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Abstract

For autonomous vehicles to achieve terrain navigation, obstacles must be discriminated from ter-
rain before any path planning and obstacle avoidance activity is undertaken. In this paper, a novel
approach to obstacle detection has been developed. The method finds obstacles in the 2-D image
space, as opposed to 3-D reconstructed space, using optical flow. Our method assumes that both
non-obstacle terrain regions, as well as regions with obstacles, will be visible in the imagery.
Therefore, our goal is to discriminate between terrain regions with obstacles and terrain regions
without obstacles. Our method uses new visual linear invariants based on optical flow. Employing
the linear invariance property, obstacles can be directly detected by using reference flow lines ob-
tained from measured optical flow. The main features of this approach are: (1) 2-D visual infor-
mation (i.e., optical flow) is directly used to detect obstacles; no range, 3-D motion, or 3-D scene
geometry is recovered; (2) knowledge about the camera-to-ground coordinate transformation is
not required; (3) knowledge about vehicle (or camera) motion is not required; (4) the method is
valid for the vehicle (or camera) undergoing general six-degree-of-freedom motion; (5) the error
sources involved are reduced to a minimum, because the only information required is one compo-
nent of optical flow. Numerous experiments using both synthetic and real image data are present-

ed. Our methods are demonstrated in both ground and air vehicle scenarios.

1 Introduction

For autonomous vehicles to achieve terrain navigation, obstacles must be discriminated from ter-
rain before any path planning and obstacle avoidance activity is undertaken. Obstacles are defined
as any regions in space where a vehicle should not or cannot traverse, such as protrusions (objects

lying on top of the terrain), depressions (potholes, ditches, gullies in the terrain), or steep terrain



(Figure 1). This paper describes a simple, fast, and general method for obstacle detection for
ground vehicles or air vehicle landings. The vehicle may move under general motion, i.e., arbitrary

translation and rotation.
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Figure 1: Terrain with obstacles.

For many applications in computer vision, it is important to recover range, 3-D motion, and/or 3-
D scene geometry from a sequence of images [17] [43] . However, many vision-based behaviors
can be achieved without recovery of such information [3] [15] [19] [20] [36] [37]. These be-
haviors can be achieved by extracting relevant 2-D information from the imagery and using this

information directly without 3-D reconstruction.

The advantages of this 2-D based approach include greater simplicity and speed. The approach is
simpler because fewer hypotheses, sensor measurements, and calibrations need to be performed
when using 2-D information rather than 3-D information. The reason is that the problem of con-
verting 2-D image information to 3-D world information requires either hypotheses about the
world to be made (e.g., smoothness hypotheses, lighting hypotheses, object hypotheses), calibra-
tions to be made (e.g., camera-to-ground transformations, stereo calibrations, inertial navigation
system calibrations), or many sensor measurements to be made (e.g., inertial navigation system
measurements). The 2-D based approach is faster because it generally requires fewer computa-

tions, such as coordinate transformations or object model fitting.

To perform obstacle detection, either active sensors (such as laser scanners, radar, and ultrasonics)
or passive sensors (cameras) may be used. The use of passive, instead of active, sensors can elim-
inate radiation, reduce cost, and increase flexibility for many applications. Optical flow, used by
many biological creatures for navigation [2] [32], can provide very powerful information for vi-

sion-based navigation, during both teleoperated low data rate driving and autonomous driving

[18].



In this work, new visual invariants are developed as a tool to detect obstacles directly from optical
flow. Our method assumes that both non-obstacle terrain regions, as well as regions with obstacles,
will be visible in the imagery. Therefore, our goal is to discriminate between terrain regions with

obstacles and terrain regions without obstacles.

The visual invariants we develop involve the mapping of points that lie on any straight-line seg-
ment in 3-D space into an image-based space, i.e., a space whose coordinate axes represent param-
eter values extracted from the image domain. There are certain image-based spaces such that
straight lines in these spaces are mapped only from straight lines in 3-D space.1 Such a mapping is

described as invariant for linear relationships, or simply linearly invariant, because linear relation-

ships are always preserved. For example, we show below that a straight-line segment P, P, in 3-D

space (Figure 2(a)) always maps to a straight line segment F,F, in the image-based space whose
coordinates are x, y (Figure 2(b)) where x is the image position along the image line y and y (Fig-
ure 2(a)) is the y component of optical flow. If a point P, in 3-D space (Figure 2(a)) lies on the

extended line segment P, P, , then the image point F; (Figure 2(b)) corresponding to P, must lie on

the extended line segment F,F, . In Sections 4 and 5, we demonstrate that this type of visual invari-

ant allows us to detect obstacles using optical flow.

Figure 3(a) shows a portion of terrain with a protrusion and depression which is visible in the cam-
era. The visual information for five points (P, , P,, P,, P,, and P) lying on the terrain is represent-
ed in the image-based space y vs. x (Figure 3(b)). The reference flow line (Figure 3(b)) obtained
from F, and F, corresponds to a reference space line in 3-D space (Figure 3(a)). The deviation (or
difference) between the measured value y (F,, F,, F,, F,, and F,) and the y value of the reference

flow line for each image position x is calculated. Figure 3(c) is a plot of the deviation. A positive
deviation corresponds to a protrusion while a negative deviation corresponds to a depression. No-

tice in Figure 3(a) that the reference line in 3-D space, formed by points p,, P, and P, need not

lie on a linear scene feature, but instead may lie in a flat region in the scene. Also, the portion of

the line between P, and P5 does not lie in any scene surface. It is shown in Section 4 that if the

1. As will be described below, the straight line in 3-D space need not correspond to a straight-line feature in
the scene. It may be an imaginary 3-D line, a portion of which lies on a relatively flat surface region.
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Figure 2: (a) Space line and image line. (b) Flow line in the image-based space y vs x.
linear relationship is not maintained in the image-based space, then it is difficult to detect obstacles
in that space. Therefore, the mapping must be linearly invariant to be useful. The features of this

method are:

1. 2-D visual information (i.e., optical flow) is directly used to detect obstacles: no range,

3-D motion, or 3-D scene geometry is recovered,;

2. no information about the pose of the camera relative to the ground is required, reducing

the amount of camera calibration required;

3. no information about the vehicle (or camera) motion is required, eliminating the need for

extra sensors and calibration of the camera pose relative to these sensors;

4. arbitrary camera motion (both translation and rotation) is allowed, making the method

completely general.

