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Abstract

This report describes progress made
during the past year on the UGV RSTA
project being conducted by a consor-
tium led by the University of Maryland
and including the University of Penn-
sylvania, the University of Rochester,
and the National Institute of Standards
and Technology. We first review work
done on the design, implementation
and integration of real time vision al-
gorithms for image stabilization, detec-
tion of moving objects from a moving
platform and camera control. We then
present brief descriptions of a number
of supporting basic research projects
being conducted by the members of the
consortium.

1 Introduction

Our RSTA on the Move project is a program
combining

o development and integration activities ul-
timately leading to an experimental, real
time active vision system for locating and
tracking moving targets from a mobile plat-
form, and

e basic research on fundamental active vi-
sion problems including motion estima-
tion, image sequence stabilization, detec-
tion and characterization of independent
motion patterns, and real-time sensor con-
trol.

Our integration activities involve algorithm de-
velopment and integration on the Datacube real
time image processing platform, and experimen-
tation on video sequences obtained, initially,
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offline from a sensor mounted on a HMMWYV
at NIST, and, ultimately, online using the
same NIST platform with onboard real-time
and parallel processing. Section 2 describes our
progress on development and integration.

Real-time algorithms for image stabilization
and moving object detection have been devel-
oped at Maryland, while Rochester has contin-
ued development on a more general real-time
algorithm for detection of independently mov-
ing objects. Both the Maryland stabilization al-
gorithm and the Rochester independent motion
detector have been transferred to the NIST Dat-
acube, and were demonstrated last summer at
Martin Denver. Ongoing work involves the in-
tegration of these two algorithms on a common
Datacube/SPARC platform, and design and im-
plementation of spatio-temporal grouping algo-
rithms for focusing attention of the active vi-
sion component of our system on an image win-
dow containing an independently moving ob-
ject. Research at the University of Pennsylvania
has emphasized camera control algorithms that
will allow us to track the moving target and
to maintain as large an image of the target as
possible through control of a zoom lens. Some
core camera control software has already been
ported to the NIST platform, with NIST and
Pennsylvania now collaborating on the design
and implementation of the full camera control
subsystem. Figure 1 shows the tasks of the in-
dividual contractors.

In addition to ongoing development and inte-
gration activities, the consortium supports a
broad spectrum of fundamental research activi-
ties in time-varying image analysis and active
vision. A set of research vignettes are pre-
sented in Section 3, including descriptions of
research projects on motion estimation, image
stabilization, comparison of image stabilization
algorithms in the context of a real-time target
acquisition and tracking system (joint research
with the Army Research Laboratory), and cam-
era control.
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Figure 1: Block diagram of system architecture.

2 Integration Activities

2.1 University of Maryland

(Yiannis Aloimonos, Stephen Balakirsky, Rama
Chellappa, Loong Fah Cheong, Cornelia
Fermiiller, Carlos Morimoto, Yi-Sheng Yao)

Research at Maryland emphasizes image stabi-
lization, with some supporting research on de-
tection of constrained (vehicle-like) independent
motion. The goal of our image stabilization pro-
cess is to maintain a stable scene background in
a video image sequence. This is accomplished
by estimating and compensating for the effects
of the movement of the vehicle on the original
input image sequence, so that in the resulting
stabilized sequence the background of the scene
appears, ideally, as if the vehicle were station-
ary.

After the sequence is stabilized, independently
moving objects can be detected using either
the flow-based approach being developed at the
University of Rochester, or a frame-differencing
approach developed by the University of Mary-
land. The Maryland approach is based on an ef-
ficient algorithm for computing a temporal me-
dian filter from the stabilized sequence. To op-
timize for detection of independent vehicle mo-
tion, we employ a filtering approach that inte-
grates the results of velocity-tuned filters over
several frames and produces the final output of
the system. Details of the Maryland work are
given below.

2.1.1 2D Image Stabilization

The 2D image stabilization algorithm is de-
scribed in [Davis et al., 1994]; it uses the cam-
era model presented in [Zheng and Chellappa,
1993]. The model decomposes the movement of
the camera into four components: translation
along z, translation along y, rotation around
z (the optical axis), and scaling due to transla-
tion along z. (z,y, #) define a coordinate system
centered at the camera and (z,y,1) define the
image plane. The transformation between two

frames under this motion model is
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where (X;,Y;) are the image frame coordinates
at time ¢; for ¢ = {1,2}; (AX3, AY3) is the
translation measured in the image coordinate

system of frame ¢5; © is the rotation angle be-
tween the two frames; and s is the scaling factor.

The camera motion parameters are estimated
by matching a small number of feature points
between two frames. Given that N points are
tracked, we first determine the scaling factor s
based on the fact that the ratio of the distances
between two arbitrary points measured in both
frames is proportional to s. Then equation 1 is
used to construct a 2/N-equation linear system
that is solved using a least-square approach to
compute the remaining translation and rotation
parameters.

