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Abstract
Motion boundary extraction and optical flow computa-

tion are two subproblems of the motion recovery problem
that cannot be solved independently of one another. We
present a local, non-iterative algorithm that extracts mo-
tion boundaries and computes optical flow simultaneously.
This is achieved by modeling a 3-D image intensity block
with a general motion model that presumes locally coher-
ent motion. Local motion coherence, which is measured by
the fitness of the motion model, is the criterion we use to de-
termine whether motion should be estimated. If not, then
motion boundaries should be located. The motion bound-
ary extraction algorithm is evaluated quantitatively and
qualitatively against other existing algorithms in a scheme
originally developed for edge detection.

1. Introduction

In this paper, the problem ofmotion recoveryis referred
to as involving two major subproblems:optical flow com-
putationandmotion segmentation. Optical flow computa-
tion quantitatively measures the motion associated with the
perceived objects; motion segmentation, on the other hand,
qualitatively distinguishes different moving objects. The
fact that they are dependent on each other has complicated
the general motion recovery problem.

Due to the aperture problem, early motion estimation al-
gorithms [15][16]usually enforced a smooth flow field as
an additional constraint. Recent approaches use spatio-
temporal filters [8][12][20], often with large support, to es-
timate image properties and then solve for optical flow. In
either case, on or near motion boundaries, this smoothing
or filtering renders the estimation incorrect. In other words,
motion estimation is not accurate until we know where the
boundaries are. On the other hand, motion boundaries are
defined as motion field discontinuities. Due to optical flow
error around motion boundaries, the requirement of a dense
flow field, and noise in the optical flow field, motion
boundaries are very difficult to extract and/or locate from
optical flow. Researchers have used other image cues, for
example, accretion and deletion[23], or normal flow [15],

to detect motion discontinuities, but they are not alwa
correct because they provide only partial information abo
the motion. In other words, motion boundaries cannot
located accurately without a dense and accurate opti
flow field.

Even though they are two aspects of a single proble
optical flow computation has received much more attenti
in the literature than motion boundary extraction. Existin
methods for motion boundary extraction are approach
through optical flow algorithms. A popular technique is t
use an iterative scheme that consists of two componen
optical flow estimation and motion boundary extraction
The basic idea is to refine both components’ resu
through iteration. This approach is time-consuming an
sometimes does not converge.

“Global” motion segmentation is one approach to th
problem. In our approach, however, “local” motion bound
ary extraction can be combined with optical flow in an a
gorithm for motion recovery. Our view is that local imag
properties provide abundant information and motion reco
ery should be performed locally[19].

The local image properties we use are image deriv
tives. With the aid of sufficient and accurate image deriv
tives, a motion-model-based approach to boundary extr
tion becomes possible. We describe a general motion m
el and derive linear motion equations in terms of imag
derivatives. Pixels whose image derivatives fit the mod
are locations where the motion is coherent, so the moti
can be estimated using the linear system. Those pixels t
do not fit the model represent failures of the motion mod
in describing the local motion. A failure of the model ca
best be attributed to multiple motions or motion boundari
existing in the local window used to estimate the imag
properties. Using a least square error method on the ov
determined linear system, a failure of the model is me
sured by the residual. An analysis of the residual is show
to reflect the likelihood of a motion boundary.

Using the residual for motion boundary extraction offe
several advantages over using flow. First, since the resid
is a scalar, it avoids the difficulty of handling vector field
discontinuities, yet provides equivalent information abo
1
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motion boundaries. Second, flow values on boundaries
not accurate and are very noisy, and thus require smooth
for boundary extraction. This extra smoothing may cau
localization error. Third, the residual is computed using
3-D motion model so that it corresponds to real motio
boundaries and is not susceptible to nonuniformity (e.
affinity) of flow within an object.