In Section 2, a background and discussion of previous work is presented. Visual linear invariants
are developed in Section 3. Section 4 shows how to detect protrusions and depressions directly
from optical flow without 3-D reconstruction. A detailed algorithm for obstacle detection is given.

A number of experiments using both synthetic and real indoor and outdoor scenes are presented in
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Figure 3: (a) Visible terrain along an image line. (b) Reference flow line in the image-based
space y vs. X. (¢) Obstacle detection without 3-D reconstruction.

Section 5.

The method described here deals with obstacle detection, not obstacle avoidance. The latter re-
quires a determination of spatial position, and perhaps size, of the obstacle. We propose in the fu-
ture to use a flow or image divergence approach to determine the temporal distance of the detected
obstacle. Such an approach does not perform 3-D reconstruction. This issue, along with conclu-

sions and other future work, is discussed in Section 6.

2 Previous Work

A number of obstacle detection methods have been developed in the past (e.g., [S] [9] [10] [11]
[12] [13] [14] [16] [21] [31] [34] [38] [39] [40] [41] [44]). Range information is often em-
ployed to solve this problem. This information may be obtained from active sensors, stereo cam-
eras, optical flow, etc. A priori knowledge is required by most existing methods. Such knowledge

may include sensor-to-ground coordinate transformations, sensor motion, model optical flow



fields, road models (or maps), etc. Errors in a priori knowledge result in errors in the output. Also,

the requirement for a priori knowledge makes these systems less flexible.

Several obstacle detection methods based on optical flow have been developed. Sridhar et al. [40]
investigated obstacle detection for rotorcraft low altitude flight. The obstacle detection problem is
posed as the problem of finding range to all objects in the field of view, and range is obtained from
optical flow. Bhanu et al. [5] presented an inertial sensor integrated optical flow technique for mo-
tion analysis in which range is extracted from optical flow for obstacle detection. The method by
Hoff and Sklair [21] detects landing hazards for a descending spacecraft. They develop an algo-

rithm using range information retrieved from optical flow with known camera motion.

Without 3-D reconstruction, time-to-collision estimated from flow divergence, changes of image
gradients over time, etc. have been used for obstacle avoidance {3] [9] [10] [11] [26] [33] [37].
These methods, however, do not consider the problem of finding obstacles when both obstacles
and non-obstacle terrain are visible in the image. The portion of the terrain nearest the observer
will have the smallest time-to-collision values, but may not necessarily be an obstacle region to be

avoided.

Some researchers have considered this problem of discriminating obstacles from terrain. Enkel-
mann [14] detects obstacles by evaluating the difference between calculated optical flow and es-
timated model flow. The estimated model requires knowledge of the focus of expansion (FOE), the
transformation matrix between the camera and vehicle coordinate systems, and the camera motion.
In addition, this method works only for a camera that undergoes pure translation parallel to a planar
surface. Tistarelli and Sandini [42] detect obstacles by evaluating the difference between calculat-
ed optical flow and a reference flow map. The method assumes pure translational camera motion
parallel to the planar surface that gives rise to the reference flow map. It requires knowledge of the
FOE and the camera motion. Raviv [35] detects obstacles using an optical-flow-based invariant
with the assumption of an observer who undergoes pure translational motion parallel to a planar
surface. Mallot et al. [30] detect discrete obstacles by the use of inverse perspective mappings.
This method requires a coordinate transform between the camera and the ground plane and, again,
assumes that the camera moves in the horizontal plane under pure translation. Sandini et al. [37]

have considered the problem of discriminating obstacles from ground without 3-D reconstruction



using binocular disparity maps. The similarity between our method and theirs is the use of refer-

ence maps to represent the ground. Of course, our method uses flow rather than binocular disparity.
The work described above may be characterized by the following:

1. Range information extracted from optical flow, stereo, or active range sensors is often

employed to detect obstacles.

2. Many approaches in which obstacles are detected directly from optical flow do not con-

sider the problem of discriminating obstacles from terrain.

3. For approaches that directly use optical flow to discriminate between obstacles and ter-
rain, either the observer’s motion is restricted to pure translation or a priori knowledge, such as

coordinate transformations, camera motion, or model optical flow fields, are required.

Our method is unique because it uses optical flow to discriminate between obstacles and terrain
without 3-D reconstruction, for arbitrary camera motion, and without knowledge of camera-to-
ground coordinate transformations or camera motion. Our method is, therefore, a general method
which requires relatively little calibration or a priori knowledge. This means that the error sources

involved are reduced to a minimum because the only information required is optical flow.

To demonstrate the advantage of reducing the error sources, consider a very simple example of
converting optical flow to range using the measured motion of the camera. Figure 4(a) shows the

2-D scenario of a spherical camera undergoing pure translation along its z axis toward a flat wall.

The optical flow 6 at any point ¢ in the image is [1] :

8 = |9| sin®

r

€y

where r is the true range to the wall and » is the camera velocity.

To recover range from optical flow, the speed and heading of the camera is determined. Consider
the errors due only to an angular error ¢ in the heading estimate (Figure 4(b)). (Assume that the

speed estimate is not in error.) Then, the recovered range estimate 7 is



. _ sin(0—¢)
4 sin@ r 2)

and the recovered z component, 4, of the range estimate is

~ _ sin(6-0) ‘
d = sin@ d )

where d is the true z component of range (also referred to as depth). Figure 4(c) shows the percent
error in the depth estimate as a function of small errors ¢ in the camera heading. Notice that errors
can be significant for values of 6 less than 10°, and even for values of 6 up to 30° if heading errors
are about 1°. If we can detect obstacles directly from flow, without explicitly recovering range or

depth, then one source of error - heading estimate error - is eliminated, leading to potentially more

accurate obstacle detection.
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Figure 4: (a) A spherical camera translating toward a wall. (b} An error ¢ in the heading estimation

results in errors in the depth estimation. (c) Percent errors in depth estimation. Negative (positive)
percentages indicate that the depth estimate is smaller (larger) than true depth.



3 Visual Invariants

3.1 Background

Coordinate frames

Two coordinate frames that are important in our approach are the camera coordinate frame and the
coordinate frame attached to a line in space. Consider first the arbitrary line segment 4B in space
and its projection onto the image plane, line segment a5 (Figure 5). Define the image x axis to be

parallel to line segment ab. A coordinate frame c attached to the camera is chosen as follows:

1. Let the origin o, be at the camera focal point.
2. Let the z, axis be the optical axis.

3. Choose X, to be parallel to the image x axis.
4. Choose Y, to obey the right hand rule.

5. Choose the image y axis to be parallel to v,.

Image Plane

Camera Focal Point
Coordinate Frame ¢

Figure 5: Definition of two coordinate frames.