The stabilization process consists of computing
the motion parameters between two consecutive
frames f;_1 and f;, composing all the transfor-
mations from a reference frame fy up to time ¢;,
and then warping frame f; using the combined
motion parameters. A hardware implementa-
tion of the system is described in [Morimoto
et al., 1995]. This system was developed to use
a commercially available parallel pipeline image
processing board (Datacube MV200) connected
to a SUN SPARCstation 20/612, and is able to
process 7 frames per second, using images of size
128 x 128. A very similar scheme is described
in [Burt and Anandan, 1994], where more spe-
cialized image processing hardware is used to
stabilize images by registering frames using a
hierarchical approach.

2.1.2 Detection of Independently
Moving Objects

Image stabilization renders the background of
the image approximately stationary. In order
to overcome the effects of residual motions, we
implemented a temporal median filter. This fil-
ter creates a median tmage that is composed
of the median values of the last k& frames. In
a sequence of pixel gray levels from k frames,
the gray levels arising from an independently
moving object tend to be outliers with respect
to the median of the sequence, so that they at
least partially disappear from the median im-
age. A simple image differencing scheme can
then be applied to detect independent motion
on a frame-by-frame basis.

A filtered image is a binary image obtained by
thresholding the difference between the median
image and the current frame. This process
tends to erase the background and highlight
the locations of independently moving objects.
These filtered images still contain noise (due to



imperfect stabilization) and spots correspond-
ing to close scene objects that appear to move
due to motion parallax. Velocity-tuned filters
are used to reject the stabilization noise; motion
parallax spots are also rejected if their apparent
motion in the image is out of the velocity range
for which the filter is tuned.

Assume that a filtered image f; contains sev-
eral spots, and we want to select only those
that move linearly at a rate of p pixels per pro-
cessed frame. If such spots also appeared in the
previous frame, f;_y, by the time frame f; is
captured these spots must have moved p pixels
away from their f;_; positions and are there-
fore located in frame f; somewhere on circles,
p pixels in radius, centered at their f;_y posi-
tions. If we select the pixels that correspond
to the intersections between the spots of f; and
the spots generated by replacing the spots of
fi—1 by the appropriate circles (predicted po-
sitions), we obtain good candidates for regions
moving at p pixels per frame. This scheme can
be extended to include more than two frames,
since spots in frame f;_s should be 2p pixels
away, and spots in frame f;_; should be jp pix-
els away. Implementation issues regarding these
filters are given in [Morimoto et al., 1995].

2.1.3 Experimental Results

Figure 2 shows a frame of a video sequence
taken from a moving vehicle and Figure 3 shows
the thresholded difference between the four-
frame temporal median and the stabilized in-
stance of that frame. Finally, Figure 4 shows
the stabilized frame superimposed on the out-
put of the velocity-tuned filters integrated over
four frames.

Figure 2: Frame from video sequence.

2.2 University of Rochester
(Randal Nelson, Rajesh P.N. Rao)

Current work at the University of Rochester ad-
dresses the RSTA goal of detecting and tracking
independently moving objects from a moving
platform. The detection of independently mov-
ing objects is a critical task for RSTA subsys-
tems. Because objects that move independently
represent possible threats, it is important to flag
them as rapidly as possible and then track them

Figure 3: Thresholded difference between tem-
poral median and stabilized frame.

Figure 4: Stabilized frame with superimposed
moving object regions.

so that identification systems can be brought
to bear on them. We have been engaged in a
project whose goal is to design, implement, and
test a general framework for utilizing visual mo-
tion for the detection and recognition of events
and objects. Overall, we have been develop-
ing a three-step process for motion recognition
that includes detection, tracking, and recogni-
tion phases. Of these steps, the detection and
tracking components are of most immediate in-
terest to the RSTA demos, and we have been
engaged in porting previously developed algo-
rithms for these aspects of the problem to hard-
ware on the NIST vehicle, and evaluating the
algorithms under various field conditions. The
hardware and mechanics on the NIST vehicle
are consistent with those of the current RSTA
vehicles, and thus provide a valid testbed rela-
tive to RSTA demo goals.

The fast detection of potentially significant mo-
tion events is based on identifying violations of
qualitative rigid-world constraints. This pro-
vides a uniformly applicable strategy by which
small regions of the scene can be selected for
more thorough inspection. In previous work,
we produced real-time algorithms for detecting
independently moving objects from a moving
platform [Nelson, 1991]. These techniques are
more general than those based on afline stabi-
lization of the visual field, and can function in
situations containing substantial motion paral-



lax at different depths, and skewed, non-planar
radial flow (such as that produced in the near
field during locomotion through hilly terrain),
which cause problems for the affine methods.
They can thus serve to augment affine stabiliza-
tion algorithms, which have previously demon-
strated their value in regimes where they are
valid. We have recently ported these algorithms
to a platform consistent with the hardware on
the RSTA vehicles, and are engaged in evalu-
ating their performance, both in isolation and
in combination with low-level stabilization al-
gorithms developed at Maryland.

