
The Engineering of Mind
James S. Albus

Intelligent Systems Division
National Institute of Standards and Technology

Gaithersburg, MD 20895
albus@cme.nist.gov

Abstract

While the mind remains a mysterious and
inaccessible phenomenon, many of the components
of mind, such as perception, behavior generation,
knowledge representation, value judgment, reason,
intention, emotion, memory, imagination,
recognition, learning, attention, and intelligence are
becoming well defined and amenable to analysis.
Progress is rapid in the cognitive and neurosciences as
well as in artificial intelligence, control theory, and
many other fields related to the engineering of mind.
A reference model architecture for intelligent systems
is suggested to tie together concepts from all these
separate fields into a unified framework that includes
both biological and machine embodiments of the
components of mind. It is argued that such a
reference model architecture will facilitate the
development of scientific models of mind.

1. Introduction

What is mind? What is the relationship between the
mind and the brain? What is thought? What are the
mechanisms that give rise to imagination? What is
perception and how is it related to the object perceived?
What are emotions and why to we have them? What is will
and how do we choose what we intend to do? How do we
convert intention into action? How do we plan and how do
we know what to expect from the future?

Until recently such questions could only be addressed
indirectly by subjective introspection, or by psychological
experiments in which the majority of the critical variables
cannot be measured or controlled. Only in the past half
century, since the invention of the electronic computer has it
become possible to approach these issues directly by
building machines and programs that exhibit some of the
mind’s essential qualities; such as the ability to recognize
patterns and relationships, to store and use knowledge, to
reason and plan, to learn from experience, and to evaluate
what is happening. This is a crucial step in the study of
mind, for it makes it possible to build mathematical models,
and conduct experiments where, at least in principle, all the
variables can be measured.

Research in neural nets, brain modeling, fuzzy systems,
and genetic algorithms is providing insight into learning and
the similarities and differences between neuronal and
electronic computing. Artificial intelligence and linguistics
are probing the nature of language. Image understanding has
developed into a field of its own. There has been significant
progress in rule based reasoning, planning, and problem
solving. Game theory and operations research have
developed methods for decision making in the face of
uncertainty. Autonomous vehicle research has produced
advances in real-time sensory processing, world modeling,
navigation, and locomotion. Research in robotics and
automated manufacturing has produced intelligent
hierarchical controls, distributed databases, representations of
object geometry, process plans, and material properties.
Control theory has developed precise understanding of
stability, adaptability, and controllability under various
conditions of feedback and noise. Powerful mechanisms
have been developed for parallel processing, recursive
estimation, and focusing of attention. Engineering
solutions exist for fusing sensory input from multiple
sources, and assessing the believability of noisy data.

Since the 1950’s, a wide variety of robotic systems have
been designed and built -- from experimental laboratory
vehicles that wander about, follow walls, and pick up sundry
items, to precision assembly systems that use vision to
acquire parts and Computer Aided Design (CAD) models to
plan motions. Many approaches have been explored and
various architectures designed, from subsumption and neural
nets, to SOAR [Rosenbloom et al. 93] and RCS [Albus
96]. Entire factories have been automated and products as
complex as the Boeing 777 aircraft containing over three
million parts have been designed and engineered entirely in
software, without physical mockups.

Progress is also rapid in the cognitive and neurosciences.
Neuroanatomy is producing maps of the interconnecting
pathways of the brain. Neurophysiology is determining
how neurons compute functions and communicate
information. Neuropharmacology is discovering many of
the transmitter substances that modify value judgments,
compute reward and punishment, motivate behavior, and
produce learning. Psychophysics provides clues as to how
humans and animals perceive objects, events, time, and
space, and reason about relationships. Behavioral

psychology is creating models of mental and emotional
development and behavior.

While the mind itself remains a mysterious and
inaccessible phenomena, many of the components of mind,
such as perception, behavior generation, knowledge
representation, value judgment, reason, intention, emotion,
memory imagination, recognition, learning, and intelligence
are becoming well defined and amenable to analysis.
Progress is rapid, and there exists an enormous and rapidly
growing literature in each of the above fields. What is
lacking is a general theoretical model which ties all these
separate areas into a unified framework that includes both
biological and machine embodiments of the components of
mind. In 1991, I published an outline for a general theory
of intelligence [Albus 91]. This theory was expressed in the
notation of the Real-time Control System (RCS) developed
at NIST and elsewhere for the design of intelligent control
systems [Albus 96]. In this paper, I will illustrate how
many of the concepts developed for intelligent machines
apply to biological intelligence and suggest how engineering
principles might be developed for the design and analysis of
practical intelligent systems.

