
1

A Real-time Computer Vision Platform for Mobile
Robot Applications

Sandor Szabo, David Coombs, Martin Herman, Ted Camus, Hongche Liu
{sszabo,dcoombs,mherman,tcamus,hongche.liu}@nist.gov

http://isd.cme.nist.gov/

National Institute of Standards and Technology
Intelligent Systems Division
Building 220, Room B-124

Gaithersburg MD 20899

ABSTRACT

A portable platform is described that supports real-time computer vision applica-
tions for mobile robots. This platform includes conventional processors, an image
processing front-end system, and a controller for a pan/tilt/vergence head. The
platform is ruggedized to withstand vibration during off-road driving. The platform
has successfully supported experiments in video stabilization and detection of mov-
ing objects for outdoor surveillance, gradient-based and correlation-based image
flow estimators, and indoor mobility using divergence of flow. These applications
have been able to run at rates ranging from 3 to 15 Hz for image sizes from 64x64
to 256x256.

1 Introduction

There are many applications for autonomous mobile robots, including military scout
missions, urban patrol missions, surveillance and security, highway driving, lunar and
planetary exploration, hazardous waste handling, delivery of material to machines for
manufacture, delivery within hospitals, household cleaning, and many more. All of these
applications have in common the fact that their behaviors can be composed from a com-
mon set of generic activities. Many of these generic activities may use vision as a primary
form of perception. Examples of such generic activities include detecting and avoiding
obstacles, detecting stationary and moving targets, tracking moving targets, camera fixa-
tion, image stabilization, landmark recognition and localization, landmark-based pose de-
termination, and egomotion determination.

This paper describes a real-time computer vision platform designed for mobile robot
applications, particularly outdoors. The platform consists of a stand-alone enclosure con-
taining electronic and computing equipment. The enclosure is shock-mounted to with-
stand vigorous vibration encountered during off-road driving. The enclosure contains
Sparc computers, an image frame grabber, a real-time image-processing board, and a mo-
tion-control board for operating a pan/tilt/vergence head.

Although the platform was designed to handle a target acquisition and tracking task,
it can also be used for many of the vision-based activities enumerated above. The task for

2

which it was designed involves reconnaissance, surveillance and target acquisition (RS-
TA) from a moving vehicle (termed “RSTA on the Move” [10][11]). The scenario is the
following: While the vehicle is moving, a camera mounted on a computer-controlled pan/
tilt platform scans the terrain searching for moving targets (such as tanks, trucks, and oth-
er vehicles). Once a target is detected, it is tracked by the camera through control of the
pan/tilt platform. This task requires several of the generic activities above, including dig-
ital image stabilization, detection of independently moving targets, tracking these targets,
and computer control of the pan/tilt head. This paper provides examples of the computer
vision platform performing real-time image stabilization and real-time moving target de-
tection.

The platform has also been used to experiment with real-time optical flow extraction.
Two different algorithms have been implemented: one uses image derivatives to find flow
and another uses a correlation matching method. Finally, the platform has been used to
perform experiments in real-time obstacle avoidance by an indoor mobile robot using
only optical flow for navigation.

This paper is organized as follows. The next section describes the NIST hierarchical
control architecture for which the computer vision platform was designed. Then a descrip-
tion of the design and system components of the platform is presented. This is followed
by an overview of several applications which have been implemented and tested on the
platform. These include RSTA on the Move, real-time optical flow extraction, and real-
time obstacle avoidance.

2 Architecture

The computer vision platform described in this paper is designed to be readily used in
systems designed according to the Real-Time Control System (RCS) hierarchical archi-
tecture [1]. RCS decomposes goals both spatially and temporally to meet system objec-
tives. It monitors its environment with sensors and updates models of the states of the sys-
tem itself and the world. Figure 1 maps the functionality of the RSTA application into the
first four levels of the RCS hierarchy. Figure 12 maps the functionality of the indoor ob-
stacle avoidance system into the first three levels of the RCS hierarchy.

RCS is composed of three parallel legs, sensory processing (SP), world modeling
(WM), and behavior generation (BG) that interact to control complex systems. The hier-
archical levels run in parallel and are labelled, from highest to lowest, tribe, group, task,
e-move (elemental-move), prim (primitive) and servo. The BG modules control physical
devices. The WM modules supply information to both the BG hierarchy and the SP hier-
archy. It maintains a database of system variables and filters and analyzes data using sup-
port modules. The SP modules monitor and analyze sensory information from multiple
sources in order to recognize objects, detect events and filter and integrate information.
The world model uses this information to maintain the system’s best estimate of the past
and current states of the world and to predict future states of the world.

