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Abstract

This paper is concerned with the task of visual motion-
based navigation. A critical requirement of the task is the
ability to estimate 3-D depth and motion from visual infor-
mation. Recent studies have demonstrated that the relevant
cues are contained in motion parallax or optical flow from
which flow field divergence and hence time-to-contact can
be extracted. We present a new concept called image gradi-
ent evolution (IGE), which utilizes the change of image
spatial gradients over time as a threat cue: an approaching
object induces 2-D expanding motion and causes the image
spatial structure to stretch so the image gradients decrease.
Based on this idea, our method offers a one-step solution
directly from image gradients, instead of from optical flow
and its derived properties. We use a technique that is local
and linear so the implementation can be very fast. The
threat map is expectedly noisy but sufficiently informative,
as is seen in demonstrations on several real images. These
two aspects, fast implementation and useful qualitative in-
Sformation, provide a viable solution to navigational tasks.

1. Motivation

We start with a simple illustration to introduce the idea
of the image gradient evolution (IGE) and emphasize its
difference from the optical flow approach.

Fig 1.1 Approaching box

Fig 1.1 shows a diverging object in the image sequence.
Our goal is to obtain an algorithm that can warn the observ-
er of a potential collision.

Conventionally, optical flow is computed first and then
the first order flow field properties (diverging or converg-
ing) are used to characterize the underlying objects’ 3-D

motion. In our approach, however, the change of the image
gradients over time is computed. As illustrated in Fig 2, a
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Fig 2. 1-D image gradient evolution

decreasing image intensity gradient (slope) at an image
point over time signifies a diverging object. We wish to
avoid processing the noisy flow data when it is evident that
we can achieve the same result from IGE.

2. Previous Work

The looming effect is a major cue in biological vision
systems to sense danger (Schiff, et al.[23] ). Local motion
parallax is in turn a cue for looming or divergence
(Werkhoven & Koenderink{[27] ). Since time-to-contact is
related to both divergence and 3-D scene structure, solving
for time-to-contact is, in an exact sense, equivalent to re-
covering 3-D motion and structure. There is a plethora of
literature dealing with recovering 3-D motion and structure
from optical flow (Adiv[1], Bruss & Horn{4] , Negahdari-
pour & Lee[20]), image sequences (Broida &
Chellappa[3] ), or features (Negahdaripour & Horn[19],
Tsai & Huang[26] ). It is basically an ill-posed and nonlin-
ear problem. These methods usually use iterative optimiza-
tion techniques which are often time-consuming. However,
these reports have established, in theory, the feasibility of
imposing extra constraints and/or using derivatives of flow
to solve the problem. The intended precision of these quan-
titative methods is often an illusion due to the limit on ac-




curacy with which the input measures can be obtained (Th-
ompson & Kearney[25] ). Even accurate optical flow esti-
mation is still a difficult problem.

Due to the aforementioned imprecision, there have been
approaches to the avoidance of differentiating optical flow.
Integration theorems such as Green’s theorem (Poggio, et
al.[22], Cipolla, et al.[8]), Stoke’s theorem [22], and
Gauss’s theorem (Gupta[10] ) are used to estimate first or-
der flow parameters directly from image intensity
integrals{10] , image moments (and their temporal deriva-
tives) [8], or flow integrals[22]. The integration tech-
niques basically trade off noise sensitivity for smoothness,
which arises from a single motion assumption within the
integration contour. The key issue in this approach is to
prevent the integration contour from going across bound-
aries. So additional mechanisms, probably global, are re-
quired to segment images.

Another approach models the local motion with an af-
fine model. It uses higher order pointwise image deriva-
tives (Nagel[18], Werkhoven & Koenderink[27]) or
patchwise motion coherence (Campani & Verri [6] , Ber-
gen, et al.[2] ) techniques to solve for first order motion pa-
rameters. This approach is actually aimed at accurate flow
estimation and the reports make little mention of 3-D mo-
tion estimation.

Since the above two approaches do not model the 3-D
structure, they do not offer sufficient information to solve
for time-to-contact without additional constraints or differ-
entiations in the general case. It has been proved that only
the upper and lower bounds on time-to-contact can be de-
rived from the above information (Subbarao[24] }(Cipolla,
et al.[8] ). Meyer and Bouthemy{13] used temporal deriv-
atives on the first order parameters to circumvent the prob-
lem. Essentially it is equivalent to second order derivatives,
but Kalman filtering on the temporal derivatives makes the
result much smoother and more practical. However, a fast
implementation is relatively difficult.