2. The Fundamental Elements

In any scientific endeavor, it is necessary to precisely
define concepts and clearly state assumptions. I therefore
begin with some axioms and definitions.

Axiom 1: The functional elements of an intelligent
system are behavior generation, sensory perception, world
modeling, and value judgment.

 Df: behavior generation (BG)
the planning and control of action designed to achieve

behavioral goals.

Behavior generation organizes the response of a
collection of agents to task commands. Behavior generation
accepts task commands with goals, objects, and priorities.
It decomposes tasks into jobs and assigns jobs and resources
to agents. It formulates and selects plans and develops
schedules for possibly coordinated actions by agents. It
executes plans and reacts to feedback so as to follow plans in
spite of local perturbations and unexpected events. Finally,
behavior generation produces output commands that are
either decomposed further, or act directly on the
environment.

Df: planning
a process that:

1. assigns responsibility to agents for jobs, and
allocates resources to agents for performing their
assigned jobs,

2. hypothesizes strings of actions (plans) for agents
from a vocabulary of possible actions to accomplish
jobs,

3. simulates and predicts the results of executing these
hypothesized plans,

4. evaluates the predicted results of the hypothesized
plans,

5. selects the hypothesized plan with the most
favorable results for execution.

The planning process may use either a heuristic or an
exhaustive search strategy for synthesizing hypothesized
plans. Heuristic strategies may include the selection of
previously generated plans from a library.

Df: agent
a set of computational elements that plan and control the

execution of jobs, correcting for errors and perturbations
along the way.

An agent may servo its output to follow a planned
trajectory, or may sequence discrete actions and branch on
conditions. An agent also assigns jobs and resources to
subordinates. The computational elements in an agent may
include sensory perception, world modeling, and value
judgment functions and a knowledge database.

Df: sensory perception (SP)
the transformation of data from sensors into meaningful

and useful representations of the world.

Sensory perception accepts input data from sensors that
measure states of the external world as well as internal states
of the system itself. Sensory perception scales and filters
data, computes observed features and attributes, and
compares observations with expectations generated from
internal models. Correlations between sensed observations
and internally generated expectations are used to detect events
and recognize entities and situations. Differences between
sensed observations and internally generated expectations are
sent to world modeling to update internal models. Sensory
perception also classifies, generalizes, and clusters, or
groups, recognized entities and detected events into higher
order entities and events, and computes attributes of entities
and events.

Df: value judgment (VJ)
a) the computation of cost, risk, and benefit of actions

and plans,

b) the estimation of the importance and value of
objects, events, and situations,

c) the assessment of reliability of information,

d) the calculation of reward or punishment resulting
from perceived states and events.

Value judgment evaluates perceived and planned
situations thereby enabling behavior generation to select
advantageous goals and set priorities among competing
behavioral possibilities. It computes what is important (for
attention), and what is rewarding or punishing (for learning).
Value judgment is performed in the brain by the limbic
system.

Df: world modeling (WM)
a process that performs four principal functions:

1. Uses sensory input to construct, update, and maintain
a knowledge database, including iconic images,
symbolic lists, entity and event frames, and semantic
and pragmatic relationships between entities, and
links between symbolic and iconic representations.
In biological systems, this is the function of short
term and long term memory.

2. Answers queries from behavior generation regarding
the state of the world. It provides knowledge about
the state of the world to be used by behavior
generation as feedback to servo behavior to follow
desired plans, and to provide the latest status
information on which to base planning operations.
This is the function of recall.

3. Simulates results of possible future plans. Simulated
results are evaluated by the value judgment system in
order to select the best plan for execution.
Simulation performed by the brain is what we call
thinking. Our ability to plan depends on the fidelity
of our internal model of how the world works.

4. Generates sensory expectations based on knowledge in
the knowledge database. Expectations are used by
sensory perception to configure filters, masks,
windows, and templates for correlation, model
matching, and recursive estimation; and for
clustering. This corresponds to the tendency of
biological brains to see and hear what they expect to
see and hear.

Axiom 2: The functional elements of an intelligent
system are supported by a knowledge database that stores a
priori and dynamic information about the world in the form
of state variables, symbolic entities, symbolic events, rules
and equations, structural and dynamic models, task
knowledge, signals, images, and maps.

Df: knowledge database (KD)
a set of data structures filled with the static and dynamic

information that provide a best estimate of the state of the
world and the processes and relationships that effect events
in the world.

In the knowledge database:

State variables represent the current estimated state of the
world.

Entity frames are list data structures that store symbolic
representations of features, objects, or groups that exist in
the world, or in the imagination. An entity frame consists
of a list head with a name as an address, plus a set of
attribute-value pairs, and a set of relations to other entities
or events. These relationships represent semantic meaning.