The tracking step involves stabilization of the
area of interest through active visual processes
such as fixation and tracking to place the mo-
tion of interest in a canonical form that facili-
tates the final recognition procedure. The tech-
niques of most immediate interest for RSTA
involve the tracking of independently moving
rigid objects. We are currently developing real-
time algorithms for instantiating and maintain-
ing hypotheses about the positions, extents, and
motions of such objects on the basis of the out-
put from the independent motion detection sys-
tem. We have also recently developed tech-
niques for accomplishing this for objects that
move in a complex manner, such as people or
animals [Polana and Nelson, 1994].

The identification step locates regions of in-
terest via a more detailed analysis of motion.
We are developing techniques based on tem-
poral texture analysis, where we extract sta-
tistical spatial and temporal features from ap-
proximations to the motion field and use tech-
niques analogous to those developed for gray-
scale texture analysis to classify regional activ-
ities. Some results in this area are described
in [Nelson and Polana, 1992]. In a second ap-
proach, which we term activity recognition, we
use the spatial and temporal arrangement of
motion features in conjunction with simple ge-
ometric image analysis to identify complexly
moving objects such as machinery and loco-
moting people and animals [Polana and Nelson,
1993]. The remainder of this section concen-
trates on the motion detection processes.

Detection of moving objects is of critical impor-
tance to biological and robotic systems, both
because such objects are frequently of primary
interest to the system, and because dealing with
them involves hard real-time constraints—the
world won’t wait while you think. A method of
detecting independent motion, or motion hav-
ing certain other qualitative characteristics such
as periodicity, is thus valuable as a method for
directing more sophisticated (and costly) pro-
cessing to areas where it can be most effectively
utilized.

In previous work, we developed methods for de-

tecting three qualitative types of motion. The
first technique, which we term constraint ray
filtering, provides a robust method of de-
tecting independently moving objects from a
moving platform when information is available
about the platform motion [Nelson, 1991]. The
method is based on the observation that the
projected motion at any point on the image
sphere is constrained to lie on a half line (ray)
in local velocity space whose parameters depend
only on the observer’s motion and the location
of the image point. The second method, termed
animate motion detection, allows rapid detec-
tion of animate objects with no information
about the movement of the platform [Nelson,
1991]. It is based on the observation that an-
imate moving objects typically maneuver, that
is, they or their component parts follow trajec-
tories for which the projected velocity changes
rapidly compared to the velocity change due to
self-motion. The third method allows detection
and tracking of objects whose motion has a pe-
riodic component, such as walking or running
animals, oscillating machinery, etc. [Polana and
Nelson, 1994]. It is based on a Fourier transform
technique.

These techniques can be used to isolate motion
for identification by later recognition processes.
The responses of the different qualitative de-
tectors yield an indication of the sort of recog-
nition process that should be assigned to the
movement of interest. For example, detection
of local, highly periodic movement would sug-
gest the use of a phase-based structural clas-
sifier, while a distributed, non-periodic motion
would suggest the use of temporal texture tech-
niques.

The first two techniques were originally imple-
mented as real-time systems on Datacube se-
ries 10 hardware, and demonstrated in a lab-
oratory setting. Of these, the first, constraint
ray filtering, is of the most immediate interest
to the RSTA goal of detecting moving vehicles.
We have ported this algorithm to hardware on
the NIST vehicle, which is compatible with the
hardware on the Martin Denver demo vehicles,
and begun evaluation of the algorithm using

outdoor driving sequences acquired from both
the NIST vehicle and other vehicles.

Representative results of the moving object de-
tection algorithm are illustrated in Figures 5 a—
b. Figure ha shows a frame in a video sequence
acquired from a forward moving mobile plat-
form. The independently moving objects are
the cars moving left to right near the horizon.
Figure 5b shows the superposition of the pix-
els detected by the independent motion detec-
tor onto the video frame. These pixels lie on the
car moving across the image.

Theoretical analysis of the algorithm indicates
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Figure 5: (a) Original image. (b) Independently moving pixels overlaid on (a).

that, although the underlying technique is capa-
ble of detecting independent motion in an arbi-
trary environment under arbitrary motion, the
instantiation of the algorithm on the Maxvideo
hardware has certain limitations. In particular,
the choice of a first-order gradient-based flow es-
timation technique is dictated by the operations
that the Maxvideo performs efficiently (namely,
convolution), and this limits the accuracy of the
motion field estimation. Further analysis indi-
cates that when the magnitude of the motion
due to vehicle movement exceeds the magnitude
of the independent motion by more than a fac-
tor of two, detection is unreliable. We can rec-
ognize this situation and avoid false positives,
but genuine independent motion may then go
undetected.

The theoretical performance is borne out by
field tests. When driving on roads, or slowly
on relatively smooth terrain, the algorithm de-
tected other moving vehicles in a variety of sit-
uations. However, at high velocity, and over
rough off-road terrain, the detection limit is
frequently exceeded, and independently mov-
ing objects are missed. Further analysis re-
vealed that this effect is primarily due to rapidly
changing vehicle pitch, with smaller effects from
roll and yaw.