A coordinate frame b is then affixed to the line AB as follows:



1. Let the origin 0, be the point lying on the extended line AB with the shortest distance

from the camera focal point 0, .

2. Let the z, axis be line AB.

3. Choose x, and v, arbitrarily as long as the right hand rule is obeyed.

Transformation matrix

A point P in the scene can be transformed from frame b to frame c¢ by the equation:

’Xc\ be\
Y Y

{7eh = Hy* bl o
Zc Zb

. 1 Y N 1 Py

where (x_, ¥,, z,) and (X,, ¥,, Z,) are the coordinates of point P in frames c and b, respectively,

and

hll h12 h13 h14

HZ h21 h22 h23 h24 (5)
h31 h32 h33 h34
0 0 0 1

represents a 4x4 transform matrix from frame b to frame c. Note that for a moving camera, at each

instance of time, Hg is constant for all points in the scene.

Basic equations
The visual invariants introduced here are based on optical flow F, which can be expressed as:

F(x, ya t) = (.X.(x, }’, t)’ }"(x, y’ t)) = F(x’ Y, t)ﬁF (6)

where (x, y) is the image position, t is the instance of time, x and y are the components of optical

flow, and F and #, are the magnitude and unit directional vector of optical flow, respectively.
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From the pinhole camera model, if we let the focal length be unity, the image position (x, y) is

(7

N| >

[
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o

As defined earlier, line AB coincides with the z, axis (Figure 5). Therefore any points lying on line

AB always have

For a point P lying on line 4B, we use Equations (4), (5) and (9) to express the relationship between

its coordinates in frames ¢ and b as

X, =h;Zy+hy (10)
Y, = hyZy+hy, (11)
Z, = hyZy+hy (12)

With Equations (7), (10) and (12), 1/z, can be expressed in terms of x as the following:

1 _ (hy3—xhy) (13)
Z,  (h3ghy3—hyyhss)

Note that (h,4h,; -k 4hy;) cannot equal zero because z, cannot equal zero for any 3-D point visible
in the camera.
3.2 Derivation

The equations for optical flow due to general camera motion (arbitrary translation and rotation) in

a stationary environment are [28] :

%= Zi(- Ty +xT ) + (xyoy — (1 + 320y + y0,) (14)
(4

. 1 2

y = Z—(— Ty+yTy )+ ((1+y)oy—xywy—xm,) (15

c
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F=(+y) (16)
where Zc is the depth of the object in the environment relative to the camera, (7y, Ty, T,) and (oy,

oy, ;) are the translational and rotational motion of the environment coordinate system relative

to the camera, and F is the magnitude of optical flow. Note that, for each instance of time, (7,

Ty, T,) and (o4, 0, , ®;) are constants for all points in the stationary environment.

Using Equation (13), the following linear relationship can be obtained from Equation (15) for all

image points lying on line ab (i.e., y=constant) that arise from points in the scene lying on line AB
(Figure 5):

where

a, = hjza;+(1+ yz)(z)X
ay = —hy3a; - yoy -
_ (-Ty+yTy,)

* (yghy3—hyghss)

(18)

As explained earlier, the value (hs,hy3-hy4hy3) cannot equal zero. For each instance of time, &,; (the
components of Hg) and (T4, T,, T;) and (o, o,, o,) are constants. Since y = constant, for each
instance of time, the values a,, a,, and a, are also constants for all points on line 4B . Equation (17)

represents a line in the y vs. x image-based space corresponding to a line in 3D space. This is a

visual linear invariant. Note that, in principle, the line in the y vs. x image-based space can be es-

timated from two points (say, (x,, y;) and (x,, y,)). This means that specific knowledge about the

transformation matrix and camera motion is not required.

If we were to combine Equations (16), (19), and (17), then the resulting F as a function of x would

be nonlinear. This is not a visual invariant for linear relationships.

If we were to combine Equations (13) and (14), the following nonlinear relationship can be ob-

12



tained for all image points lying on line ab (i.e., y=constant) that arise from points in the scene ly-

ing on line A8 (Figure 5):

£ = b +byx+byx’ (19)

where »,, b,, b, are constants. Equation (19) represents a quadratic curve in the % vs. x image-

based space corresponding to a line in 3-D space. This is not a visual invariant for linear relation-
ships. However, consider the special case of camera motion along the x axis, which corresponds to
sideward-looking camera motion.! For this case, Ty =T, = 0y = 0, = 0, = 0. The component y of

optical flow is zero, but now

X =a)+ayx (20)
where
a; = hyzay
ay = ~hy3a, @1)
(-Ty)

(haghyz —highss)
This is a visual invariant for linear relationships.

3.3 Camera motion in horizontal plane

As described above, a straight line in 3-D space can be mapped into either a straight line or a curve
depending on the camera motion and the image-based space used for the mapping. However, a
mapping is always linearly invariant for certain image-based spaces (y vs. x, x vs. y). Further, from
Equations (17) and (18), a straight line in 3-D space can always be mapped into a straight line with

slope =0 if a,=0 (or hy; = ©y = 0, = 0). This will result in simple computations.
Consider the case with the following two conditions:

1. The terrain is flat and the image line x (or x,) is parallel to the terrain. The space line z,

1.This is really an arbitrary sideward-looking camera motion in the sense that the camera x axis changes ac-
cording to the particular image line of interest (Figure 5).

13



whose projection is the image line x lies on the terrain and is perpendicular to the optical axis z,
(i.e., hyy = cos0z 5 = 0 since cosby ; = 1, where 6, ; is the angle between z, and z, and 6, , is

the angle between X, and z, (see Figure 5)).

2. Any translational motion and only rotational motion about x, are allowed (i.e.,

®y = 0, = 0).

This corresponds to a camera moving over a flat terrain and the image line of interest is horizontal
(e.g., a scan line). Only rotation about the horizontal axis (e.g., camera tilt) is permitted. In this
case, we see from Equations (17) and (18) that for each instance of time, all image points lying on

the horizontal image line have constant values

y=a (22)
where
—Ty+yT
- ETD L e, (23)
(h3y)

Different horizontal image lines will have different constant values for a.

