
Proceedings of the American Association for Artificial Intelligent (AAAI), Fall Symposium Series, 1996,
Massachusetts Institute of Technology, Cambridge, MA, November 9-11, 1996.

An Engineering Architecture for Intelligent Systems

James S. Albus

Intelligent Systems Division
National Institute of Standards and Technology

Building 220, Room B-124
Gaithersburg, MD 20899

albus@cme.nist.gov

Abstract

The Real-time Control System (RCS) is a
reference model architecture for design and
engineering of intelligent systems. It is intended
to provide a theoretical framework for the
development of standards and performance
measures for intelligent systems, as well as
engineering guidelines for the design and
implementation of intelligent control systems for
a wide variety of applications. RCS consists of a
hierarchically layered set of intelligent processing
nodes organized as a nested series of control
loops. In each node, tasks are decomposed, plans
are generated, world models are maintained,
feedback from sensors is processed, and control
loops are closed. In each layer, nodes have a
characteristic span of control, with a characteristic
planning horizon, and corresponding knowledge
of detail in space and time. Nodes at the higher
levels deal with high level management and
planning, while nodes at lower levels deal with
machine coordination and process control. RCS
integrates and distributes deliberative planning
and reactive control functions throughout the
entire hierarchical architecture, at all levels, with
all spatial and temporal scales.

Introduction

The Real-time Control System (RCS) is a reference
model architecture for design and engineering of intelligent
systems. It is intended to provide a theoretical framework
for the development of standards and performance measures
for intelligent systems, as well as engineering guidelines
for the design and implementation of intelligent control
systems for a wide variety of applications. RCS is based
on the following axioms and definitions:

Axiom 1 : The functional elements of an intelligent
system are behavior generation, sensory perception, value
judgment, and world modeling.

Df: behavior generation

behavior generation is the planning and control of action
designed to achieve behavioral goals.

Behavior generation accepts task commands with
goals and priorities, formulates and/or selects plans, and
controls action. Behavior generation develops or selects
plans by using a priori task knowledge and value judgment
functions combined with real-time information provided by
world modeling to find the best assignment of tools and
resources to agents, and to find the best schedule of actions
(i.e., the most efficient plan to get from an anticipated
starting state to a goal state.) Behavior generation controls
action by comparing current state feedback with the desired
state specified by the plan and using a control law to
compute the best action to null the difference. Behavior
generation may also learn system models and optimize
control laws.

Df: sensory perception

sensory perception is the transformation of data from
sensors into internally meaningful and useful
representations of the world.

Sensory perception accepts input data from sensors
that measure states of the external world and states of the
system itself. Sensory perception scales and filters data,
computes observed features and attributes, and compares
them with predictions from internal models. Correlations
between sensed observations and internally generated
expectations are used to detect events and recognize entities
and situations. Variances between sensed observations and
internally generated expectations are used to update internal
models. Sensory perception also clusters, or groups,
recognized entities and detected events into higher order

entities and events, and computes attributes of the higher
order entities and events.

Df: value judgment

value judgment is the computation of cost, risk, and
benefit of actions and plans; the estimation of the
importance and value of objects, events, and situations; the
assessment of reliability of information; and the calculation
of rewarding or punishing effects of perceived states and
events.

Value judgment evaluates perceived and planned
situations thereby enabling behavior generation to select
goals and set priorities. It computes what is important (for
attention), and what is rewarding or punishing (for
learning).