3

3 System Description

3.1 Design requirements

The architectures described above are useful in determining what requirements must
be met by the computer vision platform. Still, because of the nature of our research and
evaluation goals, the requirements are not entirely fixed. A considerable amount of flex-
ibility is necessary in order to experiment with many types of algorithms. A variety of re-
searchers typically work on implementing, evaluating and improving algorithms over a
long period of time, so an easily understood environment is essential. Implemented algo-
rithms or components may be obtained from a multitude of sources, so a common plat-
form is desirable. The complexity of vision processing for both indoor and outdoor mov-
ing robots demands real-time performance which is often not achievable using single pro-
cessor systems. A clear path must exist to add additional general purpose processors and
specialized processors. Thus, besides the functional requirements outlined by the archi-
tectures, the platform must be flexible, easy to use, support a common open architecture
and achieve real-time performance.

Based on the above design criteria, a Sparc1 VME-based multiprocessor system, run-
ning the Solaris operating environment, was selected as the core of the computer system.
Solaris provides real-time performance and multiprocessor resource management. The

RSTA On The Move

Task

E-move

Prim

Servo

SP

Moving target detection
Correlation target tracking

Feature extraction
Image flow extraction
Image matching

Filtering

BG

Determine pursuit or
saccade to acquire/follow
target

Compute trajectory
and velocity profiles

Servo pan/tilt/zoom motors

WM

Update
target data

for tracking

Moving targets
 size
 position
 velocity in 2D
 trajectory in 2D
 predicted position

Image warping
Image stabilization

Cameras Pan/Tilt/
Zoom

Encoders

INS Camera

Pan/Tilt/Zoom

Motors

Target selection

Figure 1: Design of the RSTA on the Move system described using the RCS Architecture.

4

VME backplane provides the ability to integrate a wide range of specialized board com-
ponents in a compact card cage. The entire system, with ruggedized hard drive, electron-
ics and power conditioning is housed in a shock isolated 19-inch rack mount enclosure
(Figure 2). The enclosure allows the system to be easily mounted on any vehicle that pro-
vides 24 volts dc.

In order to provide additional computational bandwidth, several low level functions
are implemented on dedicated boards. Low level image processing is performed on a
Datacube MV-200. Low level servo control of the TRC head is performed on a Delta Tau

1. Certain commercial equipment, instruments, or materials are identified in this paper in order to

adequately specify the experimental procedure. Such identification does not imply

recommendation or endorsement by NIST, nor does it imply that the materials or equipment

identified are necessarily best for the purpose.

Memory

Industry Pack I/O

Delta Tau PMAC

Datacube MV200

Themis 10MP

Camera
Electronics

TRC
Amps

Macrolink
Ruggedized
Harddrive

Spare slots

Figure 2: Electronics enclosure.

24 volt power supply

Shock
Isolated
Rack

Sealed
Enclosure
w/wheels

5

PMAC motion controller. More details of each system component is presented in the fol-
lowing section.

3.2 System components

3.2.1 Sparc and Bus architecture
The Sparc multiprocessor computer is a Themis 10MP VME board. The board has

slots for two MBus cards, each capable of holding one or two HyperSparcs. The current
system is configured with one 80 MHz and two 90 MHz HyperSparc processors. Each
processor contains a floating-point unit, a memory management/cache controller and a lo-
cal cache.

The MBus cards provide communications between the processors and memory and to
the VME bus interface. The Mbus is a 64-bit multiplexed address (36-bit) and data (64-
bit) bus which operates at 40 MHz[9]. During burst transfers it can achieve a peak band-
width of 320 Mbytes/sec. The VME is a 32-bit address, 32-bit data bus which operates at
40 MHz and can achieve a peak bandwidth of 160 Mbytes/sec[26].
3.2.2 Operating environment

The operating environment is Solaris 2.4 [22] which is based on the SunOS 5/SVR4
(Unix System V Release 4) operating system. Solaris 2.4 is compliant with existing
POSIX standards (NIST POSIX Conformance Test Suite Certificate of Validation 151-
2SUN003). See Appendix A for a more detailed description of this environment.
3.2.3 Datacube MV-200