The appeal of a local, non-iterative approach lies in i
potential speed. However, its accuracy should not be co
promised. To measure the accuracy, we need an evalua
scheme to compare different motion boundary extracti
algorithms. Since many recent approaches combine opt
flow and motion boundary detection, evaluation has ofte
been performed based on the final optical flow. This has t
disadvantage of not distinguishing the source of erro
which may be due to inaccurate optical flow or inaccura
motion boundary location. In other words, evaluatio
based on segmented optical flow does not suggest a dir
tion for improvement. Hence, we apply here a quantitati
evaluation scheme only to motion boundary extractio
This scheme was originally developed for edge detecti
[14]. The results will demonstrate that our algorithm lo
cates boundaries more accurately than two representa
existing algorithms.

2. Previous Work

Braddick’s psychological experiments on random d
motion [4] set the stage for vision research on motio
boundaries. It verified the human visual capability of pe
ceiving motion boundaries clearly without any other visu
cues such as texture. Table 1 summarizes the existing w
on motion boundary extraction or segmentation. A detail
comparisons of these methods can be found in [21].

Early research on motion boundary extraction or motio
segmentation can be roughly characterized as based o
non-iterative approach. These algorithms can be put in
three categories [7][28] based on whether the moti
boundary extraction is performed prior to, simultaneous
with, or after the flow field estimation (Refer to Table 1).

The iterative method for motion recovery is an approa
2

Table 1 Summary of current motion boundary extracti

Non-iterative schemes

Motion boundary extraction vs.
flow estimation Algorithm by

Prior to Hildreth [15], Spoerri & Ullman [

Simultaneous with Mutch & Thompson [23], Schu
[26], Shizawa & Mase [27]

After Potter [25], Nakayama & Loom
[24], Adiv [1], Thompson, Mutch,

Berzins [29], Dengler [7]
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developed more recently. It has both optical flow estim
tion and segmentation components. These components
teract with each other and improve their individual resul
during the course of the iteration. Pyramid linking, Marko
random fields with line processes, tracking plus nullin
techniques, and robust estimation have been proposed (
fer to Table 1). Iterative methods tend to be more accura
than non-iterative methods, but they have two major pro
lems. The first is the high computational load; the seco
is that the convergence rate depends on the scene, no
and motion. Moreover, some of these algorithms may n
converge at all.

3. Motion-Model-Based Boundary Extraction

The basic idea of our motion-model-based boundary e
traction method is to fit the local image properties with
general motion model. The necessary elements of
scheme are a general motion model which is based on a
trary 3-D motion; an accurate estimate of image propertie
for which we use image spatio-temporal derivatives; and
procedure to measure the fitness of the image propertie
the motion model. The following subsections briefl
present the derivations of these three elements; the det
can be found in [19]and [20].

3.1 The general motion model

Here we describe an image motion model and an ima
motion equation that relates the spatio-temporal derivativ
of the image intensity patterns in a sequence. Let a 3

point in the scene undergo steady sma

rotation and translation per

unit time. Using the 3-D motion transformation matrix

, where , (1)

P X Y Z, ,( )T=

ΩX ΩY ΩZ, ,( ) TX TY TZ, ,( )

M

X'

Y'

Z'

1

M

X

Y

Z

1

= M

1 ΩZ– ΩY TX

ΩZ 1 ΩX– TY

ΩY– ΩX 1 TZ

0 0 0 1

=

Iterative schemes

Technique Algorithm by

28] Pyramid linking Hartley [10]

nckMarkov random field with
binary line processes

Koch, Marroquin & Yuille [18], Murray &
Buxton [22], Heitz & Bouthemy [13]

is
 &

Tracking & nulling Bergen, et al. [3]

Robust estimation Darrel & Pentland [6], Jepson & Black [17]
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Under perspective projection with focal length and
with the small motion assumption, we arrive at the image
motion equation (3) from the brightness constancy relation,
i.e., ,

(3)

where . (4)

For a detailed derivation, refer to [19]. From this equa-
tion, we see that the image motion is quadratic with respect
to local coordinates. However, it is linear in terms of the six
motion parameters . To further simplify, we
assume small rotation and reasonably long focal length.
Equation (3) reduces to a linear image motion model with
four motion parameters ,

. (5)

Note that are related to image flow, to diver-

gence and to curl. Equation (5) will be used in the fol-
lowing derivation.