Df: world modeling

world modeling is the construction, maintenance, and use
of internal representations of the world

World modeling maintains (short-term) dynamic and
(long-term) static memory, including semantic and
pragmatic relationships between entities, and links between
symbolic and iconic representations. It answers queries
from behavior generation regarding the state of the world,
simulates results of possible future plans, and predicts
sensory observations based on knowledge in the knowledge
database. Interactions between sensory perception and
world modeling compute transformations between
descriptive and graphic representations and maintain the
pointers that link signals to symbolic entities, and vice
versa. This enables symbolic entity attributes to be
updated from attributes in observed signals. It also allows
predicted signals to be generated from symbolic entity
frames. Predicted signals can be used by sensory
perception to configure filters, masks, and windows for
correlation and model matching, and for establishing
correspondence between signal features. World modeling
also maintains pointers that establish relationships (such as
"is-part-of,” "has-parts," "is-inside-of," "is-on-top-of," “is-
caused-by,” “is-used-for”) between symbolic entities.

Axiom 2: World modeling maintains and uses a
distributed dynamic store of knowledge, or knowledge
database, that includes both a model of the environment and
a model of the system itself.

Df: knowledge database

the data structures and the static and dynamic information
that collectively form the world model.

The knowledge database stores information about the
world in the form of state variables, symbolic entities,
symbolic events, rules and equations, structural and

dynamic models, task knowledge, signals, images, and
maps.

Df: state variable

a numeric or symbolic variable that represent the current
estimated value of a property or attribute of an object or
event in world.

Df: symbolic entity

a data structure that represents a feature, object, or set that
exists in the world, or in the world model. A symbolic
entity can be a formal list, or frame, consisting of a list
head with a name as an address, plus a set of attribute-value
pairs, a set of recognition criteria, and a set of pointers that
define relationships with other symbolic entities or events.
These relationships can represent semantic or pragmatic
meaning.

Df: symbolic event

a data structure that represents a state change, or a set of
states or situations that occur at a particular time and place,
or of a sequence of states, or situations, that transpire over
an interval of time and space in the world. A symbolic
event can be represented by a list, or frame, consisting of a
list head, a set of attribute-value pairs, a set of detection
criteria, and a set of pointers that define relationships with
other symbolic events and entities.

Df: rules and equations

symbolic representations that express physical and
mathematical laws that describe the way the world works
and how things relate to each other in time, space,
causality, and probability. Examples include If/Then rules,
formulae in predicate calculus, differential equations,
control laws, geometrical theorems, and system models.

Df: structural models

rules and equations that describe how physical structures are
kinematically connected and how forces and stresses are
distributed.

Df: dynamic models

rules and equations that describe how energy, force, and
inertia interact with each other in time and space.

Df: task knowledge

knowledge of how to act in order to accomplish goals.
Task knowledge includes skills and abilities required for
manipulation, locomotion, communication, and attention.
Task knowledge may also include a list of tools, materials,
and information required to perform a task, as well as
conditions required to begin or continue a task. For
example, task knowledge may describe how to drill a hole,
weld a seam, repair a TV, assemble an automobile, design

an engine, or plan a task. Task knowledge is primarily
used by the behavior generation element.

Df: signal

output of a sensor that measures a phenomenon in the
environment

Df: image

a two-dimensional array of attribute values. An
image may consist of an array of brightness values from a
CCD TV camera, or an array of attributes such as spatial or
temporal gradients, stereo disparity, range, or flow that are
computed from other images over spatial windows and
temporal intervals. An image may also be generated by
internal mechanisms (such as a computer graphics engine)
from information stored in symbolic entity frames.

Df: pixel

a picture element. A pixel is the smallest distinguishable
region in an image. A pixel may have attributes, such as
the output of a photoreceptor in a CCD camera that
corresponds to brightness or color. Pixel attributes may
also include spatial or temporal gradients of brightness,
range, stereo disparity, image flow magnitude and direction
integrated over the area of the pixel.

Df: maps

two-dimensional arrays of attributes that are registered with
known locations in the world. Map pixel attributes may
include icons or names of symbolic entities.

Axiom 3: The knowledge database has two parts:

1. A long-term memory containing symbolic
representations of all the entities, events, and rules that are
known to the intelligent system.

2. A short-term memory containing both symbolic
and image representations of those entities that are the
subject of current attention.