Event frames are list data structures that store symbolic
representations of state transitions, or situations that occur
at particular times and places, or sequences of states or

situations that transpire over intervals of time and space in
the world. An event frame also consists of a name, a set of
attribute-value pairs, and a set of relationships to other
events or entities.

Rules and equations such as if/then rules, the predicate
calculus, and differential equations can express physical laws
that describe the way the world works, as well as
mathematical and logical formulae that describe the way
things relate to each other.

Images are two-dimensional functions of attribute values
that may be sampled by arrays of sensors, or pixels. Images
may be generated in a number of ways. For example, an
image may be formed by the optical projection of light from
a scene in the world through a lens onto an array of
photoreceptors (or pixels) such as the retina or a CCD TV
camera. An image may also be formed by pressure on an
array of tactile sensors on the skin. An image consists of
attributes such as brightness, pressure, spatial or temporal
gradients, stereo disparity, or computed values such as range,
or flow that are derived from other images. An image may
also be generated by internal mechanisms (such as a
computer graphics engine) from information stored in
symbolic entity frames. In biological systems, image
generation corresponds to imagination [Kosslyn 94].

Maps are also two-dimensional arrays of pixels, wherein
icons or symbolic names, in addition to attributes, are
attached to pixels.

Task knowledge is knowledge of how to do things. Task
knowledge includes information about the goal, the agents,
the task objects, parameters, enabling and disabling
conditions, tools and resources required, and plans, scripts,
or procedures for generating and refining plans. Control laws
and plant models can also be represented as task knowledge.

The knowledge database has two parts: long term and
short term memory.

a) Long term (static or slowly varying) memory
contains symbolic representations of all the entities, events,
and rules that are known to the intelligent system. Long
term memory consists entirely of symbolic entity and event
frames, plus rules and equations. Attributes from long term
frame representations may be transferred into short term
memory, or vice versa.

b) Short term (dynamic) memory contains both
symbolic and iconic representations of entities-of-attention.

Df: entities-of-attention
entities that have either been specified by the current

task, or are particularly noteworthy entities observed in
current sensory input.

Short term symbolic entity frames include attributes,
pointers to iconic images, and pointers to entities stored in
long term memory. Short term iconic representations can
consist of attribute images generated directly from sensory
observations, or filtered through recursive estimation. Short
term iconic images can also be generated by internal

mechanisms from short term symbolic entity frames. In
machine systems, this is done through simulation and
animation. In biological systems, it corresponds to
imagination. Short term iconic images can be used to mask
or window incoming data, or to compare and fuse incoming
sensory observations with internally generated images.
Short term iconic images persist in memory only so long as
they are refreshed by incoming sensory data or by internally
generated images.

Axiom 3: The functional elements and knowledge
database can be implemented by a set of computational
modules that are interconnected to form nodes in a control
system architecture.

Df: node
a part of a control system that processes sensory

information, maintains a world model, computes values, and
generates behavior.

A node corresponds to a set of neurons in the brain that
close a loop between afferent and efferent neural pathways.
In doing so, each node typically performs the functions of
behavior generation, sensory perception, world modeling,
and value judgment. A typical node from the RCS reference
model architecture [Albus 96] is shown in Figure 1.

Within each node, interconnections between behavior
generation, world modeling, and value judgment modules
enable task decomposition, planning, and reasoning about
future actions. Interconnections between sensory perception,
world modeling, and value judgment modules enable
knowledge acquisition, situation evaluation, and learning.
Interactions between sensory perception and world modeling
modules enable recursive estimation for optimal filtering and
prediction. Interconnections between sensory perception,
world modeling, and behavior generation modules close a
reactive feedback control loop between the observed input

 and the commanded action. Input commands convey task
goals and priorities from higher level nodes. Output
commands convey subtask goals to lower level nodes, or
directly to actuators. The downward flow of commands
corresponds to efferent pathways in the brain. The upward
flow of information through the sensory perception modules
correspond to afferent pathways.

Connections to the operator interface have no biological
analog. These enable a human operator to insert commands
to override or modify system behavior, or to observe the
values of state variables and entity attributes. The operator
interface can also be used for system maintenance,
programming, and debugging.

Axiom 4: The complexity inherent in intelligent systems
can be managed through hierarchical layering.

Intelligent systems are inherently complex. Hierarchical
layering is a common method for organizing complex
systems that has been used in many different types of
organizations throughout history for effectiveness and
efficiency of command and control. In a hierarchical control
system, higher level nodes have broader scope and longer
time horizons, with less concern for detail. Lower level
nodes have narrower scope and shorter time horizons, with
more focus on detail.