3.2 Hermite polynomial differentiation filters

Thenth Hermite polynomial  is a solution of

. (6)

The  are derived by Rodrigues’ formula [11]

. (7)

By substituting (with variance ) for in
(7), we generalize to Hermite polynomials with respect to
the Gaussian function. Let these Hermite polynomials be

denoted by . The scalar product of two functions

and the L2-norm of a function withG(x) as a weight func-
tion are defined as:

 and . (8)

The orthogonality of { } can be expressed in the

following way[11]:

, (9)

The 3D case of Hermite polynomials is especially sim
ple because they are separable:

(10)

We use the following Gaussian derivative theorem
derive motion constraint equations.

Theorem 1: A one dimensional signal can b
expanded in terms of Hermite polynomials as

(11)

Then , where .

Expand both sides of equation (5) with Hermite polyno
mials,

 then

(12)

Equating to and using Theorem 1, we deriv

(see [19] for details)

. (13)

Neglecting higher order Gaussian derivatives due
their relatively small magnitude and potential inaccurac
we further simplify to

(14)

We use motion equation (14) in a linear least square fo
mulation,

, where ;  and
consist of image spatio-temporal derivatives. (1

It is necessary that we derive the motion constrai
equations up to the third order for the purpose of motio
boundary extraction because we need to have more c
straints than unknowns to obtain a least square formulat
and compute the residual, in (15). Since the 3-D Herm
polynomial filters are orthogonal Gaussian derivative
they are very stable up to this order.

3.3 Residual for boundary extraction

The residual measures the amount of disagreem
among the equations in a linear system. If these equatio
are derived from a mathematical model, then the residu
reflects the deviation from the underlying assumptions
the model. In our case, the assumptions are brightness c

P t( )
1

Mt P 0( )
1

=

f

I x t( ) y t( ) t, ,( ) I x0 y0 0, ,( ) F x0 y0,( )= =

I x y t, ,( ) F x t α γx ρy δx2 εxy+ + + +( )+
y t β ρx– γy δxy εy2+ + +( )+,

(
)

=

α f
TX

Z
------ ΩY+ 

 –= β, f
TY

Z
------ ΩX– 

 –=

γ
TZ

Z
------ ρ, ΩZ δ, 1

f
---– ΩY ε, 1

f
---ΩX= = = =

α β γ ρ δ ε, , , , ,

α β γ ρ, , ,
I x y t, ,( ) F x t α γx ρy+ +( )+ y t β ρx– γy+( )+,( )=

α β,( ) γ
ρ

Hn x( )

x2

2

d

d Hn 2x
xd

dHn– 2nHn+ 0=

Hn x( )
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2
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n

d

d
e x

2–=
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∞

∫≡ a a a,〈 〉1 2⁄≡

Hn x( )
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stancy and local coherent motion. Our motion boundary
extraction algorithm is based on the analysis of the rela-
tionship between the residual and the motion boundary.

The residual of our algorithm is . The
residual error results from the approximation errors of our
computational model in describing the physical world.
Specifically, these errors are:

1. The assumption of the motion model is violated in the
local window, i.e., the window covers more than one
moving object.

2. The assumption of constant image brightness is vio-
lated, i.e., the image intensity pattern changes over
time due to sensor noise, change in the viewing angle,
shadows, etc.

3. Quantization errors result from digitization of the
image intensities and sampling of the Hermite polyno-
mial filters. Truncation errors are introduced when we
use a limited spatial support to compute { }. This

situation is worse for higher order differentiation fil-
ters.