Two approaches can be used to resolve this situ-
ation. The first is to use a more accurate motion
estimation algorithm. However, this is prob-
ably not practical in real time using the ex-
isting hardware, though we are exploring the
use of a multi-resolution gradient-based algo-
rithm. (Advances in hardware may change this
picture for the next generation of vehicles, but
for the moment we are limited to the current
Maxvideo system). The second approach notes

that the dominant source of large motions that
swamp the detection algorithm is vehicle rota-
tion, which is removable by stabilization tech-
niques of a sort that have already been demon-
strated.

We are currently engaged in instantiating the
second approach, using several stabilization al-
gorithms developed at the University of Mary-
land as pre-processors to the motion detection
system. The different algorithms will be com-
pared, and the best of them selected for our
demonstration. We are also currently develop-
ing a predictive tracker that will use the (pixel
map) output of the independent motion detec-
tion system to circumscribe and track potential
target objects. These regions of interest will ul-
timately serve as inputs to the next phase of
the system where recognition and higher-level
planning are performed.

2.3 University of Pennsylvania

(Ruzena Bajcsy, Ulf Cahn von Seelen)

The University of Pennsylvania’s research is
concerned with camera control for tracking ac-
quired targets. The controlled axes include me-
chanical degrees of freedom (pan, tilt) as well as
an optical degree (zoom). The hardware plat-
form consists of a TRC BiSight binocular cam-
era platform controlled by a PMAC-VME mo-
tion controller that is connected to a Sun work-
station via shared memory.

While object tracking by panning and tilting
a camera is well known, the use of zoom in
tracking is largely unexplored. For RSTA on
the Move we want to maximize the spatial res-
olution of the tracked object while maintaining
acquisition. This involves optimizing the trade-



off between spatial resolution and tracking per-
formance. The closer the camera zooms in on
the target, the faster the target moves in the
image, and the harder it becomes to maintain
acquisition of it.

To our knowledge, there exist only a few pub-
lications that deal with the control of zoom for
tracking. In [Hwang et al., 1993] the zoom is
used to achieve a desired object image size. A
fuzzy controller combines estimates of the diag-
onal extent of the object, the variance of the ob-
ject velocity, and the confidence of the shape es-
timate to compute a suitable focal length. The
influence of the velocity variance ensures that
the camera does not zoom in too closely if an
object’s motion varies greatly, in order to safely
maintain acquisition.

In [Hosoda et al., 1995] the authors use a robot
arm and camera zoom to achieve a desired im-
age feature configuration. The focus of the work
is on integrating the zoom into the control as
a redundant mechanical degree of freedom, as
the authors assume that the image Jacobian
and thus the 3D positions of the image features
in the world are known. This assumption ab-
stracts from the main problem of using zoom in
tracking, namely finding an image-based mea-
sure on which to servo the focal length.

In the PennFEyes system [Madden and Cahn
von Seelen, 1995] we have used various image-
based measures to maintain the apparent size
of a target in an image. In the current version
we use cross-correlation to identify the target.
This approach is more general, but it does not
provide a ready estimate of the apparent tar-
get size. We work with the object distance in-
stead, which we estimate by triangulation from
the two camera views. Using our calibration
of the zoom lens, we can compute a new focal
length when the target distance changes so that
the image size of the target remains constant.
Figure 6 shows a typical run of the system in
which the focal length is increased so that it
compensates for the target motion away from
the camera head.

With the expertise gained from zooming for
size constancy, we can approach the problem of
zooming for scale change. Changing scale poses
increased demands on target identification and
localization because commonly used approaches
such as cross-correlation are not scale-invariant.
Alternatives include feature-based tracking (e.g.
[Reid and Murray, 1993]) or the use of adaptive
correlation templates (e.g. [Parry et al., 1995]).
We are currently investigating the latter ap-
proach.
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Figure 6: Focal length responding to changing
target distance.

2.4 NIST

(Martin Herman, David Coombs, Sandor

Szabo, Tsai-Hong Hong)

NIST is responsible for developing the vision
processing platform, assisting in integrating
University software onto the platform, and run-
ning the platform on vehicles at the NIST facil-
ity. In addition, NIST has collected video data
using the NIST HMMWYV, and is working on
target tracking and gaze control software. NIST
has completed development of the platform and
has worked with the Universities to demonstrate
two components of RSTA on the Move: image
stabilization and independent motion detection.