Nelson & Aloimonos[21] were the first to use flow-
based information for navigation. Their algorithm com-
putes directional divergence, which is a second order flow
parameter, and can be very noisy. Coombs, et al.[9] em-
ployed flow divergence for real-time obstacle avoidance.
Their obstacle avoidance system currently appears to be the
fastest and most reliable one using flow divergence. In their
system, the time-to-contact is equivalent to divergence
when carefully controlling the camera so as to approxi-
mately translate in the direction of the optical axis. The
computation of divergence, however, is based on noisy
quantized flow and requires temporal integration in order
to interpret the result. Camus[7] implemented a real-time
algorithm for time-to-contact which is quite reliable. How-
ever, the application is limited by its restrictive assump-
tions about motion and surfaces. Kundur & Raviv[13] pro-

posed the use of an image quality measure for the visual
threat cue. Their method exploits the camera defocusing ef-
fect for navigation.

The major contribution of this paper is to pioneer the
idea of IGE and its use as a cue for threat during navigation.
Such a capability is embedded in a generalized 2-D motion
equation that also models expansion. An integrated spatio-
temporal filtering scheme is designed to estimate image de-
rivatives in a numerically coherent manner. Using these de-
rivatives, IGE and optical flow can quickly be estimated at
the same time in a fast manner.

3. Generalized Motion Model

The brightness constancy equation is often interpreted

in the following way:
VI = 0= I(x, y, 1) = F(x—ut, y-vt). )]

The first step in measuring IGE is to extend the image
motion model from simple 2-D translation to translation
plus expansion. A 3-D point at position P = (X, ¥, Z), un-
der perspective projection, projects to a point in the 2-D im-
age plane, (x, y),
x = fX/Z
y=fY/Z

Let there be relative 3-D translational motion
P(t) = (X+Uxt, Y + Uyt, Z— U,t) . Hence,

x(t) = f(X+Uyt)/(Z-Uyt)
y(t) = f(Y+Upt)/(Z-Ugzt)’
Brightness constancy (1) and (3) yield

I(x,y, t)=F(x(1—-[-]Z—g)—£LZ/1t , y(l— UTZt)—fTUYt) . @

3-D translation only is assumed for its simplicity since
3-D rotation has no Dbearing on expansion
(Koenderink[12] ). A general motion model that includes
rotation parameters can be found in (Liu, et al.[15] [16] ).

To understand the generalized motion equation better,
we describe equation (4) in the context of optical flow.

9x 9y\_ fUx Uzx  fUy Uzy
(u,v) = + , )( )
’0t) \Z-Uyt Z-Uyt Z—Uzt Z-Uyt
~(fUX+UZx fUY+UZy)
\z "z z "z

, where f is the focal length of the projection.(2)
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Let —Z be denoted by s, and (f X v ) by (p,q) .(6)

Rewntmg (4) and (5):
I(x,y,t) = F(x(1-5t)—pt, y(1—st)—q1) )]
(u,v) = (p+sx,q+5y). (8)

Equation (8) lays out the two components of optical
flow: (p, q), and (sx, sy). Since (sx, sy) = s(x,y), s is in-
terpreted as expansion. The translation component (p, q) is



induced only by (Uy, Uy) (6), and the expansion compo-
nent s only by U, (6). When s = 0, then (u,v) = (p,q)
and (7) reduces to (1).

The IGE is characterized by the following equation (re-
fer to [15] for details),

I(x, y, =(l- st)a—l(x ¥, 0), {y' _;g iﬁ)):’;f ©)

An image point (x', y') attime 0 moves to (x, y) at time
t. The two image gradients at the two instants are related
by (9). When s is positive, it means the object is approach-
ing (Uz>0,in (4)), and the slope is decreasing (1-sr<1).

This coincides with our previous observation in Fig 2. In
the extreme case, when st = 1,

1.2 and 7)5’;1()@ »=0. (10)

t ==
K] U,

In equation (10), ¢ is distance Z divided by speed U,

so is interpreted as the time-to-contact. It is clear that s
measures not only 2-D expansion, but also IGE and time-
to-contact. We can use it as a cue for visual threat.

Note that the focus of expansion (FOE) is predefined to
be at (0, 0) in (4). To complete the formulation, we modify
(7) and (8) to allow the FOE to be at an arbitrary location
(x()» yo) .

I(x,y, 1) = Fx-xX1 - st)-pt+xy -yl = st)-qt+yy) (11)
(u,v) = (p+s(x-xp), g +5(y=¥p)) - (12)

Note that equation (9) is derived based on the assump-
tion of a parallel frontal surface, i.e., the surface normal is
parallel to the optical axis. When the surface is not parallel
frontal, the IGE cannot be reliably interpreted for 3-D mo-
tion. However, in order to use IGE as a qualitative cue for
threat, our algorithm identifies other types of surfaces and
potential boundaries as outliers. A post-smoothing stage
then overwhelms the errors induced by the outliers. This
technique is reasonable because “divergence due to a rela-
tively distant object can be large, but only over a short dis-
tance in the image” (Nelson & Aloimonos[21] ).

4. Algorithm and Implementation

To facilitate the estimation of IGE in the framework of
the general motion model, a potent and stable image differ-
entiation filtering scheme is needed. The set of orthogonal
3-D Hermite polynomial filters is excellent for the task.