Axiom 4: The functional elements and knowledge
database of an intelligent system can be represented in an
architectural node by a set of modules interconnected by a
communication system that transfers information between
them.

Df: node

a part of a control system that processes sensory
information, maintains a world model, computes values,
and plans and executes tasks. A node contains a Behavior
Generation (BG) module, a World Modeling (WM) module,
a Sensory Perception (SP) module, a Value Judgment (VJ)
module, and a Knowledge Database (KD).

Figure 1 illustrates the relationships in a single node
of the RCS architecture. The interconnections between
sensory perception, world modeling, and behavior
generation close a reactive feedback control loop between
the observed input and the commanded action. The
interconnections between behavior generation, world
modeling, and value judgment enable task decomposition,
planning, and reasoning about future actions. The
interconnections between sensory perception, world
modeling, and value judgment enable knowledge
acquisition, situation evaluation, and learning. All the
modules in an RCS node have input and output
connections to an Operator Interface.

Axiom 5 . The complexity inherent in intelligent
systems can be managed through hierarchical layering.

Intelligent systems are inherently complex.
Hierarchical layering is a common method for organizing
complex systems that has been used in many different
types of organizations throughout history for effectiveness
and efficiency of command and control. In a hierarchical
control system, higher level nodes have broader scope and
longer time horizons, with less concern for detail. Lower
levels have narrower scope and shorter time horizons, with
more focus on detail. For example, Behavior Generating
modules in RCS nodes at the upper levels in the hierarchy
make long-range plans consisting of major milestones. At
lower levels, Behavior Generating modules successively
refine the long-range plans into short term tasks with
detailed activity goals. At lower levels, Sensory
Processing modules process data over local neighborhoods
and short time intervals. At higher levels, they integrate
data over long time intervals and large spatial regions. At
low levels, World Model knowledge is short-term and fine
grained, while at the higher levels it is broad in scope and
generalized. At every level, feedback loops are closed to
provide reactive behavior, with high-bandwidth fast-
response loops at lower levels, and slower more
deliberative reactions at higher levels.

At each level, state variables, entities, events, and
maps are maintained to the resolution in space and time
that is appropriate to that level. As detail is geometrically
increased at each successively lower level in the hierarchy,
the range of computation is geometrically decreased. As
temporal resolution is increased, the time horizon
decreases. This produces a ratio of range to resolution that
remains relatively constant throughout the hierarchy. As a
result, at each level, behavior generating functions make
plans of roughly the same number of steps. Sensory
perception functions compute entities that contain roughly
the same number of sub entities. At higher levels, plans,
perceived entities, and world modeling simulations are
more complex. But, there is more time available between

replanning intervals for planning to occur. Thus,
hierarchical layering keeps the amount of computing

resources needed in each node reasonably small and
relatively constant.

KNOWLEDGE
DATABASE

SENSORY
PERCEPTION

BEHAVIOR
GENERATION

PLANS

PREDICTED
INPUT

UPDATES

STATES

P
L

A
N

R
E

SU
L

T
S

PLAN

SIT
U

A
T

IO
N

E
V

A
L

U
A

T
IO

N

OBSERVED
INPUT

COMMANDED
ACTIONS

PERCEIVED
OBJECTS &
EVENTS

COMMANDED
TASK & GOAL

OPERATOR
INTERFACE

EVALUATIONS

VALUE
JUDGMENT

WORLD
MODELING

Figure 1. A node in the RCS reference model architecture. The functional elements of an intelligent system are
behavior generation (planning and control), sensory perception (filtering, detection, recognition, and interpretation), world
modeling (store and retrieve knowledge and predict future states), and value judgment (compute cost, benefit, importance, and
uncertainty). These are supported by a knowledge database, and a system architecture that interconnects the functional modules and
the knowledge database. This collection of modules and their interconnections make up a generic node in the RCS reference model
architecture. Each module in the node may have an operator interface.

Axiom 6 . The complexity of the real world
environment can be managed through focusing attention.