4 OBSTACLE DETECTION

In this section, we show how to detect protrusions and depressions using a purposive and direct
approach (i.e., directly from optical flow without 3-D reconstruction). The method employs the

properties of visual linear invariants [46] .

4.1 Visual linear invariants for obstacle detection

As described in Section 3, mappings are linearly invariant only for certain image-based spaces. We
now show that these invariant mappings are very useful for obstacle detection. Consider the map-
ping to the F vs. x image-based space, which is full-flow magnitude F as a function of position x
on the image line under consideration. This mapping is not linearly invariant. Figures 6(a), (b)
show the results of a simulation for two different types of terrain. The simulation involves 5% noise

added to synthetically generated optical flow under general camera motion. Although no obvious

14



differences can be observed between Figures 6(a) and (b), in Figure 6(a) the terrain is flat and with-
out obstacles, while in 6(b) the terrain has two obstacles, one protrusion and one depression. We
see that detecting obstacles can be very difficult in an image-based space that does not have the

linear invariance property.

300.9 309.0

.0 . 499.0 0.4 493.0
1nage pos. » . Image position x

(a) (b)

Figure 6: (a) F vs. x without obstacles. (b) F vs. x with two obstacles.

On the other hand, when an image-based space with the property of linear invariance is used, ob-
stacle detection becomes easy and straightforward. Consider the mapping to the y vs. x image-
based space, which is linearly invariant (Equation (17)) under general camera motion. Figures 7(a)
and (b) show results for the same simulation, using the same camera motion and terrain, as in Fig-
ure 6. Figure 7(a) appears to coincide with a reference flow line, implying that it is obtained from
a terrain which is flat (at least in one dimension). Points that do not lie on the reference line result
from protrusions or depressions in the terrain. Thus, in Figure 7(b), there are two obstacles, one a
protrusion and the other a depression. Figure 7(b) can further be mapped into Figure 7(c) where
the reference line is horizontal. Figure 7(c) plots the difference between the actually measured val-
ue y and the y value of the reference line for each x value. A protrusion or depression can easily

be detected in 7(c). Detailed experimental results are shown later.
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Figure 7: (a) y vs. x without obstacles. (b) y vs. x with two obstacles. (c) Ay vs. x with two obstacles.
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4.2 Algorithm

To apply the property of linear invariance to obstacle detection, four steps are involved.
Step 1: Selection of a straight line in the image.

The method will work for any arbitrary line in the image, no matter what its position or orientation.
However, the line should intersect an image feature of interest, e.g., a potential obstacle. The cho-
sen image line need not correspond to a linear feature in the scene. In principle, many image lines

can be processed in parallel.
Step 2: Estimation of the reference flow line for the selected image line.

The reference flow line in the image-based space, say y vs. x for an image line y, corresponds to a
reference space line in 3-D space. The latter reference line and the camera focal point define a plane
in space (Figure 3(a)). The intersection of this plane with objects and terrain in the environment
defines a set of curves lying in the plane which are visible in the camera. Deviations between these
curves and the 3-D reference line are represented in the image-based space (Figure 3(c)). The ref-
erence flow line can be arbitrarily chosen from the regions represented by these curves, but it
should probably arise from a surface in the environment such that deviations from this surface rep-
resent protrusions and depressions. On a road, for example, the 3-D reference line should probably
lie on the road surface. For a vertical image line, the reference flow line might be obtained from
the measured optical flow on the image line located at the bottom of the image, which would prob-
ably correspond to points on the ground surface near the vehicle. For an arbitrary image line, the
reference flow line can be obtained by fitting a straight line to the measured optical flow selected
at some image positions which correspond to the reference region in the scene; the 3-D reference
line will then lie in the surface that forms the reference region. Note that only the component of
optical flow normal to the image line is used. In principle, only two points are required to estimate

the reference flow line.
Step 3: Computation of the deviation.

The deviation (or difference) between the reference line obtained in step 2 and the measured flow

16




at all image positions lying on the image line chosen in step 1 is computed.
Step 4: Representation of obstacle regions.

The computed deviation in step 3 is used to detect obstacles. Points on the image line with devia-

tions larger than some threshold value represent obstacles.

To detect obstacles easily, an image-based space that has the visual linear invariance property
should be used. For arbitrary camera motion, the proper image-based space is y vs. x (or x vs. y)
for any image line y=constant (or x=constant) if y (or x) is not equal to zero. For the case where y

(or x) is zero for all points on an image line, x vs. x (or y vs. y) should be used.

With this method, only one component of optical flow is needed. Information such as specific
knowledge of vehicle (or camera) motion, or knowledge of the coordinate transformation between
the camera and the ground, is not required. Therefore, the method reduces error sources to a min-
imum because it employs minimum information. The approach is simple because obstacles are de-
tected directly in the image-based space, without performing 3-D reconstruction. There is no
assumption of a terrain model; this method can, therefore, be used to navigate indoors or outdoors
on roadways or natural terrain. This method can also be used for air vehicles undergoing general

six-degree-of-freedom motion while landing on either known or unknown terrain.

4.3 Control Strategies

The discussion thus far has been concerned only with detecting obstacles in single image lines.
There may be several ways in which this basic idea can be applied. One way involves choosing a
set of image lines that covers the whole image. For example, all rows in the image may be pro-
cessed in parallel. (In the experiment in Section 5.6, all rows in the middle portion of the image are
processed.) In this way, all obstacles will be found. However, care would need to be taken so that
rows that intersect the sky are not processed, since the method has been developed for discriminat-
ing obstacles from terrain. Another approach involves processing all columns in parallel. This
would be useful if the bottom portion of the image can be assumed to correspond to the ground

surface near the vehicle, since this ground surface should be used to derive the reference flow lines.
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In another approach, a single horizontal strip in the image is processed. This strip may be formed
from a single image row, or from a small number of multiple contiguous rows (see Section 5.5 and
Figures 21(a), 22(a)). As the vehicle moves forward, this strip is “swept” over the scene ahead. All
obstacles in front of the vehicle at a certain distance will be detected. The higher up in the image

the strip lies, the further away are the obstacles that will be detected.

S Experimental Results

In this section, we present the results of several experiments demonstrating the simplicity and use-
fulness of visual linear invariants applied to obstacle detection. These experiments include ground
and air vehicles. Both synthetic and real indoor and outdoor scenes are considered. To extract op-
tical flow from real imagery, we have used several different algorithms. Only the components of

flow normal to the selected image lines are used.