In the RCS reference architecture, behavior generating
modules in nodes at the upper levels in the hierarchy make
long range strategic plans consisting of major milestones,
while lower level behavior generating modules successively
refine the long range plans into short term tactical plans
with detailed activity goals. Sensory perception modules at
lower levels process data over local neighborhoods and short
time intervals, while at higher levels, they integrate data
over longer time intervals and larger spatial regions.

KNOWLEDGE
DATABASE

SENSORY
PERCEPTION

BEHAVIOR
GENERATION

PLANS

PREDICTED
INPUT

UPDATES

STATES

P
L

A
N

R
E

SU
L

T
S

PLANSIT
U

A
T

IO
N

E
V

A
L

U
A

T
IO

N

OBSERVED
INPUT

COMMANDED
ACTIONS

PERCEIVED
OBJECTS &
EVENTS

COMMANDED
TASK & GOAL

OPERATOR
INTERFACE

EVALUATIONS

VALUE
JUDGMENT

WORLD
MODELING

Figure 1. A node in the RCS reference model architecture. The functional elements of an
intelligent system are behavior generation (planning and control), sensory perception (filtering, detection,
recognition, and interpretation), world modeling (storing and retrieving knowledge and predicting future
states), and value judgment (computing cost, benefit, importance, and uncertainty). These are supported by
a knowledge database, and a system architecture that interconnects the functional modules and the knowledge
database. This collection of modules and their interconnections makes up a generic node in the RCS
reference model architecture. Each module in a node may have an operator interface.

World model knowledge at low levels, is short term and fine
grained, while at higher levels it is broad in scope and
generalized. At every level, feedback loops are closed to
provide reactive behavior, with high-bandwidth fast-response
loops at lower levels, and slower more deliberative reactions
at higher levels. RCS thus provides what Brooks calls
“coherent behavior from many adaptive processes” [Brooks
94].

At each level, state variables, entities, events, and maps
are maintained at the resolution in space and time that is
appropriate to that level. At each successively lower level
in the hierarchy, as detail is geometrically increased, the
range of computation is geometrically decreased. As
temporal resolution is increased, the span of interest
decreases. As plans become more detailed, the planning
horizon shrinks. This produces a ratio that remains
relatively constant throughout the hierarchy. A design goal
is for behavior generating functions at each level to generate
plans of roughly the same number of steps, and for sensory
perception functions to compute entities containing roughly
the same number of subentities. At higher levels, plans,
perceived entities, and world modeling simulations are more
complex, but there is more time available between
replanning intervals for processes to run. Thus, hierarchical
layering keeps the amount of computing resources needed in
each node within manageable limits.

At the top of the hierarchy, strategic objectives and
priorities influence the selection of goals and the
prioritization of tasks throughout the entire hierarchy.
However, the details of execution are left to subordinates.

At intermediate levels, tasks with goals and priorities are
received from the level above, and subtasks with subgoals
and shorter range attention priorities are output to the level
below. Again, the details of execution are left to
subordinates.

At each level, global goals from a higher level are refined
and focused onto more narrow and finer resolution subgoals.
At each level, attention is focused into a more narrow and
finer resolution view of the world. The effect of each
hierarchical level is thus to geometrically refine the detail of
the task and the view of the world, while keeping the
computational load at all levels within limits that can be
handled by intelligent agents of modest capacity.

3. The RCS Reference Model
Architecture

A set of generic nodes such as illustrated in Figure 1 can
be interconnected in a hierarchical control architecture for an
intelligent machine system. The diagram shown in Figure 2
consists of a hierarchy of control nodes wherein each of the
nodes contain the set of modules and interconnections
illustrated in Figure 1. Each of the nodes is therefore an
intelligent controller capable of planning and control,
knowledge representation, value judgment, and sensory
perception. Each of the nodes closes a feedback loop

between afferent and efferent pathways. An operator
interface may access modules in any node at any level.

The example of a reference model architecture in Figure 2
is designed for a military vehicle system with four
subsystems: locomotion, mission package, communication,
and attention. Each of the four subsystems has one or more
mechanisms, each of which has one or more actuators and
sensors. For example, the locomotion subsystem may
consist of a navigation and driving controller with several
controllers for steering, braking, throttle, and gear shift, plus
ignition, lights, horn, and turn signals, each of which has
one or more actuators and sensors. The mission package
may have loading, aiming, and firing subsystems each of
which has numerous sensors and actuators. The
communication subsystem might consist of a message
encoding subsystem, a protocol syntax generator, and
communications bus interface, plus antenna pointing and
band selection actuators. The attention subsystem may
contain cameras, laser range imagers, infrared cameras, radar,
and acoustic sensors. Sensory perception algorithms may
detect and track objects, surfaces, edges and points, and
compute trajectories for pan, tilt, and focus actuators to
point cameras, range finders, and antennae. All of these
functions need to be coordinated in order to successfully
achieve behavioral goals. The horizontal curved lines
between WM modules represent the sharing of state
information between nodes within subtrees in order to
synchronize related tasks.