The MaxVideo 200 is a VME-based image processing board capable of performing
several types of image operations in real-time [19]. Imageflow is an extensive library of
software that is used to program and interact with the MV-200. The MV-200 is based on
the concept of image pipelines. A pipeline consists of a 1-dimensional stream of pixels
which may be operated at a maximum clock rate of 20 MHz. (RS170 formatted video re-
quires a bandwidth of 7.4 MHz.) At the heart of the MV-200 is a 32x32 crosspoint switch
which routes pipelines among image processing modules. The MV-200 performs arith-
metic operations (multiply, add, normalize), logic operations, table look-ups, 8x8 convo-
lutions, statistics (sums, min/max), feature listings (maximum of 512 per frame), histo-
grams and morphological operations. The MV-200 is also configured with a mini-warper
module that performs first and second order polynomial image warps on images as large
as 1024 x 1024.
3.2.4 TRC Head

The Transitions Research Corporation (TRC) head consists of a UniSight pan/tilt base
that supports a BiSight Vergence head (Figure 3). Each axis is independently driven by
encoded DC brush motors. The absolute position is accurate to 1 arc minute. The maxi-
mum angular velocities are 650 deg/sec for the pan, 500 deg/sec for the tilt, and 1000 deg/

sec for the vergence axes. Maximum angular accelerations are 1350 deg/sec2 for pan/tilt

axes and 12000 deg/sec2 for the vergence axes [24].
3.2.5 Delta Tau PMAC

The PMAC [12] is a general-purpose VME-based motion control board that performs
low level control of the TRC head. The board contains a digital signal processor that is

6

capable of performing servo updates at a frequency of 2 kHz. The PMAC provides a high
level programming interface which contains a suite of trajectory generation algorithms.
In the linear blended move, a motor is commanded to move toward a goal at a constant
velocity. The acceleration can be constant, resulting in a trapezoidal velocity profile, or
can be ramped, yielding an S-curve velocity profile. The PMAC also provides a more di-
rect interface in which the programmer can specify the end position or distance, the end
velocity, and the time period for the move. The PMAC computes a third order position
trajectory to the goal (ramped acceleration). The programmer must provide new goals pri-
or to the end of the specified time period. The time period can be very small enabling the
programmer to specify precise trajectories for visual saccade or pursuit behaviors.

4 Experiments

Several applications have been tested on the vision platform. In this section we exam-
ine the implementation of several algorithms and show results of several experiments with
them.

4.1 RSTA on the Move

Two algorithms for a RSTA on the Move system were tested on the vision platform.
The first algorithm performs image stabilization based purely on image registration. The
second algorithm identifies pixels in the image which represent motion in the scene inde-
pendent of camera induced motion.
4.1.1 Image Stabilization

This algorithm is based on registering features between images. The registration as-
sumes that image motion is attributable to four motion parameters: two translations in the

Figure 3: TRC Bisight head with two types of lens.

7

image plane, rotation about the image axis and scale. Since perspective is not taken into
account by the model, the algorithm works best when stabilizing distant portions of the
scene. This is appropriate for RSTA applications in which targets are usually at a signif-
icant distance.

A detailed description of the algorithm can be found in [20]. Figure 4 shows where
components of the algorithm run on the vision platform. Basically, the algorithm consists
of extracting and matching features between consecutive image frames. An affine image
motion model is then fit from frame to frame. Finally, all images are aligned to a reference
image. The following are more implementation details. First, a new image is filtered to
remove noise and to accentuate features. Then the image is convolved with a 5 x 5 feature
detector kernel. The image is divided into vertical rectangular strips, and convolution
maxima are located in these strips, with an attempt to find maxima located along the ho-
rizon in the scene. An 11 x 11 patch around each convolution maximum is then correlated
with each patch in the previous frame. The best three correlations are chosen to fit rota-
tion, translation, and scale parameters. To obtain subpixel displacement, a second order
polynomial surface is fit around the correlation peak instead of using the original grey lev-

Figure 4: Allocation of stabilization functions to hardware resources.