Hence we can model the above errors as perturbations or
noise to the linear system [20]:

, where and  de-
note errors in the filter output. (16)

We derive the analytical relationship between the resid-
ual and the errors as follows. Let and , defined in (15),
contain no noise. Then

 and . (17)

Let the noise contaminated optical flow be and the

new residual be , and assume that and el-

ementwise, i.e.,  and . Then

, (18)

(19)
From (18) and (19), we derive

(20)

Using (17), we derive

. (21)

Substituting  into (16), and using (17), we derive

(22)
Further analysis shows that the expression

, denoted by , has only two nontrivial

eigenvalues, both 1. We thus conclude that is propor-
tional to the noise magnitude.

But in order to use the residual to extract boundaries w
still need to separate the residual error induced by moti
boundaries from that by other sources. To do this, we o
serve the residual profile, as explained below.

Fig 1.1 shows a motion boundary neighborhood.

dashed square represents a local window used to estim
image derivatives and the residual for the center pixel. B
sliding the window across the boundary, we can compu
and plot the residual profile. A typical residual profile is
shown in Fig 1.2. It has a plateau centered around the m
tion boundary because only in that plateau region does
local window cover the boundary.

Brightness changes and quantization errors, on the ot
hand, are usually scattered in the image and not likely
output residual profiles similar to those of motion bound
aries. Also, since residuals arising from motion boundari
are usually larger than those arising from the other tw
sources, their profiles should be very prominent.

Based on the above findings, we can extract motio
boundaries using spatial filters designed according to Ca
ny’s criteria [5] for wide ridge edge detection. The maxim
of the two responses are thresholded to form thick boun
aries. On the thick boundaries, we perform a morphologic
medial axis operation or skeletonization[9] to extract th
center loci of the boundaries. Some simple pruning a
contour following are then done to prevent streaking.

4. Experiments, Evaluations and Conclusion

It is important to evaluate motion boundary extractio
separately from optical flow. It makes clear what compo
nent of the motion recovery algorithm needs improving.

We use Heyden’s quantitative method of evaluatio
[14] because it offers several advantages: first, it penaliz
long streaking, i.e., large gaps of missed boundaries; s
ond, it penalizes thick edges; third, there is no need to p
form a search for correspondences between detected
ground truth motion boundaries. In this scheme, a smal
performance measure represents a better result, with z
as the minimum.

In order to make comparisons, we also implemented
gorithms developed by Schunck [26] and Thompson, et

E min As b+=

I ijk

Ẽ min A N+( )s̃ b ∆b+( )+= N ∆b

A b

E As b+ 0= = s AT A( ) 1–
ATb–=

s̃

Ẽ N A« ∆b b«

NNT 0= N∆b 0=

s̃ A N+( )T A N+( )[ ] 1– A N+( )T b ∆b+( )–=

A N+( )T A N+( )[ ] 1– AT A I AT A( ) 1– ATN NT A+( )+[ ]( ) 1–≈
I AT A( ) 1– ATN NT A+( )–[ ] AT A( ) 1–≈

s̃ AT A( ) 1– ATb–
AT A( ) 1– ATN NT A+( ) AT A( ) 1– ATb
AT A( ) 1– NTb AT A( ) 1– AT∆b––

+
≈

∆s s s̃– AT A( ) 1– ATNs AT A( ) 1– AT∆b+≈=

s̃

Ẽ A N+( )s A AT A( ) 1– ATNs A AT A( ) 1– AT∆b– b ∆b+ +–≈

I A AT A( ) 1– AT–( ) Ns ∆b+( )≈

I A AT A( ) 1– AT– T

Ẽ

Fig 1.2 Typical resid-
ual profile across

boundary

Fig 1.1 Sliding window
across boundary
4
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[29]. In implementing Schunck’s algorithm, we used 3-D
Hermite polynomial filters to compute first order deriva-
tives and perform constraint line clustering to estimate op-
tical flow. The Canny edge detector is applied to the flow
components to find motion boundaries. In implementing
Thompson’s algorithm, we used Lucas & Kanade’s algo-
rithm implemented by Barron, et al. [2]. The initial flow
output is not dense, so we implemented a propagation and
smoothing technique to fill the field. We then use the vector
field discontinuity detector suggested in [29], i.e., direction
reversal of the Laplacian response of the flow vector field,
to locate motion boundaries.