5.1 Ground and Air Vehicle Simulations

The first experiment simulates a ground vehicle moving over terrain with a bump and a pothole
(Figure 8(a)). Synthetic data are used with three different levels of noise: 5%, 10%, and 15%. The
noise is generated randomly using a zero-mean Gaussian distribution. The generated noise is added
to the magnitude of the perpendicular component of flow obtained through simulation. This noise
represents the uncertainty value of the flow. Only one image line (a vertical line) is used in this
experiment. The bump is a semicircle 5.5 m ahead of the camera, with a height of 0.3 m above the
flat terrain. The pothole is a semicircle 8.5 m ahead of the camera, with a depth of 0.6 m below the
terrain. The camera is mounted on top of the vehicle (2 m above the ground) and moves under gen-

eral motion with (7, = -927, T, = -4, T, = 2853 mm/s) and (w0, = 005, ®, = 005, w, = 0.05 rad/s).

The results with 5% noise added to the synthetic flow have already been shown in Figure 7(c),
where two obstacles, a protrusion and a depression, can easily be detected. The results with noise

of 10% and 15% are shown in Figures 8(b), (c). Again, the obstacles are easy to detect.

The next experiment simulates an air vehicle moving over terrain with multiple rectangular protru-
sions (Figure 9(a)). The first protrusion is 45 m ahead of the camera at a height of 1 m above the

flat terrain. The second protrusion is 63 m ahead of the camera at a height of 1 m.The camera is
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Figure 8: (a) Side view of terrain with bump and pothole. (b) Ay vs. x (10% noise).
(c) Ay vs. x (15% noise).

mounted on the bottom of the air vehicle (20 m above the ground) and moves under general motion

with (T, = -13750, Ty = —40, T, = 48050 mm/sec) and (wy = 0.1, @y = 05, w, = 0.05 rad/sec).

As before, three different levels of noise, 5%, 10%, and 15% are added to the synthetic optical
flow. The results, presented in Figures 9(b), (c), (d), show that the obstacles are easy to detect.

(With 15% noise, we begin to see some difficulty in the detection.)

5.2 Table-Top Setup

This experiment involves detecting a depression in a flat surface using real images. Figure 10(a)
shows the table-top setup, in which the camera is mounted on a linear positioning table and moves
along a direction perpendicular to the camera’s optical axis. The motion of the camera is along the

x axis with speed Ty = 22.5 mm/s. A flat surface with a square depression of 50.8 mm is at a depth

of 406.4 mm from the camera. The depression is located in the middle of the image shown in Figure
10(b). Since y = 0, we use the x vs. x image-based space, which has the property of linear invari-

ance.

Only the scan line labeled in Figure 10(b) is used. Optical flow at each pixel is obtained using a
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Figure 9: (a) Side view of terrain with two protrusions. (b) Ay vs. x (6% noise). (c) Ay vs. x (10% noise).
(d) Ay vs. x (15% noise).
correlation method [22] . The values of optical flow x at image positions 40 through 199 are shown

499.0
Inage position

in Figure 10(c). The reference flow line is obtained by fitting a straight line to the data points near
image position 40. The deviation of + from the reference flow line is shown in Figure 10(d). A de-

pression can easily be detected in Figures 10(c), (d).

5.3 Yosemite Flyby Sequence

In this experiment, we use realistic synthetic images of a 3-D natural outdoor scene (Figure 11),
thus allowing us to compare the results with ground truth. Our goal is to detect the mountains,
which are hazardous regions for an air vehicle, in the Yosemite flyby sequence (obtained from Bar-
ron et al. [4] , courtesy of Lynn Quam). This sequence was created from aerial photos and terrain

maps to simulate an aerial flyby. The sky and clouds are artificial.

Two regions have been selected for obstacle detection: a horizontal strip consisting of rows 200 to
220 and a vertical strip consisting of columns 270 to 290. Although a single horizontal or vertical
line may be used, a range of rows or columns produces better results because the effects of noise

are reduced after median filtering.1 However, the speed of the system decreases as the number of
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Figure 10: (a) Top view of table-top setup. (b) Original image. Only data from the
single scanline indicated are used. (c) % vs. x. (d) A% vs. X.

lines increases. Thus, care must be taken in selecting the number of lines.

The results of two optical flow algorithms used in this experiment are compared. These algorithms
are Liu, et al.’s [27] gradient-based algorithm (henceforth referred to as Liu’s algorithm) and Ca-
mus’s [7] [8] correlation-based algorithm. Liu’s algorithm produces very accurate optical flow
but requires a significant amount of computation time, whereas Camus’s algorithm produces rea-
sonably accurate flow with minimal computation time. Both algorithms could be used to comple-
ment each other in a real-time obstacle avoidance system. Camus’s algorithm could be used to

detect close obstacles, while Liu’s algorithm could be used for more distant obstacles.

The true flow field is shown in Figures 12(a), (b). Liu’s algorithm produces a very accurate flow
output (Figure 12(c), (d)) while Camus’s algorithm produces a reasonable flow output (Figures

12(e), (f)) at approximately 1/60-th the time of Liu’s algorithm. In both cases, flow is also produced

1. We apply two median filters. The first is a reference line median filter that filters the data points used to
generate the reference line. The second is a deviation line median filter to smooth the deviation output. In-
creasing the respective window sizes helps to smooth the data but increases the computation time. In most
cases, the default setting of a reference line median filter window size of 3x3 and a deviation median filter
window size of 3x3 produces good results.

21



Scan rows 200 to 220 for obstacles, using
columns 220 to 300 as reference.

Image size: 252x316 ? ? reference

Scan columns 270 to 290 for obstacles,
using rows 190 to 240 as reference.

reference

Figure 11: Yosemite flyby sequence.
for the synthetic clouds, something that is not depicted in the true flow. This flow can produce dif-

ficulties in obstacle detection as we shall subsequently see.

........

N

i

[k

i I

Figure 12: (a) True optical flow magnitude and (b) neediemap for frame 14 of Yosemite fly-by. (c and
d), Computed optical flow using Liu’s algorithm, with window size at 21, post-median filtering on, and
output density at 100%. (e and f), Computed optical flow using Camus’s algorithm.
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Horizontal strip:

This region consists of rows 200 to 220 (Figure 11). The full optical flow, vertical component of
flow, and obstacles detected for this region using the true flow are depicted in Figures 13(a), (d),
(8)- This provides the “ground truth.” Figure 13 also shows full flow, vertical component of flow,

and obstacles detected using both Liu’s and Camus’s flow algorithms.
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Figure 13: Horizontal strip - rows 200 to 220. Profile of full flow magnitude of (a) true optical flow, (b) Liu's
flow, (c) Camus'’s flow. Profile of vertical component of (d) true flow, (e) Liu's flow, (f) Camus’s flow.
Obstacles detected using (g) true flow, (h) Liu’s flow, (i) Camus’s flow.