The NIST vision processing platform is based
on industry-standard components which allow
us to integrate, test and distribute results with
minimal amounts of effort. For example, ap-
proximately one hour was required to initially
install and run software from each University.
This allows us to spend a considerably greater
portion of our time in analyzing and improving
system performance. The platform, designed
for mobile applications, was easily shipped, set
up and demonstrated at ARPA’s UGV Demo
C in Denver in July 1995. Since then we have
completed the power conversion of the system
so that we can now run from vehicle DC power
sources as well as conventional AC sources. We
are close to upgrading our computing system to
three processors and to Solaris 2.4 which will
allow us to take full advantage of symmetric
multiprocessing and real-time scheduling. Our
design, integrating the RSTA software compo-
nents and taking full advantage of multiple gen-
eral purpose processors, and multiple special-
ized image processors is almost complete. By
early Spring of 1996 we will be able to perform
experiments on the NIST HMMWYV on a regu-
lar basis. Because of our close involvement with



the ARPA Demo II program and the Army Re-
search Laboratory, we feel that the results of
our effort can be readily integrated into future
DoD mobile robot applications.

The NIST vision processing system, designed
for RSTA on the Move applications, is capa-
ble of performing sophisticated experiments in
mobile vehicle applications. The system con-
sists of a TRC UniSight/BiSight camera head
(pan/tilt/vergence), a Datacube MV200 image
processor for low level image processing (ac-
quisition, filtering, overlays, etc.), and a suite
of fast SPARC processors (for motion analy-
sis, tracking, etc.). Both the image stabiliza-
tion algorithm from the University of Mary-
land and the independent motion detection al-
gorithm from the University of Rochester rely
on image processing taking place in both the
specialized Datacube environment and the gen-
eral purpose SPARC environment. The Univer-
sity of Pennsylvania tracking software relies on
the specialized motion controller for the cam-
era head (a Delta Tau PMAC motion controller
board) and the SPARC environment.

The system components of the vision process-
ing platform consist of a VMI-based card cage
housing all the processor boards, a two gigabyte
ruggedized hard disk, and electronics for the
cameras and the TRC camera head. The VME
provides power and fast communications be-
tween a Themis SPARC 10MP processor board,
the Datacube MV200 image processor board,
and the Delta Tau PMAC motion controller
board.

The Themis board is outfitted with an 80 MHz
and two 90 MHz HyperSparc processors. Our
plan is to dedicate one processor to image stabi-
lization, one to independent motion detection,
and one to tracking. The processors will be
run in pipeline mode with the results from one
stage being fed to the next stage. In the future
we hope to add additional parallelization within
stages to reduce the overall latency. To sup-
port this work we are in the process of changing
from Solaris 1.1 to Solaris 2.4. After the change
we will be able to take advantage of the mul-
tithreading libraries and the real-time schedul-
ing facilities. Changing to a complete Solaris
system will hopefully allow us to migrate away
from having separate operating systems for de-
velopment and real-time applications, thus fur-
ther simplifying integration. All of the code
is written in C/C4+4 and makes use of the
GNU Free Software Foundation environment.
We have installed and tested software from the
University of Rochester and the University of
Maryland under this environment without any
problems.

The Datacube MV200 is practically the indus-
try de-facto standard for real-time vision pro-

cessing. We have installed a complete program-
ming environment for the MV200: Imageflow,
Advanced Imaging Tools, WitFlow, and Veil.
We have also installed a miniwarper. Both the
University of Rochester and the University of
Maryland algorithms require the MV200. Cur-
rently we have only run the algorithms one at
a time. Our plan is to pipeline the algorithms
using two MV200 boards, one of which we will
borrow from the University of Maryland during
the experiments.

The Delta Tau PMAC motion controller board
is used for control of the TRC head. NIST
has experience in this area, having built a head
(TRICLOPS) in the past, and we are planning
to incorporate previously developed head con-
trol software into the RSTA application. We
have received software from the University of
Pennsylvania for controlling the head at a low
level and have also developed our own software
for computing quintic-based smooth trajecto-
ries.

The NIST system is completely self-contained.
Each of the components is designed for mod-
ularity, having its own dedicated power con-
ditioner to run off DC power sources. Suf-
ficient power exists to run a fully configured
four-processor SPARC 10MP, three MV200’s,
the motion controller board, and an additional
I/0 processor designed for a potential vestibular
sensor system. All the components are housed
in a sealed, ruggedized enclosure designed for
outdoor vehicles. NIST, with the support of
the Army Research Laboratory, also maintains
a fully robotic HMMWYV which enables us to
perform experiments on a regular basis.

Data Collection. NIST has collected over
six hours of videotape from color CCD cameras
rigidly mounted on the HMMWYV, driving at
up to 40 kph on- and off-road at the NIST site
in Gaithersburg, MD between December 1993
and June 1995. The terrain includes campus
roads, fields and woods. Civilian vehicles can
be seen driving on the NIST grounds and on the
surrounding roads (including highway 1-270) at
ranges up to 2000 m. Pedestrians and deer are
also visible on occasion. The cameras are rigidly
mounted on the vehicle in forward-looking and
oblique-looking (60 degrees off heading) orien-
tations. The lens focal lengths used range from
5mm to 75 mm. No stabilization was used (nei-
ther mechanical stabilization of the cameras nor
digital stabilization of the video) and image jit-
ter is particularly noticeable with longer focal-
length lenses.