Df: focusing attention

the commitment of computational resources to processing
selected sensory data.

Intelligent systems typically operate in a real-world
environment which is infinitely rich with detail, but the
computational resources available to any intelligent system
are finite. No matter how fast and powerful computers
become, the amount of computational resources that can be
embedded in any practical system will be limited.
Fortunately, at any point in time and space, most of the
detail in the environment is irrelevant to the immediate
task of any particular node in the intelligent system.
Therefore, the key to building practical intelligent systems
lies in understanding how to focus the available computing
resources on what is important, while ignoring what is
irrelevant.

The problem of distinguishing what is important
from what is irrelevant can be approached from two
perspectives: top down and bottom up. Top down, what
is important is related to behavioral goals. The intelligent
system is driven from high-level goals to focus attention
on objects specified by the task, using resources identified
by task knowledge as necessary for successfully
accomplishing task goals. Top down goals and high level
perceptions generate expectations of what should be
encountered during the evolution of the task.

Bottom up, what is important is the unexpected,
unexplained, unusual, or dangerous. The lower level
sensory perception functions detect variations between what
is expected and what is observed. These low level error
signals are processed first by control laws in behavior
generating modules in lower level nodes that generate
corrective actions to bring the process back on track.
However, if low level reactive control laws are incapable of
resolving the differences between expectations and
observations, errors filter up to higher levels where plans
may need to be revised and goals restructured. The lower
levels also compute attributes of signals or images that
may indicate problems or emergency conditions, such as
limits being exceeded on position, velocity, acceleration,
vibration, pressure, force, current, voltage, or thermal
sensor signals.

In either case, hierarchical layering provides a
mechanism for focusing the computational resources of the
lower levels on particular regions of time and space.
Higher level nodes with broad perspective and long
planning horizon determine what is important, while the
lower levels detect anomalies and attend to details of
correcting errors and following plans. In each node at each
level, computing resources are committeed to issues
relevant to the decisions that must be made within the
scope of control and time horizon of that level.

At the top of the hierarchy, categorical imperatives
influence the selection of goals and the prioritization of
tasks throughout the enterprise. At intermediate levels,
tasks with goals and priorities are received from the level

above, and sub tasks with sub goals and attention priorities
are output to the level below.

At each level, global goals are refined and focused
onto more narrow and higher resolution sub goals. At each
level, attention is focused into a more narrow and higher

resolution view of the world. The effect of each
hierarchical level is thus to geometrically refine the detail
of the task and the view of the world, while only linearly

O
PE

R
A

T
O

R
 I

N
T

E
R

FA
C

E

SP WM BG

SP WM BG

SP WM BG

SP WM BG

Points

Lines

Surfaces

SP WM BG SP WM BG

SP WM BG

0.3 second plan
Tool trajectory

3 second plans
Subtask on object part
Obstacle-free paths

SP WM BGSP WM BG

SP WM BGSP WM BG SP WM BG

SERVO

PRIMITIVE

E-MOVE

CELL

SHOP

SENSORS AND ACTUATORS

Plans for next hour

Plans for next day

0.03 second plan
Actuator output

SP WM BGSP WM BG SP WM BG SP WM BG SP WM BG SP WM BG SP WM BG SP WM BG

Objects

Tool MotionCommunication Part Handling

MACHINE

WORKSTATION

Plans for next 30 seconds
Task to be done on one object

Plans for next 5 minutes
Tasks to be done of tray of parts

Batches

Orders

Trays of parts and tools

Inspection

Figure 2 . The RCS reference model architecture for an intel l igent machining center.
Processing nodes are organized such that the BG modules form a command tree. Information in the KD is shared
between WM modules in nodes within the same subtree. KD modules are not shown in this figure. On the right,
are examples of the functional characteristics of the BG modules at each level. On the left, are examples of the
type of entities recognized by the SP modules and stored by the WM in the KD knowledge database at each level.
Sensory data paths flowing up the hierarchy typically form a graph, not a tree. VJ modules are hidden behind WM
modules. An operator interface provides input to, and output from, modules in every node.

increasing the computational power required of the
intelligent system.