The reference line is derived from the valley region in the lower right portion of the image, and is

obtained by fitting a line to the data points in columns 220 to 300 (Figure 11). The mountains can
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be easily detected using both the true flow and Liu’s flow. For Camus’s flow, there is an error in
the vertical component of flow. Where there should be a protrusion in the vertical component of
flow for the mountain, there is a depression. This depression is due to the effect of block-subsam-
pling a narrow, high contrast band and is not due to the flow algorithm itself [8] . This problem is
a side effect of Camus’s sampling algorithm and does not occur very often. Notice that if only the
full flow profile (Figures 13(a), (b), (c)) were examined, then the rise in the profile between col-
umns 250 and 316 could falsely have suggested an obstacle region. This rise in profile does not
exist in the vertical component of flow (Figures 13(d), (e), (f)) or deviation profiles (Figures 13(g),
(), ().

Vertical strip:

This region consists of columns 270 to 290 (Figure 11). Similar to Figure 13, Figure 14 shows
“ground truth” for the vertical strip as well as results using both Liu’s and Camus’s algorithms. The
reference line is derived from the valley region obtained from rows 190 to 240 (Figure 11). The
sky, mountain, and valley regions can be clearly differentiated in the deviation profiles (Figures
14(g), (h), (1)). The sky region accounts for the large flow magnitude errors and is apparent even

in the deviation derived from the true optical flow.

For the Yosemite sequence (with 252x316 size images), the system can run up to 3.05 Hz on a Sun
20/61SX! using Camus’s algorithm to compute the flow (Table 1). The performance is approxi-
mately doubled on a Sun Ultra 1/140. The flow computation is the most time consuming part of
the system. The obstacle detection algorithm itself is fast, and can run up to 15.6 Hz on a Sun 20/

61SX using 64x64 precomputed flow (Table 2).

5.4 NASA Coke Can Sequence

This is a real diverging image sequence (Figure 15). Two regions are selected for obstacle detec-
tion: an upper horizontal strip consisting of rows 45 to 90, and a lower horizontal strip consisting
of rows 220 to 260. For the top strip, we would expect to see protrusions for the pencils on each
side of the image and the Coke can in the middle. For the bottom strip, we would expect to see

protrusions for the plate on the left and the pencil on the right.
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Figure 14: Vertical strip - columns 270 to 290. Profile of full flow magnitude of (a) true optical flow, (b) Liu's
flow, (c) Camus’s flow. Profile of horizontal component of (d) true flow, () Liu’s flow, (f) Camus’s flow.
Obstacles detected using (g) true flow, (h) Liu's flow, (i} Camus’s flow.

We use Liu’s algorithm to compute the optical flow because his algorithm works well with small
flow values. To compute the deviation for the bottom strip, the reference line is derived from the
region contained within columns 110 to 210. The deviation output (Figure 16(c)) shows two pro-
trusions on the left side, which correspond to the plate. The deviation output does not really show

a protrusion for the pencil on the right because there is little flow in the vertical direction for that

1.Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately
specify the experimental procedure. Such identification does not imply recommendation or endorsement by
NIST, nor does it imply that the materials or equipment identified are necessarily best for the purpose.
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reference

Scan rows 45 to 90 for obstacles, using col-
umns 180 to 240 as reference.

reference

Scan rows 220 to 260 for obstacles, using
columns 110 to 210 as reference.

Image size: 300x300.
Figure 15: NASA Coke can sequence.

Table 1: Performance of system (includes subsampling, computing optical flow, and
computing deviation) on a Sun 20/61SX for the Yosemite sequence (252x316 size image, 15
frames) using rows 200 to 220 as scan lines and columns 220 to 300 as reference.

Sub- . Frames
Flow Image . Flow algorithm .
. . sampling Obstacle detection parameters per
algorithm size P parameters
actor second
Camus 256x256 delays at 1/10, low default (reference line median | 3.05
texture thresholding | filter window 3x3, deviation
off median filter window 3x3)
Liu 252x316 window size 21x21, | default 0.04968
post median filtering
on, output density
100%

Table 2: Performance of algorithm on a Sun 20/

61SX using precomputed flow and the same
obstacle detection parameters as in Table 1.

Flow algorithm Image size Frames per second
Camus 64x64 15.6
Liu 252x316 0.9987

region (Figure 16(b)).

To compute the deviation for the top strip, we select columns 180 to 240 to generate the reference
line. The deviation output (Figure 17(c)) shows three protrusions that correspond to the pencils (or

poles) and the Coke can. Notice that if only the full flow profile (Figure 17(a)) were examined, then
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Figure 16: Results for bottom strip of NASA sequence (rows 220 to 260). (a) Profile of full flow magnitude

using Liu’s flow. (b) Profile of vertical component of flow. (c) Obstacles detected using columns 110 to
210 as reference.

it would be difficult to extract the Coke can. However, the Coke can is clearly visible in the vertical

component of flow (Figure 17(b)), as well as in the deviation profile.
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Figure 17: Results for top strip of NASA sequence (rows 45 to 90). (a) Profile of full flow magnitude using
Liu’s flow. (b) Profile of vertical component of flow. (c) Obstacles detected using columns 180 to 240 as
reference.

5.5 NIST Three-Chairs Sequence

These image sequences were taken from a moving robot inside the laboratory. (Figure 18(a) shows
an example.) The objective of this experiment is to find the chairs, which act as obstacles. We se-
lect scan rows 170 to 180 to plot the deviation, using columns 60 to 90 to generate the reference
line. We use the same scan and reference lines throughout the image sequence. Initially, the refer-
ence line corresponds to the ground on the left side of the image. As the image sequence advances,
the reference line corresponds to the left chair. As an obstacle is approached, the magnitude of flow
due to the obstacle gradually increases. This accounts for a gradual increase in deviation values,

which is displayed as a gradual increase in height of the protrusion representing the obstacle.