3 Supporting Basic Research

In addition to the integration activities outlined
in the previous section, each of the consortium



Table 1: Detection results of three stabilization algorithms.

Algorithm | Threshold | % targets | # frames to Avg. false % targets
detected | acq. target | alarms/frame | segmented
Projection 17 0 NA NA NA
FTA 1 12 0 NA NA NA
FTA 2 12 100 7 1 67

members is also pursuing a program of basic
research on enabling technologies for RSTA on
the Move. In this section we provide brief de-
scriptions of some of these research projects.

Performance Characterization of
Image Stabilization
Algorithms—University of
Maryland

We have carried out a comparative study of im-
age stabilization algorithms in the context of an
automatic target tracking system. This study
was conducted jointly with the Army Research
Laboratory (ARL). The goal is to perform tar-
get acquisition through a process of background
suppression and motion estimation. In order to
accomplish this it is important that the input
sequence be stabilized so that image motion due
to camera motion as the camera is panned, or
as the camera moves through the scene, is com-
pensated for.

3.1

Three stabilization algorithms were compared
with respect to target false alarm and false dis-
missal rates, time to acquisition of targets, and
a gross measure of the accuracy of target seg-
mentation.

o The first algorithm was developed at ARL
to compensate for wind loading on an un-
manned robotic platform. It is a simple al-
gorithm that can only estimate integer im-
age translations, and operates on normal-
ized row and column projections of consec-
utive frames in the video sequence.

o The second algorithm was developed at the
University of Maryland; it is a multiresolu-
tion version of the algorithm described in
Section 2 of this report.

e The third algorithm was a generalization
of the second one; it uses longer image se-
quences for motion estimation.

In spite of the fact that the stabilized im-
age sequences obtained from the three algo-
rithms were perceptually almost indistinguish-
able, there were dramatic differences in perfor-
mance between the first two algorithms and the
third. The first two algorithms had unaccept-
ably high false dismissal and false alarm rates
on the tested image sequences. On the other

hand, when the target tracker was integrated
with the third algorithm, it achieved a 0% false
dismissal rate and a 1% false alarm rate on real
IR sequences. Details of this study will be re-
ported in [Balakirsky and Chellappa, 1996].

Figure 7 shows a typical image from one of the
real FLIR sequences employed in the experi-
ments. The target, near the top of the image,
is outlined in a box. Table 1 compares the de-
tection results of the three stabilization algo-
rithms on one of the FLIR sequences. Again,
even though there is little perceptual difference
between the stabilized sequences produced by
the three algorithms, the impact of the small
differences on target acquisition and false alarm
detection rates were quite significant.

Figure 7: Typical image from a real FLIR se-
quence.

3.2 3D Model-Based Image
Stabilization—University of
Maryland

We have studied the use of combined visual cues
and dynamic models for the stabilization of cal-
ibrated or uncalibrated image sequences [Yao
et al., 1996).

Parameters relevant to image warping are esti-
mated by combining information from different
tracked tokens, namely points and horizon lines.
These parameters are simply the camera rota-



tional velocity if intrinsic camera parameters
are available, or the projectivity coefficients, in
the uncalibrated case. Image plane displace-
ments of distant feature points may unambigu-
ously characterize rotational motion. However,
such points are sometimes difficult to detect and
track, due to the absence of sufficient inten-
sity gradient information. Horizon lines, when
present, on the other hand, constitute very
strong visual cues, requiring relatively simple
operations for their tracking. These tokens are
therefore both used in our stabilization scheme.

We have investigated how to use temporal infor-
mation in a sequence to facilitate the estimation
of parameters of interest. Image stabilization is
a process closely related but not equivalent to
image registration. Registration techniques can
be extended for stabilization purposes. Image
stabilization is inherently different in that it al-
lows the use of dynamical information over long
temporal windows. In unmanned ground ve-
hicle application, cameras are mounted rigidly
on the platform. The rotation of the vehicle
arises from the rotational movement of the ve-
hicle. It is therefore possible to employ a kinetic
law which captures the rotation of the platform
to model the temporal behavior of the param-
eters of interest. However, with the aid of vi-
sual cues, simple kinematic laws become feasi-
ble. We therefore use a kinematic law to model
the temporal behavior of relevant parameters.

Specifically, for calibrated sequences, since the
intrinsic parameters of the camera are known,
the perspective projection model which de-
scribes the relationship between 3D scenes and
their 2D projections can be used to characterize
the projection of both distant points and hori-
zon lines. After the points and horizon lines
are tracked over the sequence, they can be used
along with a kinematic law to estimate the ro-
tational parameters. Based on the estimated
parameters, a stabilized sequence is generated.

For uncalibrated sequences, to integrate distant
points and horizon lines, a different descrip-
tion of the movement of horizon lines is em-
ployed. This leads to the estimation of eight
projective coefficients, in order to stabilize the
uncalibrated sequence. However, the estimates
of these projective coefficients are very sensi-
tive to the tracking of points and lines. On
the other hand, the intrinsic parameters are of-
ten approximately known. Instead of estimat-
ing the eight projective coefficients, our uncal-
ibrated stabilization scheme is then similar to
the calibrated scheme and concentrates on es-
timating the three rotational parameters while
assuming the approximate intrinsic parameters.