Monitor

Compute

Stabilization

Xform

SPARC

Video

A/D

Filter

Image

MV-200

Overlay &

Video D/A

Warp

Image

stabilized image

camera

8

els. Scale is estimated based on the Euclidean distance between feature points. The rota-
tion and translation parameters are obtained by solving the overdetermined linear system
derived from the set of matched features. The transformations between consecutive
frames are composed to compute the transformation between the reference frame and the
current frame. Finally, the current frame is warped to the reference frame using bilinear
interpolation.

Results of the algorithm are shown in Figure 5. The images were obtained from a U.S.
Army HMMWV while traveling cross country at approximately 8 kmph (5 mph). The un-
stabilized images are shown on the right. A cross hair has been graphically inserted to
show how the image moves due to camera motion. On the left are stabilized frames in the
same sequence. Again, the cross hairs in this sequence help illustrate that the central por-
tion of the image remains fixed. The algorithm operates on real-time video imagery at a
rate of seven frames per second on imagery digitized at 256x256 pixels.
4.1.2 Independent motion detection

This algorithm, developed by Nelson [21], takes advantage of the fact that images
from a translating camera appear to expand or flow outwards (i.e., radially) from the focus
of expansion (FOE). The FOE lies at the point in the image toward which the camera is
moving. In a world full of stationary objects, one can predict the flow at each point in the
image. Objects that exhibit flow inconsistent with the predicted flow are flagged as inde-
pendently moving objects (IMOs).

The algorithm first computes the normal (gradient parallel) flow field of the image us-
ing spatial and temporal derivatives. Some estimate of the camera motion is required in
order to create the expected motion flow field. In the algorithm, a Hough transform is used
to develop a coarse representation of the motion field (4x4 motion field quantized to 8 di-
rections). The transform accumulates the flows of the background as well as the indepen-
dently moving objects - thus it assumes the background motion is the dominant contrib-
uting factor. In the general case of the algorithm, the elements of this transform matrix
form a feature vector which is used to index into a library of canonical motion fields. The
canonical motion fields correspond to expected flows from various translations and rota-
tions of the camera. For optimization purposes, the algorithm as implemented on the vi-
sion platform does not search through the motion field library but assumes the flow is due
to a forward moving camera. The expected forward motion field is used to construct a fil-
ter which is then compared to the original flow field. Flow vectors inconsistent with the
predicted vectors are assumed to be caused by motion of independent objects. Figure 6
shows how this algorithm is mapped onto the vision platform. Figure 7 shows a sequence
of imagery where a moving van is highlighted as the HMMWV travels toward the van.
The highlighted pixels have been determined by the algorithm to lie on independently
moving objects. The algorithm operates on real-time video imagery at a rate of 15 frames
per second on imagery digitized at 256x256 pixels.

4.2 Gradient-based optical flow

A gradient algorithm for computing optical flow has been implemented and tested on
the vision platform. The algorithm, developed by Liu, et al. [15][16], uses up to third-or-
der spatio-temporal derivatives and a generalized motion model that accommodates ex-

9

Figure 5: Stabilized frames (in left column) vs. unstabilized frames in the same se-
quence. Cross-hairs highlight the stability or instability in the image.

10

pansion and translation. In this approach, the spatial and temporal derivatives are fit to a
single coherent motion model (i.e., corresponding to a single object), which leads to a lin-
ear system of multiple motion constraint equations. The goodness with which image de-
rivatives fit the model determines the confidence assigned to the motion estimated using
the linear system.

The speed is roughly 3-10 frames per second depending on the window size, median
filtering, order of derivatives used, density of output, etc. The real-time implementation
is depicted in Figure 8. Five successive image frames are smoothed and subsampled to
64x64 pixels. Image derivatives up to third-order are then obtained by applying separable
3-D Hermite polynomial differentiation filters to the neighborhood of each pixel [15][16].
This produces an overdetermined linear system which is then solved using a least squared
error (LSE) method. An estimate of optical flow at each pixel is thus obtained.

The accuracy and efficiency of this algorithm, as compared to other state-of-the-art
optical flow algorithms (including Horn and Schunck [14], Lucas and Kanade [18], Uras,
et al. [25], Anandan [2], Fleet and Jepson [13], Bober and Kittler [4], and Camus [6]), is

Figure 6: Allocation of independently moving object functions to hard-
ware resources.