In the deviation output for frame 41 (Figures 18(d), (e)), the middle chair is clearly visible. Using

27



Scan rows 170 to 180 for obstacles,
using columns 60 to 90 as reference.
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Figure 18: (a) NIST chair sequence - frame 41. (b) Vertical component of Liu’s flow. (c) Vertical
component of Camus’s flow. (d) Obstacles detected with Liu's flow. (e) Obstacles detected with
Camus’s flow.

the same scan lines for frame 63 (Figure 19(a)), the protrusions representing the left and middle
chairs can be seen (Figures 19(d), (e)). Notice in Figure 19 that the reference line is derived from
points on the left chair. Thus, in the deviation output, the left chair has zero deviation (Figures

19(d), (e)). The floor has negative deviation because it has less vertical component of flow than the
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left chair. Intuitively, this is correct because the left chair is closer to the camera than the floor.

Likewise, the right chair has positive deviation because it is closer to the camera than the left chair.

Scan rows 170 to 180 for obstacles,
using columns 60 to 90 as reference.

tﬁh
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Figure 19: (a) NIST chair sequence - frame 63. (b) Vertical component of Liu’s flow. (c) Vertical
component of Camus’s flow. (d) Obstacles detected with Liu’s flow. (e) Obstacles detected

with Camus’ flow.

For these chair sequences (with 256x256 size images), the system ran up to 7.167 Hz on a Sun Ultra

1/140 using Camus’s algorithm to compute the flow (Table 3). The obstacle detection algorithm
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itself can run up to 46.4 Hz on this computer using 64x64 precomputed flow (Table 4).

Table 3: Performance of system (includes subsampling, computing optical flow, and
computing deviation) on a Sun Ultra 1/140 for the chair sequence (256x256 size image, 84
frames) using rows 170 to 180 as scan lines and columns 60 to 90 as reference.

Flow Sub-sampling . Obstacle detection
algorithm factor Flow algorithm parameters parameters Frames per sec
Camus 4 delays at 1/10, low texture default (reference line 7.167
thresholding off median filter window
3x3, deviation median
filter window 3x3)
4 window size 5x5, post median | default 1.689
filter on, output density 100%
Liu
1 window size 21x21, post default 0.0627
median filter on, output den-
sity 100%

Table 4: Performance of algorithm on a Sun Ultra 1/140
using precomputed flow and the same obstacle detection
parameters as Table 3.

Flow algorithm Image size Frames per sec
Camus 64x64 46.4
64x64 414
Liu
256x256 1.348

Figure 20(a) shows frame 25 of the chair sequence where a vertical strip consisting of columns 130
to 150 is used to detect obstacles. Rows 20 to 24, which correspond to a region on the back of the
wall, are used to generate the reference line. The middle chair is easily detected using both Liu’s
and Camus’s flow algorithms (Figures 20(f), (g)). This example again demonstrates the power of
using perpendicular flow, rather than full flow to detect obstacles. The middle chair would be much

more difficult to detect in the full flow profiles (Figures 20(b), (c)).

In the experiments thus far described, the flow is computed for the full image even if the deviations
are computed only in a single strip. Because the flow computation takes up the most processing
time, the system performance for a single strip can be improved by cropping the image to compute
flow only for the strip under consideration. Figures 21 and 22 show two such examples, where the

chair sequence (Figure 18(a)) is cropped to form a strip between rows 170 and 180. The chair ob-
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Image size: 256x256.

reference #

Scan columns 130 to 150 for obstacles,
using rows 20 to 44 as reference.

Figure 20: (a) NIST chair sequence - frame 25.

(b) ©

Figure 21: (a) NIST cropped chair sequence - frame 37, rows 170 to 180; (b) full
flow magnitude using Liu’s algorithm; (c) obstacles detected.

stacles are detected in both examples using Liu’s flow algorithm. For these images (size 10x256),
the system’s performance (including computation of flow using Liu’s algorithm and computation

of deviation) on a Sun Ultra 1/140 is 4.04 Hz.
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Figure 20: Full flow magnitude for (b) Liu’s flow, (c) Camus’s flow. Horizontal component of (d) Liu’s flow
(e) Camus’s flow. Obstacles detected with (f) Liu’s flow, (g) Camus’s flow.
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Figure 22: (a) NIST cropped chair sequence - frame 67, rows 170 to

180; (b) full flow magnitude using Liu’s algorithm; (c) obstacles

detected.
The application of our algorithm on a NIST laboratory sequence taken with a wide-angle camera
is shown in Figure 23. The horizontal strip from rows 140 to 160 have been selected to perform
obstacle detection. The reference line is generated from columns 100 to 150, which correspond to

aregion on the floor. The left chair, right chair, as well as rack on the right side can be detected in

the deviation profile (Figure 23(b)).
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Scan rows 140 to 160 for obstacles,
using columns 100 to 150 as reference.

reference

Image size: 240x256.
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Figure 23: (a) NIST wide angle lab sequence; (b) obstacles detected using Liu’s flow.

5.6 HMMWY Sequence

The following experiments demonstrate the use of our approach on real outdoor image sequences.
These sequences are much noisier than the indoor tabletop and chair sequences because the out-
door sequences were first recorded on a VHS videotape and then digitized. The indoor sequences

were digitized and stored on a disk directly from the camera.

The first outdoor experiment involves detecting a stationary car on a road. The camera is mounted
on an Army HMMWYV vehicle, whose motion is unknown. An image frame of the sequence is
shown in Figure 24(a). Optical flow is obtained using an early version of Liu’s algorithm [24] . The
vertical component of flow is shown in Figure 24(b). Figure 24(c) shows the vertical component
of flow for row 118. To reduce the effects of highly noisy data, a spatio-temporal median filter of
size 5x5x5 is applied to the optical flow images. The reference line for row 118 is obtained by fit-
ting a line to the data points between columns 20 and 70 at rows 117, 118 and 119. These data

points, corresponding to the leftmost cluster in Figure 24(c), arise from points lying on the ground
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plane. The results of obstacle detection for rows 118 and 117 are shown in Figures 24(d), (e). All
the rows in the middle portion of the image were processed, and obstacle points were extracted at
each row. Figure 24(f) shows all the obstacle points superimposed on the image in Figure 24(a).

The white region denotes the detected obstacle
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Figure 24: (a) One image frame of HMMWYV sequence. (b) The vertical component of flow. (c) Vertical

component of flow for row 118. (d) Obstacles detected at row 118. (e) Obstacles detected at row 117.
(f) Obstacles detected for the full image.