Fig 2.1 shows the first image we used. It is a sequence

composed of a baby face traversing laterally in front of a
moving random dot background. The approximate flow
map and the motion boundary ground truth are shown in
Fig 2.2 and Fig 2.3, respectively. This image sequence is
synthesized so as to contain curved motion boundaries,
which are common in real world scenes but present diffi-
culties for motion boundary extraction algorithms.

Fig 3.1-Fig 3.3 show our algorithm’s residual map and
Schunck’s and Thompson’s flow fields. They represent the
bases upon which these algorithms extract boundaries. Th-

ompson’s flow field (Fig 3.3) is smooth across boundaries
as expected, while Schunck’s flow field (Fig 3.2) is noisier
right on boundaries but more accurate near boundaries.

Next we show the detected boundary and true motion
boundary for the three algorithms. In Fig 4.1-Fig 4.3, the
dark edge represents the true motion boundary while the
white edge represents the detected boundary. These images
are obtained by subtracting the ground truth boundary im-
age from the detected boundary image as dictated by Hey-

den’s evaluation scheme.

In Fig 4.2, it can be seen that Schunck’s algorithm su
fers from boundary drift caused by noise on the bounda
as well as localization errors in the corners, as mentioned
[26]. On the other hand, when the motion boundary is
straight line, Schunck’s algorithm performs better than th
other two. In Fig 4.3, it can be seen that Thompson’s alg
rithm suffers from flow noise away from boundaries. Sinc
it uses a direction reversal technique similar to zero cros
ings, spurious edges are detected. Otherwise, the local
tion is very good. Our algorithm’s boundary is better at co
ners and essentially free of the major problems of the oth
two. Table 2 summarizes the quantitative performan
measure computed by Heyden’s evaluation scheme a
shows that our algorithm is better than the other two.

The next image we use is the Yosemite fly-by sequen
in which two prominent motion boundary curves exist. On
separates the sky from the mountains, and the other se
rates the domed mountain in the lower left corner from th
other mountains. The boundary ground truth is not ava
able. Fig 5.1-Fig 5.3 show the results of the three bounda
extraction algorithms overlaid on the original image. Th
white edge points represent the extracted boundaries.

Note that the boundaries that separate sky and mo
tains are easier to extract because the motion directions
different on the two sides. All three algorithms indeed ex
tract these boundaries. However, the other boundary is
as easy to extract because the motions on the two sides

Fig 2.1 Moving
face on random

dots

Fig 2.2 Approxi-
mate flow field

Fig 2.3 Mo-
tion bound-

ary

Fig 3.1 Residu-
al map

Fig 3.2
Schunck’s flow

field

Fig 3.3 Thomp-
son’s flow field

Table 2 Summary of quantitative performance measure

Comparison
Algorithms

Our
Algorithm

Schunck’s
Algorithm

Thompson’s
Algorithm

Performance measure 5.85 7.86 10.32

Fig 4.1 Our
algorithm’s
boundary

Fig 4.2
Schunck’s
boundary

Fig 4.3
Thompson’s

boundary

Fig 5.1 Our
algorithm’s

result

Fig 5.2
Schunck’s

result

Fig 5.3
Thompson’s

result
5
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in the same direction but have different magnitudes. Note
that this kind of motion field is typical in image sequences
captured by a forward moving observer. In Fig 5.2
Schunck’s algorithm fails to extract these boundaries be-
cause the noise on both sides overwhelms the small varia-
tion in flow. In Fig 5.3 Thompson’s algorithm fails to ex-
tract these boundaries because the presmoothing and filling
of the sparse field smooths out the small flow variation. On
the other hand, our algorithm extracts a large part of this
boundary curve (Fig 5.1).

Our method offers the capability of segmenting moving
objects with not only different flows, but also different di-
vergences (e.g. in the Yosemite sequence), or curls. This is
because in our general motion model formulation, the re-
sidual values account for incoherence in flow , di-

vergence  and curl .
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