Compute

Independent

Motion

Filters

SPARC

Video

A/D

Compute

Flow

MV-200

Overlay &

Video D/A

Filter

Independent

Motion

independent motion

Monitor camera

11

depicted in Figure 10 (see [17]). This figure shows accuracy (or error) as one coordinate
and efficiency (or execution time) as the other. Two-dimensional accuracy-efficiency
(AE) curves in this figure characterize an algorithm’s performance. A curve is generated
by setting parameters in the algorithm to different values. For optical flow using correla-
tion methods, the template window size and the search window size are common param-
eters. For gradient methods, the (smoothing or differentiation) filter size is a common pa-
rameter. More complex algorithms may have other parameters to consider.

Figure 7: Detecting independently moving objects from a moving vehicle. The images
were obtained from a U.S. Army HMMWV while traveling cross country at approxi-

mately 8 kmph (5 mph).

12

For optical flow, accuracy has been extensively researched in Barron, et al.[3]. Figure
10 uses the error measure in [3], that is, the angle error between computed flow

and the ground truth flow , as one quantitative criterion. For efficiency, we use
throughput (number of output frames per unit time) or its reciprocal (execution time per
output frame) as the other quantitative criterion. Therefore, in Figure 10, the axis rep-

resents the angle error and the axis the execution time. The results in this figure are de-
rived from running the algorithm on the diverging tree sequence (Figure 9).

A point in the performance diagram corresponds to a certain parameter setting. The
closer the performance point is to the origin (small error and low execution time), the bet-

LSE Optical
Flow

3-D Hermite polynomial
differentiation filters

ship 5 frames
through VME bus

Processing on the Datacube side Processing on the Sun Sparc 10 side

smoothed
subsampled

delay
1/30
second

frame rate video loop

digitized
image

Figure 8: Real-time implementation of the optical flow algorithm of Liu, et al. [15]

uc vc 1, ,()

u v 1, ,()

x

y

Figure 9: Diverging tree sequence

13

ter the algorithm. An algorithm with different parameter settings spans a curve, usually of
negative slope. The distance from the origin to the AE curve represents the algorithm’s
AE performance. In Figure 10, there are two AE curves and several points1. It can be seen

that some algorithms (e.g., Fleet & Jepson[13]) may be very accurate but very slow while
other algorithms (e.g., Camus[6]) may be very fast but not very accurate. The algorithm
of Liu et al. [15] [16], on the other hand, is very flexible since it can be very accurate for
some parameter settings while very fast for other settings.

The algorithm has achieved high efficiency and accuracy by clever design as well as
exploiting the vision platform capabilities. It uses the real-time digitizing, convolution
and image scaling capabilities of the Datacube MV-200 to smooth and subsample the in-
put images. This way, it avoids an overwhelmingly huge volume of input data to the Sparc
and at the same time reduces aliasing (by pre-smoothing). The fast floating-point opera-
tions provided by the Sparc make the general motion modeling and differentiation filter-
ing feasible. The separable filter design also contributes to the efficiency of the algorithm.

1. The implementations of all algorithms except Liu, et al. and Camus were provided by Barron
[3]. Some of the algorithms produce different output density; we simply project the error by ex-
trapolation. In Liu’s curve, the filter size used ranges from 5x5x5 to 17x17x11. In Camus’s curve
the template size ranges from 7x7x2 to 7x7x10. The execution time for all algorithms is the ap-
proximate elapsed time running on our vision platform (with a single 80MHz HyperSparc 10
board).

Figure 10: 2-D performance diagram

0.1

1

10

100

1000

1 10 100

T
im

e
(s

ec
on

ds
/f

ra
m

e)

Error (degrees)

Horn & Shunck

Uras

Anandan

Bober

Lucas

Fleet & Jepson

Liu, et al.

Camus

17x17x11

5x5x5

7x7x2

7x7x10

14

The algorithm is capable of handling motion velocities up to about a quarter of the fil-
ter size used. It is also very good at extracting very small motion. Generally, it can handle
0.05 to 4 pixels per frame of motion.

In the implementation depicted in Figure 8, five successive image frames are used to
compute flow. The flow is computed for the point in time when the middle frame is ac-
quired. Therefore, two past frames as well as two future frames are used. For a throughput
of 5 frames per second, the latency of the algorithm is , that
is, two times the frame latency (33 ms per frame at normal frame rate) plus the algorithm
computation time (200 ms).

