.24 0.29 0.34 0.39 0.44 0.49

pose error (only) in deg 0.5 0.54 0.58 0.62 0.66 0.7 0.74 0.78 0.82 0.86

scale error 0.03 0.045 0.06 0.075 0.09 0.105 0.13 0.145 0.16 0.175

Table 1: Propagation of error: image feature translation error to pose and scale error (direction
error fixed at three degrees, number of line matches fixed at ten)

θ

ω

Ω Ω

of degrees direction error 2 4 6 8 10 12 14 16 18 20

pose error (x only) in meters 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.64 0.72 0.8

pose error (y only) in meters 0.04 0.09 0.14 0.19 0.24 0.29 0.34 0.39 0.44 0.49

pose error (only) in deg 0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8

scale error 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12

Table 2: Propagation of error: image feature translation error to pose and scale error
(translation error fixed at three pixels, number of line matches fixed at ten)

θ

q1 q2

If there is some knowledge internal to the
algorithm (i.e., not input/output data) to be
represented, what is the format of the repre-
sentation? The object is represented in terms of the
parameters for lines (not line segments) for each of the
edges on the planar polygonal part.

If the algorithm is available as source code,
a library, or embedded in a system, how reli-
able is it? Not known. Are there known bugs?
No. What reliability tests has the algorithm
passed ? None. Has there been testing by some
sort of coverage tool, which keeps track of
which code is executed in a given session1.

How widely has the algorithm been used? Not
known. What is the reported experience with
the algorithm? None. What are the potential
application areas for this algorithm and, for
each application area, give a set of compet-
ing algorithms with references? Pose estimation
of automobiles on roads of known orientation and rigid
objects on flat surfaces of known orientation. Some
competing algorithms are (Dementhon, 1995), (Haral-
ick, 1989), and (Huttenlocher, 1990).

What kind of algorithms are typically done
prior to or subsequent to the execution of
this algorithm? Matching algorithms are typically
upstream. Are the representations chosen for
the input and output data consistent with the
expected or typical upstream and downstream
algorithms? The expected upstream algorithm is a
sensed feature to model feature matching algorithm
and, since the Tan algorithm requires input line matches
for edges on a planar polygonal object, the matching
algorithm must produce line matches as well. However,
if point or line segment matches are all that is available
from the matching algorithm, line parameters can easily
be generated from them. Does anything in the
algorithm constrain the upstream or down-
stream algorithms that must be used? Line
matches (or matches from which line matches can be
easily derived) must be presented to the algorithm. Sur-
face or curve matches are not acceptable.

Can the algorithm be parallelized? Some
minor aspects of the algorithm can be parallelized. Has
it been? No. How does parallelizing affect
performance? Very little.

Can subcomponents of the algorithm be modu-
larized? Yes. Have they been? Yes. How does
modularization affect performance? Slows.

What is the error criterion, e.g., least
squares? Using definitions in (EQ 1), (EQ 2), (EQ 3),
(EQ 4), and (EQ 5), the task is to solve the overcon-
strained equation for .
This is a non-linear least squares problem. The least
squares solution is found by minimizing the squared
residual subject to the trigonometric
constraint . This is accomplished by intro-

1Coverage tools give a sense of how much of the code was
exercised by other reliability tests. The granularity can be
at the function, block, or line level. A coverage will give
the potential user greater confidence in a software compo-
nent's reliability if it had been covered 100% during testing
and errors were cleaned out of it.

ducing a Lagrange multiplier, , and minimizing the
following function with respect to , , and ,

What input errors and/or internal errors does
the algorithm detect? None. What does it do
if such errors are detected? N/A Are there
error recovery procedures? No.

How does the algorithm interact with other
algorithms and systems? In Mathematica™, it is a
simple function call. In order for Mathematica™ to
exchange data with other software and systems, Mathe-
matica™’s MathLink™ communications protocol must
be used.

How is the code written, e.g., in functional,
procedural, recursive, or object-oriented
style. Mathematica™ code is functional, procedural,
and interpreted.

What experiments have been done with the
algorithm? Experimentation has been done in the
presence of noise on synthetic model data, a cuboid of
size 3 x 2 x 1.2m3. The synthetic object was placed
about 22 meters from the center of the camera. Image
size was 512 x 512 pixels. If input data is varied
over a set of variables, what criteria is
chosen to sample the space of variables in
order to generate sample input data? Small
perturbations in translation were introduced by translat-
ing each ideal image line segment along its normal
direction. Small perturbations in orientation were intro-
duced by rotating each ideal image line segment around
its midpoint. The magnitudes t and of the translation
and rotation were assumed to be uniformly distributed
over [-T, T] pixels and [– ,]. Was Monte Carlo
testing done? Monte Carlo simulations were con-
ducted to discover the propagation of error. Tables 1
and 2 report these results. Are there simulators
available to generate input data? Yes, but only
for the Mathematica™ code.