Both schemes have been tested on real se-
quences with good results. The results of this
research are illustrated in Figures 8(a—d). Fig-

ure 8a shows a sample image from an outdoor
sequence. Figure 8b is the same image with the
horizon line superimposed. Figure 8c shows the
point trajectories for features in that sequence
and Figure 8d is a plot of the estimated 3D ro-
tational parameters.

3.3 Perception of the UGV’s
Environment—University of
Maryland

Our work on RSTA on the Move has concen-
trated on the interplay between the recovery of
three-dimensional motion information and the
recovery of descriptions of the immediate envi-
ronment of the UGV. Regarding the perception
of 3D motion we have implemented a set of tech-
niques that recognize a collection of global pat-
terns of robust spatiotemporal measurements.
The localization of these patterns, which are in-
dependent of the structure of the scene in view,
encodes the underlying 3D motion parameters,
enabling stabilization through the interpolation
of the UGV’s intended motion in the tempo-
ral evolution of the measured motion. Figure 9
shows experiments using the approach devel-
oped in [Fermiiller and Aloimonos, 1995] with
real data collected from the vehicle.

A recent technical development related to the
perception of the UGV’s environment is the con-
cept of iso-distortion surfaces, a framework for
studying the relationship between the computa-
tion of 3D motion and depth from a sequence of
images [Cheong and Aloimonos, 1995]. The un-
derlying conceptual theme is that motion errors
(e.g., errors between retinal motion and per-
ceived 3D motion) affect depth estimates sys-
tematically. The understanding of the geometry
of this distortion of depth is essential for un-
derstanding the interplay between 3D motion
and shape processing and thus for interpret-
ing visual motion. The introduced framework
characterizes this relationship via a family of
iso-distortion contours, which describes the loci
over which depths are distorted by the same
amounts. Figure 10 shows an example of the
iso-distortion contours that result from inter-
secting the iso-distortion surfaces with the Zx-
plane.

The tool of iso-distortion surfaces allows us to
study the very practical problem of calculating
the precision of an inertial system that is suffi-
cient for obtaining unbiased estimates of the ve-
hicle’s heading direction, using algorithms that
combine inertial and visual measurements. The
process is explained in Figure 11.
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Figure 8: (a) A sample image from a sequence, (b) an image with horizon line detected, (c) an
image with point trajectories, and (d) a plot showing the estimated 3D rotational parameters

3.4 Fast, Filter-Based, Object
Location and Identification—
University of Rochester

We have developed a visual location and identi-
fication system [Rao and Ballard, 1995b] based
on efficiently computable iconic representations.
The system uses two primary visual routines,
one for identifying the visual image near the
fovea (object identification), and another for lo-
cating a stored prototype on the retina (o0b-
ject location). The iconic representations are
based on high-dimensional feature vectors ob-
tained from the responses of an ensemble of
steerable Gaussian derivative spatial filters at a
number of orientations and scales. Such feature
vectors serve as effective photometric descrip-
tions of the local intensity variations present in
the image region about a scene/object point; in
addition, they can be made rotation and scale
invariant [Rao and Ballard, 1995b]. The iconic
feature vectors are stored in two separate mem-
ories. One memory is indexed by image coordi-
nates while the other is indexed by object co-
ordinates. Object location matches a localized

set of model features with image features at all
possible retinal locations. Object identification
matches a foveal set of image features with all
possible model features.

We describe here in more detail the routine for
object location; details regarding the identifica-
tion routine, which employs Kalman Filter the-
ory and visual learning, can be found in [Rao
and Ballard, 1995a). The location routine cru-
cially depends on the fact that only a single
model object is being matched to other objects
in an image at any instant. Let us denote this
model that is to be located in the current image
as

M={r"m=1,...,Mmax}- (2)

where r"™ are the object’s filter response vectors
extracted from different spatial locations.

The location algorithm in its most general form
proceeds as follows:

1. For each response vector r™ representing
some model point m, create a Saliency Im-

age S, defined by
Sm(xvy): Hr(xvy)_rmHQ (3)



Figure 9: A camera mounted on the Martin Denver UGV captured a sequence of images as the
vehicle moved along rough terrain in the countryside, thus undergoing continuously changing rigid
motion. (a) shows one frame of the sequence with the normal flow field overlaid. (b), (d) and
(f) show the positive (light color) and negative (dark color) vectors of the longitudinal patterns

corresponding to the x-, y- and z-axes (see [Fermiiller and Aloimonos, 1995]). (c), (e) and (g)
show the corresponding fitted patterns. (i) shows, superimposed on the image, the boundaries of
the patterns whose intersections provide the FOE and the AOR (the point where the rotation axis
pierces the image plane). (j) Measurements are not everywhere available (strong intensity gradients
are sparse), but a set of patterns can still be fitted, resulting in two bounded areas as locations for

the FOE and the AOR.