The operator interface provides the capability for the
operator to interact with the system at any time at a number
of different levels—to adjust parameters, to change speed, to
select or verify targets, or to authorize the use of weapons.
The operator interface provides a means to insert commands,
change missions, halt the system, alter priorities, perform
identification of friend-or-foe, or monitor any of the system
functions. The operator interface can send or display
information from the communications subsystem, or display
any of the state variables in the world model at a rate and
latency dictated by the communications bandwidth. Using
the operator interface, a human operator can view situational
maps with topographic features, with overlays that indicate
the position and movement of both friendly and enemy
forces. The operator interface may display graphic images of
motion paths, or print out control programs (plans), in
advance, or while they are being executed. The operator
interface also enables the operator to run diagnostics in the
case of system malfunctions.

In Figure 2, three levels of control are shown above the
node representing the individual vehicle. These three
additional levels represent a virtual chain of command that
exists above the individual vehicle. Because each vehicle is
semi-autonomous, it carries a copy of the control nodes that
contain its superiors in the command chain. This virtual
chain of command serves four functions. First, it provides
each vehicle with an estimate of what its superiors would
command it to do if they were in direct communication.
Second, it enables, any vehicle to assume the duties of any

O
PE

R
A

T
O

R
 I

N
T

E
R

FA
C

E

SP WM BG

SP WM BG

SP WM BG

SP WM BG

Points

Lines

Surfaces

SP WM BG SP WM BG

SP WM BG

0.3 second plan
Steering,
velocity

3 second plans
Subtask on object surface
Obstacle-free paths

SP WM BGSP WM BG

SP WM BGSP WM BG SP WM BG

SERVO

PRIMITIVE

E-MOVE

VIRTUAL PLATOON

VIRTUAL COMPANY

SENSORS AND ACTUATORS

Plans for next hour

Plans for next day

0.03 second plans
Actuator output

SP WM BGSP WM BG SP WM BG SP WM BG SP WM BG SP WM BG SP WM BG SP WM BG

Objects of attention

LocomotionCommunication Mission Package

VEHICLE

VIRTUAL SQUAD

Plans for next 30 seconds
Task to be done on objects of attention

Plans for next 5 minutes
Tasks relative to nearby objects

Platoon Formation

Company Formation

Squad Formation

Attention

Figure 2 . A RCS reference model archi tecture for an indiv idual vehic le . Processing nodes are
organized such that the behavior generation (BG) modules form a command tree. Information in the knowledge
database (KD) is shared between world modeling (WM) modules in nodes within the same subtree. KD modules are
not shown in this figure. On the right, are examples of the functional characteristics of the behavior generation
(BG) modules at each level. On the left, are examples of the type of entities recognized by the sensory perception
(SP) modules and stored by the WM in the KD knowledge database at each level. Sensory data paths flowing up the
hierarchy typically form a graph, not a tree. Value judgment (VJ) modules are hidden behind WM modules. A
control loop is closed at every node. An operator interface may provide input to, and output from, modules in every
node.

of its superiors in the event this should become necessary.
Third, it enables each vehicle to dedicate a separate node to
handle higher level tasks. In this example, the virtual chain
of command consists of three levels with three different
planning horizons (five minutes, one hour, and one day).
These three levels deal with external objects and maps at
three different scales and ranges. Fourth, it provides a
natural interface for human commanders at the squad,
platoon, or company level to interface with the vehicle at a
level relevant to the task being addressed. There, of course,
may be more than three levels above the vehicle in the
virtual chain of command.

At each layer of the RCS hierarchy, there are both
deliberative and reflexive elements. In each node at each
level, sensory data are processed, entities are recognized,
world model representations are maintained, and tasks are
deliberatively decomposed into parallel and sequential
subtasks, to be performed by cooperating sets of subordinate
agents. Also in each node, feedback from sensors reflexively
closes a control loop allowing each agent to respond and
react to unexpected events. The result is a system that

combines and distributes deliberative and reflexive features
throughout the entire hierarchical architecture, with both
planned and reactive capabilities tightly integrated at all
levels and time frames. Figure 3 illustrates the internal
structure of a behavior generation (BG) module. The BG
module represents an operational unit that typically is
comprised of several intelligent agents. It is important to
distinguish clearly between the agents and the BG
organizational unit to which they belong. An agent is
typically part of two BG modules at two different levels. At
one level, an agent is a member of a team, and subordinate
to the supervisor of the team. At the next lower level, the
same agent is a supervisor of a team of agents in the BG
module at the next lower level. The job assignor submodule
thus is part of the supervisor agent for a BG unit at level i.
The job assignor assigns jobs to agents in the BG unit, and
works with them to develop a set of schedules for each of
the subordinate agents within the i-level BG unit. The set
of schedules represents a plan for the BG unit. Each of the
subordinate agents in the i-level BG unit contains a
scheduler and an executor at level i, and is a supervisor (i.e.,