At the bottom of the hierarchy and external to the
control system, are actuators that act on the world
environment, and sensors that transform events in the
world into information signals for the control system. The
external world environment contains a variety of real
objects, such as materials, tools, machines, and fixtures as
well as other intelligent agents, and forces of nature, all of
which have states and may cause events and situations to
occur.

The generic node illustrated in Figure 1 can be used to
construct a distributed hierarchical RCS reference model
architecture. Depending on where the generic node resides
in the distributed hierarchical structure of the RCS

architecture, it might serve as an intelligent controller for
an actuator, a subsystem, a production machine, a
workstation, a manufacturing cell, a shop, or facility. Or
it might represent the functionality of a human operator,
worker, or management unit at any level in the corporate
enterprise.

An example of an RCS reference model architecture
for an individual intelligent machine (a flexible machining
center) is shown in Figure 2. This diagram consists of a
hierarchy of control nodes, each of which contain modules
corresponding to the functional elements illustrated in
Figure 1. Each node consists of a behavior generation
(BG), world modeling (WM), sensory perception (SP), and
knowledge database (KD) module (not shown in Figure 2.)
Most nodes also contain a value judgment (VJ) module
(hidden behind the WM module in Figure 2.) Each of the

nodes is, therefore, an intelligent controller. An operator
interface may access modules in all nodes at all levels.

Figure 2 illustrates a machining center with four
subsystems: tool motion, part handling, communication,
and inspection. Each of the four subsystems have one or
more mechanisms, each having one or more actuators and
sensors. For example, the manipulation subsystem may
consist of a spindle and tool path controller with several
axes of continuous-motion path control, plus a tool
changer consisting of a tool carousel and a manipulator,
each having two or more actuators and sensors. The part
handling subsystem might be a pallet feeding mechanism,
which consists of a conveyor and buffer, pallet shuttle, and
a pair of turn tables. The communication subsystem
might consist of a message encoding subsystem, a protocol
syntax generator, and communications bus interface. The
inspection subsystem might consist of mechanisms that
use cameras and touch probes to detect and track objects,
surfaces, edges and points, and compute trajectories for
probe drive motors, and pan, tilt, and focus actuators.

The operator interface provides the ability for the
operator to start or stop the system at any time, to single
step, to override the feed rate of the motion controller, to
actuate or monitor any of the tool change or pallet feeding
mechanisms. Using the operator interface, a human
operator is able to run diagnostic programs in the case of
failures, display control programs (plans) while they are
being executed, generate graphics images of tool paths,
display volumes to be removed from parts by NC
programs, and portray shaded color images or wire frame
models of parts with dimensions and tolerances indicated
with overlays.

In Figure 2, three levels of control are shown above
the node representing the individual machine controller.
This represents the chain of command that exists in the
manufacturing environment above the individual machining
center. There, of course, may be more than three levels
above the machine. In Figure 2, the nodes at the upper
levels may have the same degree of branching that exists at
the lower levels, but this is not shown in order to simplify
the diagram.

The horizontal curved lines between WM modules
represent the sharing of state information between nodes
within sub trees in order to synchronize related tasks.

The functionality of each level in the RCS reference
model hierarchy is defined by the characteristic timing,
bandwidth, and algorithms chosen for decomposing tasks
and goals at each level. Typically these are design choices
that depend on the dynamics of the processes being
controlled. The numbers shown in Figure 2 are
representative of those appropriate for a machining center.

For other types of systems, different numbers would be
derived from different system design parameters.