5.7 Parking Lot Sequences

In the Metro parking lot sequence (Figure 25(a)), a camera is held by a passenger in a moving ve-
hicle approaching several parked cars on the right side. Optical flow is obtained using the first-or-
der, local differential method of Lucas and Kanade [29] implemented by Barron et al. [4] . Here,
we only consider rows 130 and 133 labelled in Figure 25(a). The vertical components of flow in
rows 130 and 133 are shown in Figures 25(b), (c). To reduce the effects of highly noise data, a me-
dian filter is applied to the optical flow image. The reference lines are generated from points in col-
umns 20 to 90 which lie on the ground plane in the scene. They correspond to the leftmost clusters

in Figures 25(b), (c). Figures 25(d), (¢) show the results. The protrusions denoting parked cars on

34



0 Column

255

0
.0
OFy :
Row
-
/
130 Patat:
o~
133 A -
- .\,-_"'l'ﬂ\
0.0
14.0 241.0
Ill!g. 9081‘“0[\ x
Row_L130
241 (b)
1.0 | 1.0
hnY
lr:‘-: ".’\' ” .
~ P - / : N
FEASY i s
0.0 o ~ 0.8 A2\ ol
. ] e . P
. 14.0 stron 224" YRR 2410 2.0 7 241.¢
133 Inage position x Inage position x Inage position x

(©)

(d)

.33

()

Figure 25: (a) One image frame of Metro parking lot sequence. (b) Vertical component of flow at
scan line 130. (c) Vertical component of flow at scan line 133. (d) Obstacles detected at scan line
130. (e) Obstacles detected at scan line 133.

the right side are easily detected. Note that the rightmost image positions show the largest devia-

tions. This is because the parked cars in the rightmost image positions are closest to the observer.

An image in the NIST parking lot sequence is shown in Figure 26(a). We select rows 140 to 160
to plot the deviation, using columns 80 to 160 (corresponding to points on the road) to generate the
reference line. The vertical component of flow is shown in Figure 26(b); the detected obstacles are

shown in Figure 26(c).

6 Conclusions

This paper shows a novel approach to obstacle detection for terrain navigation. New visual linear
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Scan rows 140 to 160 for obstacles,
using columns 80 to 160 as reference.

reference
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Figure 26: (a) NIST parking lot sequence. (b) Profile of vertical component of Liu’s
flow. (c) Obstacles detected using Liu’s optical flow for rows 140 to 160.

invariants based on optical flow have been derived. They require the use of appropriate image-
based spaces. Employing the linear invariance property, obstacles can be discriminated from ter-

rain by using reference flow lines obtained from measured optical flow.
The approach has several advantages:

(1) Simple - Only one component of optical flow is needed. Knowledge about camera-to-ground
coordinate transforms, or specific vehicle (or camera) motion is not required. No range, 3-D mo-
tion, or 3-D scene geometry is recovered; 2-D visual information (i.e., optical flow) is directly used

to detect obstacles.

(2) General - The method is valid for a vehicle (or camera) moving under general motion, i.e., ar-

bitrary translation and rotation.

(3) Fast - The method is simple and fast. We have also demonstrated that the method can be suc-
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cessfully used with fast optical flow algorithms.

(4) Minimal Error Sources - The error sources involved are reduced to a minimum because the

only required information is one component of the optical flow.

Experiments with both synthetic and real image data suggest that the approach using visual invari-
ants as a tool for obstacle detection is effective. The method has been demonstrated with both

ground and air vehicle scenarios.

To use the method presented here in a real-time robotic obstacle avoidance system, several issues
must still be addressed. The first is automatically extracting obstacles from the deviation profiles.
The deviation represents the difference in flow arising from points on an obstacle and flow arising
from points on a reference region (which is often a terrain region of interest; Figure 3). The mag-
nitude of the deviation is a function of the difference in depth between points on the obstacle and
points in the reference region. The extent to which this deviation can be detected determines the
extent to which the obstacles can be detected. Therefore, the deviation must significantly exceed

the noise in the flow.

Consider the case of objects of different size lying on the ground at the same distance from the cam-
era. Assume the camera is moving forward and the y component of flow along a horizontal strip is
used to measure deviation. For a tall obstacle, suppose that we measured flow along two horizontal
strips, one near the top of the obstacle and one near the bottom. The difference in depth between
points on the obstacle and points on the ground is larger for the top strip, and therefore the flow
deviation would be larger as well. Therefore, the ratio of deviation to noise will be higher for the
top strip, making the obstacle more detectable if the top strip is used. For this reason, tall obstacles
will tend to be more detectable than short ones. The size of the smallest obstacle detectable depends
critically on the accuracy and noise characteristics of the flow algorithm being used. To automati-
cally extract obstacles, methods based on this type of analysis must be developed for analyzing the

deviation profiles.

A second issue is automatically choosing the points in the perpendicular flow to generate reference

flow lines. Earlier, we described that one heuristic involves choosing points near the bottom of the
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image, because these can often be assumed to correspond to the ground surface near the vehicle.

Other approaches need to be investigated in the future.

This paper has addressed the problem of obstacle detection, rather than obstacle avoidance. A third
issue is therefore how to use our detection method for obstacle avoidance. Currently, our method
indicates (a) the presence of an obstacle and (b) the position of that obstacle in the image. The dis-
tance to the obstacle is a 3-D quantity that is often used for avoidance maneuvers. However, it has
been demonstrated that obstacle avoidance can be performed using time-to-collision, which can be
computed directly from optical flow or even from temporal changes in image gradients without 3-
D reconstruction [3] [9] [10] [11] [26] [33] [37] . We propose in the future to apply such time-

to-collision approaches to the detected obstacles.

The accuracy and usefulness of the method presented here depends on the accuracy of the estimat-
ed optical flow. We have demonstrated results using several flow algorithms. One of the fastest is
Camus’s algorithm, while one of the most accurate is Liu’s algorithm [25] . The optimal manner
in which to combine such algorithms in an integrated system (e.g., use Camus’s fast algorithm for
nearby obstacles with large flows and quick response-time requirements, while use Liu’s slower
algorithm for distant obstacles with small flows and longer response-time requirements) needs to

be studied in the future.

A general difficulty with optical flow-based approaches for navigation is that camera jitter due to
driving over rough terrain makes it difficult to accurately estimate flow. Camera or image stabili-
zation approaches (either mechanical or electronic) [6] [45] are, therefore, required for flow-

based navigation.

All of the issues described above must be resolved to develop a real-time integrated obstacle avoid-

ance system based on the methods described in this paper.
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