JA

SC SC SC

EX EX EX

JA

SC SC SC

EX EX EX

Job
Assignor

Agent1

Scheduler

Executor

Agent3

Behavior
Generation
Module
level i

Task
Command

Input

Job Assignments

Agent2

Scheduler Scheduler

Executor Executor

Knowledge
from KD

for Planning

Plan Evaluations
from VJ

Plans to WM
for Simulation

Feedback
from SP via KD

for Execution

Subtask
Command

Output

Subtask
Command

Output

BG
i-1

JA

SC SC SC

EX EX EX

BG
i-1

BG
i-1

Subtask
Command

Output

Plan Selector

Coordinated Agents Plan

Figure 3 . Internal s tructure of a Behavior Generat ion (BG) module . A BG module is an
organizational unit consisting of a Job Assignor, a set of Schedulers, a Plan Selector, a plan holding
register that contains the coordinated agents plan, and a set of Executors. The Schedulers, Executors, and
Job Assignors comprise agents within the BG units. Each agent is part of two BG units at two different
levels. At level i, an agent is a team member, or peer. At level i-1, the same agent is a supervisor.

a job assignor) at level i-1. Each agent is thus a peer in a
BG module at a level, and a supervisor of a BG module at
the next lower level.

Figure 4 illustrates the details of the interactions that
take place within and between the BG, WM, SP, and VJ
modules in a single node. A task command into a node is of
the form <Do action on object to achieve goal x*>. The
task name and goal enters a BG module where the task is
decomposed into jobs for agents. Each agent has a scheduler
that generates a schedule and coordinates with schedulers of
other agents. This produces a tentative plan which is a path
from the current estimated state x to the goal state x*. The
tentative plan is submitted to a plan simulator in the WM
which predicts results. These results are evaluated by the

plan evaluator in the VJ which returns cost-benefit analysis
to the plan selector. If the evaluation is satisfactory, the
tentative plan is selected for execution. Otherwise
replanning is called for, and another tentative plan is
generated by the job assignor and scheduler submodules.
The object specified by the task command is sent to the
world model knowledge database which looks up a
corresponding entity in the long-term memory database.
This entity is then entered into the short-term memory list
of entities-of-attention. Attributes of entities-of-attention
are used to generate a predicted image that can be compared
with an observed image. The predicted image defines
windows for correlation, comparison, recognition, and
clustering. Differences between predicted and observed

Task Command from level i+1

JA - Job Assigner
assign jobs and resources to agents
transform task coordinates

SC - Schedulers
generate schedules for agents
coordinate schedulesWM - World Modeling

Tentative Plan
a path from to x*

Predicted
Image

reference trajectory
x**

error = x** -

Plan simulator

VJ - Value Judgment

Evaluate results

Selected Plan
a path from to x*
a reference trajectory x**

PS - Plan Selector Replan

Plan OK

Predict results

Entity frame
Long Term
Symbolic

Memory Name
Attributes
Pointers to
related entities

Short Term
Symbolic

Memory

Name
State =
Attributes
Pointers to
related entities

Entity-of-attention

Do action
on object
to achieve x*

Plan evaluator

BG - Behavior Generator

SP - Sensory Perception

Observed
Image

Estimate
Detect
Fi lter

KD - Knowledge database

PL - Planner

Compute action
to null error

current
state

EX - Executors

Error Estimator

Graphics Engine

x

x

x x

x

Perceived sensory input
to level i+1

Entity
value

Perceived sensory input from level i-1 Task commands to level i-1

Entity evaluator

Cluster
Recognize
Compare

Figure 4 . Rela t ionsh ips w i th in a s ing l e node o f the RCS arch i t ec ture . The behavior generating (BG)
modules contain job assignor (JA), scheduler (SC), plan selector (PS) and executor (EX) submodules. The world modeling
(WM) module contains a plan simulator and mechanisms for updating the knowledge database (KD), which contains both
long term and short term symbolic representations and short term iconic images. The sensory perception (SP) module
contains filtering, detecting, and estimating algorithms, plus mechanisms for comparing predictions generated by the
WM module with perceived input from sensors. It has algorithms for recognizing entities and clustering entities into
higher-level entities. The value judgment (VJ) module evaluates plans and places values on entities recognized in the
observed sensory input.

images can be used to update the estimated state x ,
including the estimated attributes of the entity-of-attention.
This is a looping process of recursive estimation that can be
used to implement a tracking filter, a predictor, or a phase-
lock loop. The estimated state x is used by the executor
to servo the output to follow the selected plan. It is also
used by the job assignor and scheduler submodules for
planning, and by the WM plan simulator for predicting
results of tentative plans. Recognized and clustered entities
are evaluated by the VJ and transmitted to higher level
sensory perception modules for more global processing.