Applications

Over the past two decades, the RCS architecture has
been used in the implementation of a number of
experimental projects. These include:

A Horizontal Machining Workstation

This project was part of the NBS Automated
Manufacturing Research Facility (AMRF) (Albus, et al.,
1982). It implemented an intelligent control system for a
robot with a structured-light machine-vision system, a
machine tool, an automatic fixturing system, and a pallet
shuttle. The robot included a quick change wrist, a part
handling gripper with tactile sensors, and a tool handling
gripper for loading and unloading tools in the machine tool
magazine. The discrete event elements were represented as
state-tables, and a wide variety of sensory interactive
behaviors were demonstrated. These included locating and
recognizing parts, determining the orientation of parts
presented in trays, and automatically generating part
handling sequences for part and tool loading and unloading
(Wavering and Fiala, 1987).

A Cleaning and Deburring Workstation

This project was also part of the AMRF. It included
two robots, a set of buffing wheels, a part washer/dryer
machine, and a variety of abrasive brushes. Part geometry
was input from a CAD database. Deburring parameters
such as forces and feed rates were selected from a menu by
an operator. Discrete event part handling sequences were
automatically planned and executed for loading parts in a
vise, and turning parts over to permit tool and gripper
access. Continuous force sensing and control algorithms
were used to modify the planned paths so as to compensate
for inaccuracies in robot kinematics and dynamics
(Murphy, et al., 1988.)

An Advanced Deburring and Chamfering System

This project integrates off-line programming, real-
time control, and active tool technologies in a hybrid
control system. It automatically grinds precision chamfers
on complex parts manufactured from hard materials such as
aircraft jet engine components. The workstation consists
of a grinding tool mounted on a micro positioner with
computer controlled force and stiffness parameters,
integrated with a 6 degree-of-freedom robot, and an indexing
table for part fixturing. Part geometry is derived from

standard IGES CAD data formats. Edge selection is
performed by a human operator. Required tool force is
automatically generated by formula using the cutting depth,
feeds, and speeds input by the operator. Under a
cooperative research and development agreement, a
prototype production cell is currently being tested at Pratt
& Whitney’s East Hartford, CT site (Stouffer, et al.,
1993.)

NBS/NASA Standard Reference Model Architecture
for the Space Station Telerobotic Servicer (NASREM)

This project was sponsored by NASA Goddard Space
Flight Center. NASREM was used by Martin Marietta to
develop a control system for the space station telerobotic
servicer. NASREM compliant algorithms have been
developed for force servoing, impedance control, and real-
time image processing of robotic and telerobotic systems at
NIST, Martin Marietta Denver, Lockheed Palo Alto,
Goddard, and at a number of university and industry labs in
the United States and Europe (Albus, et al., 1989.)

Coal Mining Automation

This project transferred the RCS architecture and
methodology to a team of researchers in the U.S. Bureau of
Mines, and in turn, to the commercial mining industry. A
comprehensive mining scenario was developed starting
with a map of the underground region to be excavated, the
machines to be controlled, and the mining procedures to be
applied. Based on this scenario, a hybrid control system
with simulation and animation was designed, built, and
demonstrated. The same control system was later
demonstrated with an actual mining machine and sensors
(Huang, et al., 1991.)

An Nuclear Submarine Maneuvering System

This ARPA sponsored project demonstrated the
design and implementation in simulation of maneuvering
and engineering support systems for a 637 class nuclear
submarine. The maneuvering system involves an
automatic steering, trim, speed, and depth control system.
The system demonstrated the ability to execute a lengthy
and complex mission involving transit of the Bering
Straits under ice. Ice avoidance sonar signals were
integrated into a local map using a CMAC neural network
memory model (Albus, 1975). Steering and depth control
algorithms were developed that enabled the sub to avoid
hitting either the bottom or the ice while detecting and
compensating for random salinity changes under the ice by
making trim and ballast adjustments. The submarine
engineering support system demonstrated the ability to
respond to an emergency such as a lubrication oil fire by
reconfiguring ventilation systems, rising in depth to
snorkel level, and engaging the diesel engines for
emergency propulsion (Huang, et al., 1993.)