4.1 Hermite polynomials

The nth Hermite polynomial H,(x) is a solution of

2
dH, dH,
— -2x—"+2nH, = 0. (13)
dx dx

The H,(x) are derived by Rodrigues’ formula [11]

H(x) = (- 1)"e"_‘1,T : (14)

dx
2
By substituting G(x) (with variance 02) for e in
(14), we generalize to Hermite polynomials with respect to
the Gaussian function. Let these Hermite polynomials be

denoted by H,(x) . Then

Hu(x) = ( e )"H,,(ﬁs). (15)

The scalar product of two functions and the L,-norm of
a function with G(x) as a weight function are defined as:

1/2

(a,b)= fG(x)a(x)b(x)dx and |la|l = (a, a) (16)

The orthogonality of { H,(x) } can be expressed in the
following way[11] :
(Hm Hp) = 6 "'n3,,,,, a7
The 3D case of Hermite polynomials is especially sim-
ple because they are separable.

2n

4.2 Derivation of gradient constraint equations

We use the following Gaussian derivative theorem to
derive motion constraint equations.

Theorem 1: A one dimensional signal I(x) can be
expanded in terms of Hermite polynomials as

o ; Hi(x)
Ix) = Y Li=15 (18)
k=0 "Hk"2
3 k
Then I, = (I, Hy) = a® Hey , where 10 = ZTI"

Recall our motion model,
I(x,y,1) = F(x—xgX1 —st)-pr+xy vy -y -st)-qt+y,) (19)
Expand both sides with Hermite polynomials

2 Z Z "k"H,;]/jP = 2 Z Z Fuk"—tﬂhz then

i=0j=0k=0 i=0j=0k=0
Ly = (L Hig) = Fyp = (F, Hyp) (20)
Equating /;;; to F;;; and using Theorem 1, we derive

Iijl

=—ul;, l)jO_VIi(j+ 1)0—(1' +j)sl;;o where (u,v) are de-
fined in (12). 2n
The key concept in the derivation is the use of the recur-

sive relation of the Hermite polynomial (13) to obtain a lin-



ear equation of image derivatives, optical flow (u, v) and
IGE s[15] . Using 00, 01,10 for ij, we can derive three
equations up to the second order and solve the linear sys-
tem. Notice that both optical flow and the IGE can be com-
puted directly from the image derivatives. In our imple-
mentation, we use six equations up to the third order to
form a least square formulation. The reason is that the re-
sidual is an excellent reliability measure. In fact, if we con-
sider the residual as the extent to which the motion model
is violated, it can be used to indicate noise, non-frontal sur-
faces, and boundaries (Liu, et al.[17] ). Since s is noisy,
our implementation exploits smoothing with confidence
weighting, i.e., extra steps of smoothing on s with the re-
ciprocal of the residual as weighting. This smooths out
noise but prevents smoothing across boundaries. It also
overwhelms the errors due to non-frontal surfaces as long
as there is a portion within the object that is parallel frontal
or nearly parallel frontal.

5. Experiments

The following figures (Fig 3.-Fig 5.) show one image of
the sequence and its 3-D perspective threat map based on
IGE s. In the 3-D threat maps, elevation is used to depict
threat. The elevated area represents closer objects. The
threat value is thresholded to enhance 3-D structure percep-
tion. For example, in Fig 3, the cereal box stands out in the

background
\ cereal box

background

i

Fig 3. Threat map of the approaching box

center because most of the threat values within the box are
above the threshold; in Fig 4, the threat map is gradually el-
evated from the Yosemite valley to the mountain in the
lower left corner. The sky is perceived as mostly safe ex-
cept at some areas where the clouds change brightness ir-
regularly and deceive the algorithm. A navigation algo-
rithm can use this threat map to avoid heading towards the
lower left corner; in Fig 5, the metal plate in the lower left
corner is extracted; the Coke can and the platform in the
center are also partially visible; the pole on the right side is
visible at both of its ends. The fact that the metal plate is de-
tected and the hole remains intact demonstrates the effect

metal plate

Coke can

right pole

Fig 5. NASA sequence and threat map

of smoothing with confidence weighting. We are currently
working on a real-time implementation of the algorithm.
On 64x64 images, IGE without smoothing can be expected
to run at 3-4 frames per second on a HyperSparc 10 MP
board. The amount of confidence smoothing is dependent



on the image noise and may take a little more time than re-
quired for computing the IGE. Although the threat map is
noisy and currently its resolution is limited by noise and ir-
regular brightness changes, it already provides useful infor-
mation for navigation.

6. Conclusion

The use of the IGE eliminates the need to process noisy
optical flow. Image gradient evolution has been shown to
be a useful cue for threat. Our algorithm builds a dense
qualitative threat map based on IGE. For navigation, we
would rather compute useful information quickly than ex-
act information slowly. That is what our algorithm
achieves.
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