This recursive estimation procedure has recently been
implemented on modest computing hardware for vision
based lane following by highway vehicles. Dickmanns [92]
has implemented a 4-D model in world coordinates.
Schneiderman and Nashman [94] implemented a 2-D model
in image coordinates. Speeds of up to 100 kilometers per
hour on highways and 40 kilometers per hour on a winding
test track have been achieved by the 2-D system. The 4-D
system has achieved speeds of up to 130 kilometers per hour
in normal highway traffic with automatic lane changing
while simultaneously tracking up to five other vehicles.
[Dickmanns 95]Axiom 5 : The complexity of the real
world environment can be managed through focusing
attention.

Intelligent systems must operate in a real world
environment which is infinitely rich with detail. The real
world environment contains an unlimited variety of objects,
such as ground, rocks, grass, sand, mud, trees, bushes,
buildings, posts, ravines, rivers, roads, vehicles, weapons,
people, and enemy and friendly positions. The environment
also contains elements of nature, such as wind, rain, snow,
sunlight, and darkness. All of these objects and elements
have an infinite regression of detail, and the world itself
extends infinitely far in every direction.

Yet, the computational resources available to any
intelligent system are finite. No matter how fast and
powerful computers become, the amount of computational
resources that can be embedded in any practical system will
be limited. Therefore, it is imperative that the intelligent
system be able to focus the available computing resources
on what is important, and ignore what is irrelevant.

Top down, what is important is defined by behavioral
goals. Top down goals and high level perceptions generate
expectations of what should be encountered during the
evolution of the task. Bottom up, what is important is the
unexpected, unexplained, unusual, or dangerous. The lower
level sensory perception functions detect variations between
what is expected and what is observed. The lower levels also
compute attributes of signals or images that may indicate
problems or emergency conditions, such as limits being
exceeded on position, velocity, acceleration, vibration,
pressure, force, current, voltage, or thermal sensor signals.

Focusing of attention can be accomplished by sampling
the environment at high resolution at important points, and
with low resolution elsewhere. For example, most of the
photodetectors in the visual field are concentrated in the

foveal region, and lower resolution in the periphery.
Similarly, tactile attention is accomplished by high
resolution spatial distribution of tactile sensors in the finger
tips, lips, and tongue, with much lower resolution in other
regions of the skin. Intelligent control points the fovea at
points in the visual field that are important, and guides the
fingers to touch objects at points important to the task goal.
Hierarchical layering focuses computing resources near the
present, with exponentially lower resolution for longer time
horizons, both for planning the future and analyzing the
past.

5. Discussion

In RCS, each node, and each module and submodule within
a node, is implemented as an augmented finite state machine
which runs asynchronously as a cyclically executing
process. The execution cycle typically is triggered by a clock
at a fixed repetition rate that is an order of magnitude faster
than the time constant of the process being controlled, but
may be triggered by events. Each finite-state machine is
surrounded by a set of input and output data buffers. At the
beginning of each cycle, the submodule reads from its input
buffers and processes the inputs into a form suitable for a
state-table that encodes a set of state dependent if/then rules
of a form that are common in expert systems. The
processed input is compared with the rules in the state-table.
The rule that matches causes the process to go to a next
state, possibly execute a procedure, and compute an
appropriate output. Each submodule also computes a set of
diagnostic functions, such as the time required for the
process to complete, the maximum time the process has
taken, and the average time taken. Each submodule has an
interface for an operator that provides the operator the ability
to halt, single-step, and/or display the value of any variable
and the state of any process at any time during execution. A
process may be halted, parameters examined by a
programmer, variables changed, and execution resumed.
Communications between processes in the RCS system are
designed so that all processes cycle independently and run
completely asynchronously with no protection against
messages getting overwritten. In this respect, RCS is
similar to Brooks’ πβ machine. [Brooks 94] We agree with
Brooks that design principles and computational structures
should constrain system design and force solutions to
maintain biological relevance. To do otherwise allows
divergence from approaches that can draw on (or contribute
to) concepts from the cognitive and neurosciences. Our
differences with Brooks include our insistence on a
systematic design of the topology of the computing
structure. While we admit that random design choices
coupled with natural selection may eventually lead to an
optimum topology, we believe that systematic design
principles will reach the goal in far fewer iterations.