A U.S. Postal Service Automated Stamp Distribution
Center.

This RCS system demonstrated the ability to route
packages through a series of carousels, conveyors, and
storage bins, to maintain precise inventory control, provide
security, and generate maintenance diagnostics in the case
of system failure. The stamp distribution center was
designed and tested first in simulation and then
implemented as a full-scale system. The system contained
over 220 actuators, 300 sensors, and ten operator
workstations. An even larger and more complex RCS
system for controlling a general mail facility is still under
development (ATR Report, 1994.)

Multiple Autonomous Undersea Vehicles

This DARPA sponsored project developed an
intelligent control system for a pair of experimental
underwater vehicles designed and built by the University of
New Hampshire. The RCS control system included a real-
time path planner for sonar-guided obstacle avoidance, and a
real-time map builder for constructing a topological map of
the bottom. A series of tests was conducted in Lake
Winnipasaki during the fall of 1987 (Herman and Albus,
1988.)

Unmanned Ground Vehicles

Two versions of a RCS for unmanned ground
vehicles have been implemented on an Army HMMWV
light truck. One version enables the vehicle to be driven
remotely by an operator using TV images transmitted from
the vehicle to an operator control station. This version has
a retrotraverse mode that permits the vehicle to
autonomously retrace paths previously traversed under
remote control, using GPS and an inertial guidance system
(Szabo, et al., 1990.)

A second version has demonstrated the ability to drive
the HMMWV automatically using TV images processed
through a machine-vision system with a real-time model
matching algorithm for tracking lane markings. A World
Model estimate of the lane markings is compared to
observed edges in the image, and a new estimate is
computed every 15 milliseconds, with pipeline latency of
less than 150 milliseconds. The RCS real-time vision
processing system has enabled this vehicle to drive
automatically at speeds up to 100 km/hr (60 mph) on the
highway, and at speeds up to 55 km/hr (35 mph) on a
winding test track (Schneiderman and Nashman, 1994.)

Planning and Control for a Spray Casting Machine.

The RCS architecture has been applied for planning
and control of the automated Spray Casting Machine
“OSPREY” which has been developed and manufactured by
MTS Corporation (Minneapolis, MN) in cooperation with

Drexel University. The system has three levels of
resolution (Cleveland and Meystel, 1990.)

An Autonomous Mobile Vehicle.

An autonomous vehicle was assembled and tested by
Drexel University in 1984-1987. The goal of the effort
was to investigate the RCS architecture with four levels of
resolution: “Planner-Navigator-Pilot” on the top of the
lower level control of steering and propulsion (Meystel,
1991.)

An Open Architecture Enhanced Machine Controller

The RCS reference model is currently being used as
the basis for an open architecture Enhanced Machine
Controller (EMC) for intelligent control of manufacturing
equipment, such as machine tools, robots, and coordinate
measuring machines. A prototype EMC has been installed
and is being evaluated in the General Motors Powertrain
prototype production facility in Pontiac Michigan under a
DoE-TEAM/NIST-EMC government/industry consortium.
The goal of this effort is to develop application program
interface (API) standards for open architecture controllers
(Proctor and Michaloski, 1993.)

Current work at NIST and elsewhere is pursuing more
complex implementations of RCS. Work is also in
progress to develop an engineering design methodology and
a set of software engineering tools for developing RCS
systems.

References

Albus, J.S., McLean, C.R., Barbera, A.J. and Fitzgerald, M.L.
(1982). Architecture for Real-Time Sensory-Interactive
Control of Robots in a Manufacturing Facility. Proceedings of
the Fourth IFAC/IFIP Symposium -- Information Control
Problems in Manufacturing Technology.

Albus, J.S., McCain, H.G., and Lumia, R. (1989).
NASA/NBS Standard Reference Model for Telerobot Control
System Architecture (NASREM). NISTTN 1235, National
Institute of Standards and Technology, Gaithersburg, MD.