What kinds of analysis have been done on the
results? Propagation of error analysis using Monte
Carlo simulations of small perturbations on the sensed
input lines. What kinds of graphs and tables
have been produced and what is their format?
See Tables 1 and 2. What statistical methods
have been used? Simple arithmetic mean on all the
errors as shown in Tables 1 and 2.

Which (if any) interface or data standards
(published or defacto) are used and complied
with? None.

6. FORMAL LANGUAGE INSTANTIATION OF
GENERIC SPECIFICATIONS USING EXPRESS

The full 15-page EXPRESS specification is too long to
include in this paper. To give the flavor of the formal
specification, Fig. 1 and Fig. 2 show the EXPRESS def-
initions of the entities functionality_frame and
functionality_frame_set. Functionality_frame has 23
attributes. In Fig. 1, each attribute is given on the left
and indented. Each attribute name is followed by a
colon and then the type of data required for the
attribute. All the data types in Fig. 1 are defined else-
where in the EXPRESS specification. The “where”

Aq1 Bq2+ C= x y θ k, , ,()

Aq1 Bq2 C–+ 2

q1
2 1=

λ
q1 q2 λ

ε q1 q2 λ, ,() Aq1 Bq2 C–+ 2 λ q1
2 1–()+=

ω

Ω Ω

clause near the end of the first entity definition is a sim-
ple example of a constraint. Attributes which are
expected to be common to several related
functionality_frames, such as author or source lan-
guage, are included in the definition of
functionality_frame_set.

The authors have instantiated these generic categories
for a particular software component, which is an imple-
mentation built at NIST of an algorithm due to T. N. Tan
and others for finding the pose of a solid part from an
image of the part (Tan, et al., 1992; Tan, et al., 1994;
Tan, et al., 1996). The instantiation of the Tan compo-
nent has been expressed in natural language and in the
formal language of a STEP Part 21 exchange file
(ISO, 1994b). Space limitations preclude the inclusion
of either instantiated specification in its entirety. To give
the flavor of the formal instantiated specification, Fig. 3
shows a very abbreviated version of the instantiation of
the functionality_frame for the Tan component as it
would appear in a Part 21 file. One referenced entity
instance (#14, an io_item) is also defined in the figure.

In Fig. 3, data types which are strings appear between
single quotes, data types which are lists appear inside
parentheses, and data types which are EXPRESS entity
instances appear as references of the form #n. Each ref-
erenced entity instance must be defined elsewhere in the
same file. The attribute names in Fig. 3 were inserted
manually as comments in italics and are not machine-
readable; attributes are identified during machine read-
ing by their position in the instance definition.

Fig. 1: EXPRESS definition of the
functionality_frame entity

ENTITY functionality_frame;
 analysis_of_results : verbiage;
 application_experience : verbiage;
 benchmarks : SET [0:?] OF test_description;
 complexity : complexity_measure;
 convergence : convergence_statement;
 data_structures : LIST [0:?] OF data_structure;
 error_handling : verbiage;
 input_data : LIST [0:?] OF io_item;
 input_data_constraints :

LIST [0:100] OF multiple_data_constraint;
 input_parameters : LIST [0:?] OF io_item;
 input_parameter_constraints :

LIST [0:?] OF multiple_data_constraint;
 internals : internals_statement;
 known_bugs : verbiage;
 method_of_use : use_statement;
 name : identifier;
 niche : calls;
 noise_handling : verbiage;
 output_data : LIST [0:?] OF io_item;
 parallelizability : verbiage;
 precis : several_lines;
 robustness : verbiage;
 speed : verbiage;
 test_descriptions : LIST [0:?] OF test_description;
 WHERE

precis_not_too_long :
SIZEOF (precis) < 100;

END_ENTITY;

Fig. 2: EXPRESS definition of the
functionality_frame_set entity

ENTITY functionality_frame_set;
 additional_information : information_statement;
 authors : LIST [1:?] OF person;
 compiled_available : LIST [0:?] OF computer_os;
 constraints : SET [0:?] OF constraint;
 data_acquisition : verbiage;
 executable_available :

LIST [0:?] OF computer_os;
 interface_components:

SET [1:?] OF functionality_frame;
 name : identifier;
 set_intent : verbiage;
 source_language : computer_language;
 source_available : BOOLEAN;
 standards_used : verbiage;
END_ENTITY;

Fig. 3: Functionality_frame instance

#80 = FUNCTIONALITY_FRAME(
/* analysis_of_results */

(‘propagation of error using Monte Carlo’,
‘simulation was done. error tables tabulated’)

/* application_experience */ ‘none’,
/* benchmarks */ (),
/* complexity */ #1,
/* convergence */ #2,
/* data_structures */ (#3, #4, #5),
/* error_handling */

(‘does not detect internal errors’,
‘has no error recovery procedures’)