RCS programming tools and software templates are
being built that provide the system developer an easy way to
configure an RCS system. The templates automatically
generate all the required utilities and diagnostic features, and
provides slots in a menu for inputs, outputs, and system

parameters. Software templates are implemented in C++.
A graphical design tool enables a programmer to define a
RCS submodule with the click of a mouse, and interconnect
submodules by click and draw techniques. These
programming tools have enabled RCS systems with
hundreds of submodules to be designed and built in a few
months.

RCS has been implemented on a variety of platforms,
including Sun workstations, 486 and Pentium class PC
computers, VME systems, and Macintosh machines using a
number of different operating systems, including Forth,
pSOS, DOS, VxWorks, and Lynx OS1. The overhead for a
RCS template running on a 486 class machine is about five
microseconds. The cycle time for a typical low level RCS
submodule is 30 milliseconds. However, for high
performance machine tool applications, servo loops may be
closed every 300 microseconds.

6. Conclusions

While many deep theoretical issues regarding the nature of
the mind remain, much is known and progress is rapid.
Intelligent machines research is beginning to yield to
engineering approaches. Intelligent systems are beginning
to exhibit impressive performance capabilities in practical
applications such as manufacturing systems and highway
vehicles. Some of the most promising lines of research
appear to be in:

a) combining goal-driven planning with reflexive
behavior,

b) focusing of attention and active control of sensing,

c) hierarchical decomposition of tasks and goals,

d) the use of recursive estimation for sensory
perception,

e) the development of a reference model architecture
for intelligent system design.

A reference model architecture paves the way for design
principles and software engineering tools that facilitate the
building of intelligent machine systems.

Recent work in open system architectures for intelligent
controllers is leading toward specification of canonical
functional modules and standards for application
programming interfaces (APIs) between functional modules
in open architecture machine controllers. [TEAM 96] API
standards promise to facilitate system integration and enable
incremental upgrades of capability.

It soon may be possible to add new layers or subsystems
without modifying system software. Eventually, systems
developed in different laboratories might be integrated into
large experimental systems consisting of thousands of
computing platforms in hundreds of different laboratories.
At that point, intelligent machine systems might approach
the complexity and computing power of the human brain.
Under such circumstances, the prospect is bright for building
scientifically valid experimental models of the mind.

It should be noted, in closing, that such models would
not only advance the scientific inquiry into of the nature of
mind, but would very likely also lead to practical
improvements in intelligent machine systems technology
for manufacturing, construction, transportation,
communication, health care, environmental restoration,
waste management, security, and military systems. Such
developments would have significant economic, social, and
political benefits. But that is a subject for another paper.

This publication was prepared by a United States Government
employee as part of his official duties and is, therefore, a work
of the U.S. Government and not subject to copyright.

References

Albus, J.S. (1991). “Outline for a Theory of Intelligence”.
IEEE Transactions on Systems, Man and Cybernetics,
21 (3): p. 473-509

Albus, J.S. (1996). “The NIST Real-time Control System
(RCS): An Approach to Intelligent Systems Research”.
Journal of Experimental and Theoretical Artificial
Intelligence (in press)

Brooks, R.A. (1994). “Coherent Behavior from Many
Adaptive Processes”. Proceedings of the Third
International Conference on Simulation of Adaptive
Behavior. p. 22-29

Dickmanns, E.D. (1992). “A General Dynamic Vision
Architecture for UGV and UAV”. Journal of Applied
Intelligence 2 p. 251-270

Dickmanns, E.D. (1995). “Parallel Use of Differential and
Integral Representations for Realizing Efficient Mobile
Robots”. 7th International Symposium on Robotics
Research, October 1995, Munich

Rosenbloom, P.S., J.E. Laird, and A. Newell (Eds.) (1993)
The SOAR Papers. Vol. 1 and 2 MIT Press,
Cambridge, Mass.

Kosslyn, S.M. (1994). Image and Brain: The Resolution of
the imagery Debate. MIT Press, Cambridge, Mass.

Schneiderman, H. and M. Nashman (1994). “Visual
Tracking for Autonomous Driving,” IEEE Transactions
on Robotics and Automation, 10 (6) p. 769-775

TEAM (1996). Technologies for Enabling Agile
Manufacturing (TEAM) Application Programming
Interfaces, Internent location
http://isd.cme.nist.gov/info/team

1 Certain commercial equipment, instruments, or materials are
identified in this report in order to facilitate understanding.
Such identification does not imply recommendation or
endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or equipment
identified are necessarily the best available for the purpose.