Albus, J.S. (1991). Outline for a Theory of Intelligence. IEEE
Transactions on Systems, Man and Cybernetics, Vol. 21, No.
3, pp. 473-509

Albus, J.S. (1993). A Reference Model Architecture for
Intelligent Systems Design. In: An Introduction to Intelligent
and Autonomous Control, (Antsaklis, P.J., and Passino, K.M.,
(Ed.)), pp. 27-56, Kluwer Academic Publishers, Boston

ATR Report. (1993) Stamp Distribution Network, USPS
Contract Number 104230-91-C-3127 Final Report, Advanced
Technology & Research Corp, Burtonsville, MD., 20866-
1172

Cleveland, B., Meystel, A. (1990). Predictive Planning +
Fuzzy Compensation=Intelligent Control. Proceedings of the
5th IEEE International Symposium on Intelligent Control,
Philadelphia, PA.

Herman, M. and Albus, J.S. (1988). Overview of the Multiple
Autonomous Underwater Vehicles (MAUV) Project.
Proceedings of IEEE International Conference on Robotics and
Automation, Philadelphia, PA.

Huang, H.M., Quintero, R. and Albus, J.S. (1991). A
Reference Model, Design Approach, and Development
Illustration toward Hierarchical Real-Time System Control for
Coal Mining Operations. In: Advances in Control & Dynamic
Systems, (C.T. Leondes (Ed.)), V o l . 4 6 , p a r t 2 o f 5 , pp.
173-254 Academic Press, San Deigo, CA.

Huang, H.M., Hira, R. and Quintero, R. (1993). A Submarine
Maneuvering System Demonstration Based on the NIST Real-
Time Control System Reference Model. Proceedings of the 8th
IEEE International Symposium on Intelligent Control,
Chicago, IL.

Meystel, A. (1991). Autonomous Mobile Robots: Vehicles
with Cognitive Control, World Scientific, Singapore

Meystel, A. (1993). Nested Hierarchical Control. In: An
Introduction to Intelligent and Autonomous Control,
(Antsaklis, P.J., and Passino, K.M. (Ed.)), pp. 129-161,
Kluwer Academic Publishers, Boston

Murphy, K.N., Norcross, R.J. and Proctor, F.M. (1988).
CAD Directed Robotic Deburring. Proceedings of the Second
International Symposium on Robotics and Manufacturing
Research, Education, and Applications, Albuquerque, NM.

Proctor, F. and Michaloski, J. (1993). Enhanced Machine
Controller Architecture Overview, NISTIR 5331, National
Institute of Standards and Technology, Gaithersburg, MD.

Schneiderman, H. and Nashman, M. (1994). Visual Tracking
for Autonomous Driving. IEEE Transactions on Robotics and
Automation, V o l . 1 0 , N o . 6 , p.769-775

Senehi, M.K., Kramer, T.J., Michaloski, J., Quintero, R.,
Ray, S.R., Rippey, W.G., Wallace, S. (1994). Reference
Architecture for Machine Control Systems Integration:
Interim Report. NISTIR 5517, National Institute of Standards
and Technology, Gaithersburg, MD.

Stouffer, K., Michaloski, J., Russell, R. and Proctor, F.
(1993). ADACS - An Automated System for Part Finishing.
Proceedings of the IECON ‘93 International Conference on
Industrial Control and Instrumentation, Maui, Hawaii.

Szabo, S., Scott, H.A., Murphy, K.N. and Legowik, S.A.
(1990). Control System Architecture for a Remotely Operated

Unmanned Land Vehicle, Proceedings of the 5th IEEE
International Symposium on Intelligent Control,
Philadelphia, PA.

Wavering, A.J. and Fiala, J.C. (1987). Real-Time Control
System of the Horizontal Workstation Robot, NBSIR 88-
3692, National Institute of Standards and Technology,
Gaithersburg, MD.