2. Find the best match point in the image for
each m using the following Winner-Take- All
rule:

(Tbys by ) = argming, ) {Sm(z,y)} (4)
3. Construct a binary image B:

_ Uit (e, y) € {(2 9,0}
B(z,y) = { 0 otherwise
(5)
where m =1, ..., Mmax-
4. Output the location of the object in the cur-

rent image as

(wb, o) = argmax, ) {S(z,y)* Bz, y)}
(6)

where B is an appropriate blurring function
whose size can usually be estimated in an
active vision environment.

The location algorithm currently operates at
close to real-time rates in an active vision sys-
tem consisting of the University of Rochester
binocular head with two movable color CCD
cameras that provide input to a Datacube
MaxVideo™ MV200 pipeline image-processing
system.  Given a live input image (of size
512 x 480) from the camera, the MV200 exe-
cutes nine convolutions using nine different 8 x 8
discrete Gaussian derivative filter kernels on a
low-pass filtered five-level pyramid of the image
to obtain the response vectors for all points in
the current image; these vectors are stored in a
“memory surface” &. During the memorization
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Figure 10: Tso-distortion contours resulting from intersecting the iso-distortion surfaces with the Zz-plane
(the plane defined by the optical axis and the horizontal axis of the camera). The horizontal component
zg of the actual Focus of Expansion is g = 50. Assuming that the error in estimating zg is zg. = —50
and the error in estimating the rotation around the y-axis is 4. ~ 0.001, Figures 10a and 10b show iso-
distortion contours for two different values of the FOV. The value next to each contour denotes the amount
of multiplicative distortion (1.0 means no distortion).
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Figure 11: The effectiveness of a relatively inexpensive, not highly accurate inertial sensor depends on the
distribution of depths in the scene in view. The analysis using iso-distortion contours is based on whether
“negative” depth values arise, and considers as a criterion for the estimation of the FOE the point that
gives rise to a minimum number of non-positive depth measurements. The level contours in (b), (c), and (d)
show the variation in the number of negative depths as the FOE estimates move away from the true FOE
(indicated by the cross). The best FOE estimate is associated with the “bottom” of the contours (minimum
number of negative depths). The axes of these contour plots represent the error of the FOE in degrees; they
are not plotted at the same scale as the image in (a). FOE = 30°; 3. = 0.04°/s (error in rotation around the
y-axis); (7/W)mia adjusted by changing W. The analysis suggests that an inertial sensor with an accuracy
of 0.04° /s may be problematic in outdoor scenes but should be very successful in indoor scenes.



phase, filter responses are extracted for each of
the sparse set of points located within the given
object. During the location phase, a model re-
sponse vector is loaded into the 8 x8 convolution
kernel and convolved with the memory surface
S containing the response vectors for each point
of the input image; the closest vectors can be se-
lected by simply thresholding the results of the
convolution at individual thresholds to obtain
candidate match points.

Figure 12 shows an example of the performance
of the location routine in a realistic scene. Here
we demonstrate the algorithm’s ability to find
a model object (in this case, the stuffed doll) in
the presence of object motion, clutter, and per-
spective distortion; ‘4’ denotes the best match-
ing location found by the algorithm.

Figure 12: Example of locating a model object
(stuffed doll) under conditions of motion, clut-
ter, and perspective.

3.5 Active Intelligent
Observers—University of
Pennsylvania

Current active vision systems address two pri-
mary questions: how to select interesting parts
of the scene to look at and how to maintain ac-
quisition of the selected objects. We are inter-
ested in building an active intelligent observer
on top of a reflexive gaze control system. Specif-
ically, we propose to use high-level knowledge to
direct the actions of an active vision system us-
ing feedback from low-level gaze control mech-
anisms.

Our approach comprises three phases. In the
teaching phase, the active intelligent observer
acquires a series of views of a reference object
and integrates them into a structural model of
the object. In the acquisition phase, the ob-
server searches for the desired object in the
scene and establishes the correct image size by
moving and zooming. In the guidance phase,
the observer dynamically constructs a gaze con-
trol path that leads to the optimal aspect for the
current task. The structural model of the object
allows the observer to determine the location of
the optimal aspect in the view sphere and to
generate intermediate views that guide the ob-

server along the gaze control path. In robotic
applications, the manipulated object must fre-
quently be examined as toits identity and orien-
tation. The active intelligent observer uses the
structural model to determine the object’s ori-
entation and to move around it to view specific
features.

Low-level image measures for gaze control are
notoriously sensitive to changes in scale, ori-
entation, and viewing aspect. However, if a
simple template is augmented with high-level
structural information, new views can be syn-
thesized to guide the observer’s gaze between
known views. Conversely, the observer can in-
fer the pose of an object from the current view
by comparing it to the stored knowledge. The
basic idea of this approach is to add a higher
level of feedback to gaze control and close the
perception-action loop around the visual servo-
ing task.
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