/* input_data */ (#6, #7, #8),
/* input_data_constraints */ (#9),
/* input_parameters */ (#10),
/* input_parameter_constraints */ (),
/* internals */ #11,
/* known_bugs */ ‘none’,
/* method_of_use */ #12,
/* name */ ‘part pose calculation’,
/* niche */ #13,
/* noise_handling */

‘response linear to image line segment offset’,
/* output_data */ (#14),
/* parallelizability */

(‘minor aspects appear to be parallelizable’,
‘but it has not been attempted’)

/* precis */
(‘Calculates part pose from location in image’,
‘of points with known location on part’)

/* robustness */ ‘unknown’,
/* speed */ ‘not measured’,
/* test_descriptions */

(‘tested with synthetic data model of cuboid’,
‘with well-characterized noise added’));

#14 = IO_ITEM(
/* name */ ‘pose_and_scale’,
/* data_type */ #15,
/* default_value */ ‘none’,
/* item_constraints */ (#16, #17),
/* optionality */ .F.,
/* explanation */

(‘an array of four doubles representing’,
‘x-offset, y-offset, rotation, and scale’));

7. CONCLUSION

There often exists a long time lag between the creation
of a new and promising software component and its
profitable use in the commercial sector. Software com-
ponent specifications would help shorten this time lag
and be of significant profit to software component and
software system developers alike. If defined as pre-
cisely as possible, such specifications would allow soft-
ware system design tools to perform early but
informative simulation. Early simulation is often criti-
cal to efficient software system development.

Software component specifications, as have been
described, are analogous to existing specifications
describing the functionality of hardware components
(e.g., VHDL) sufficient for use in hardware system
design and simulation tools.

This process (software system composition using com-
ponent specifications) would occur naturally on the
internet. Specification data and program segments
(applets) would be easily and securely accessed by sys-
tems developers and software system composition
tools.

Future plans are to pursue the following tasks:

• Continue to investigate formal languages (e.g., EX-
PRESS) and define these specification categories in
the chosen language(s) as data and interpretable
components (e.g., ‘applets’ in Java).

• Using the specification categories as a template, gen-
erate specifications for more components. Publish
these specifications on the web in the form of static
data and program ‘applets.’

• Investigate the definition of software system require-
ments (for a target problem) and investigate the use
of a search engine. The search engine would employ
the requirements to scan the web (or a data base on
the web) for components meeting required criteria.

• Using a semi-automated software system composi-
tion tool, investigate the use of these specifications
with the tool to facilitate system design and simula-
tion.

• Present the concept to industry, academia, and stan-
dards bodies through informal and formal interac-
tions, web site development, conference
presentations, and journal publications.

REFERENCES

Dementhon, D. F. and L. S. Davis, (1995). Model-based
object pose in 25 lines of code, International Journal
of Computer Vision, Vol. 15, pp. 123-141.

Diller, Antoni, (1994). Z: An Introduction to Formal
Methods; 2nd Edition, John Wiley & Sons, New
York.

Grady, Robert, D. L. Caswell, (1987). Software Met-
rics: Establishing a Company-wide Program; Pren-
tice-Hall, Englewood Cliffs, N.J.

Haralick, R. M., et al., (1989). Pose estimation from
corresponding point data, Machine Vision for Inspec-
tion and Measurement, Academic Press.

Haralick, R. M., (1992). Performance characterization
in computer vision, Proceedings of the 3rd British
Machine Vision Conference.

Hofri, Micha, (1995). Analysis of Algorithms: Compu-
tational Methods and Mathematical Tools; Oxford
University Press, N.Y. & Oxford.

Huttenlocher, D.P. and S. Ullman, (1990). Recognizing
solid objects by alignment with an image, Interna-
tional Journal of Computer Vision, Vol. 5, No. 2, pp.
195-212.

Tan, T. N., G. D. Sullivan, and K. D. Baker, (1992). Lin-
ear algorithms for object pose estimation, Proceed-
ings of the 3rd British Machine Vision Conference.

Tan, T. N., G. D. Sullivan, and K. D. Baker, (1994).
Pose determination and recognition of vehicles in
traffic scenes, European Conference on Computer
Vision.

Tan, T. N., G. D. Sullivan, and K. D. Baker, (1996).
Closed-form algorithms for object pose and scale re-
covery in constrained scenes, Pattern Recognition,
Vol. 29, No. 3, 449-461.

Vick, C. R., C. V. Ramamoorthy, (1984). Handbook of
Software Engineering; Van Nostrand Reinhold Co.,
N.Y.

ISO 10303-11:1994, (1994a). Industrial automation
systems and integration, Product data representa-
tion and exchange - Part 11: EXPRESS Language
Reference Manual.

ISO 10303-21:1994, (1994b). Industrial automation
systems and integration, Product data representa-
tion and exchange - Part 21: Clear Text Encoding of
the Exchange Structure.