The fact that we can transport 5 frames of images through the VME bus limits unde-
sirable latency incurred by symmetric filtering of the algorithm. Without this bandwidth,
we would have to slowly ship the images one by one to the host (while the images are cap-
tured live with the Datacube MV-200). This would increase the latency and also allow
only larger image motions to be detected.

4.3 Correlation-based optical flow

A real-time correlation algorithm for computing optical flow, developed by Camus
[6],[7] has been implemented and tested on the vision platform. The speed is about 9
frames per second running on the platform (when configured with a single 80 MHz Hy-
perSparc 10) on 64x64 images. It is currently one of the most efficient general purpose
optical flow algorithms. The basic idea of this algorithm is to subsample the image and
thus constrain the motion velocity so that a quadratic search in space can be reduced to a
linear search in time. This temporal matching concept is depicted in Figure 11. This algo-
rithm produces quantized flow estimates. The number of quantization levels (for magni-
tude and orientation) is related to the range of the temporal search. For the performance
mentioned above, the temporal search range is 10 frames. Since the algorithm’s compu-
tational complexity is linear in the temporal search range as well as the image size, optical
flow may be computed at video rates (30 frames per second) on 32x64 images using a
temporal search range of 6 frames. The template window size, which does not affect the
algorithm’s computational complexity [6], is 7x7. Despite the algorithm’s simplicity and
quantization, it is sufficiently accurate for computing time-to-contact robustly [8].

2 33ms 200ms+× 266ms=

Image t−2 Image t−1 Image t

0
1

2
3

0
1

2
3

0
1

2
3

0

1

2

3

0

1

2

3

Image t−2 Image t−1 Image t

0
1

2
3

0
1

2
3

0
1

2
3

0

1

2

3

0

1

2

3

(a) (b)

Figure 11(a): Visualization of pixel (1,1) in image T-1 moving to pixel (2,0) in image T, an optical
flow of (1,-1) pixels per frame. (b): Visualization of pixel (1,1) in image T-2 moving to pixel (1,2)

in image T, an optical flow of (0,1/2) pixels per frame.

15

The correlation measure used is the sum-of-absolute-differences of the intensity val-
ues of corresponding pixels within the template window. Due to the two-dimensional
scope of the matching window, this algorithm generally does not suffer from the aperture
problem except in extreme cases, and tends to be very resistant to random noise. Since the
patch of a given pixel largely overlaps with that of an adjacent pixel, match strengths for
all displacements for adjacent pixels tend to be similar (except at motion boundaries), and
so the resultant optical flow field tends to be relatively smooth, without requiring any ad-
ditional smoothing steps. Conversely, any noise in a gradient-based flow method can re-
sult in errors in the basic optical flow measurements due to the sensitivity of numerical
differentiation. In fact the correlation-based algorithm’s “winner-take-all” nature does not
even require that the calculated match strengths have any relation whatsoever to what
their values should theoretically be; it is only necessary that the best match value corre-
spond to the correct motion. For example, a change in illumination between frames would
adversely affect the individual match strengths, but need not change the best matching
pixel shift. Conversely, a gradient-based algorithm’s image intensity constraint equation
would not apply since the total image intensity does not remain constant. The robustness
of the sum-of-absolute-differences correlation match has been demonstrated on images
with extremely low texture [6]. As a result, optical flow measurement density for this al-
gorithm is 100 percent.

4.4 Real-time obstacle avoidance using flow divergence

A real-time obstacle avoidance system has been implemented on the vision platform
[5]. The system uses only the divergence of the optical flow field for both steering control
and collision detection. The robot has wandered about the lab at 20 cm/s for as long as 26
minutes without collision.The entire system is implemented on the vision platform con-
figured with a single 80 MHz HyperSparc 10 without taking advantage of real-time oper-
ating system support (which should be able to further improve performance). Dense opti-
cal flow estimates are calculated in real-time (as described in section 4.3) across the entire
wide-angle image. The divergence of this optical flow field is calculated everywhere and
used to control steering and collision behavior. Divergence alone has proven sufficient for
steering past objects and detecting imminent collision. The major contribution is the dem-
onstration of a simple, robust, minimal system that uses flow-derived measures to control
steering and speed to avoid collision in real time for extended periods.

Figure 12 sketches the obstacle avoidance system. Video images are obtained from an
on-board uncalibrated camera with a field of view. The robot’s view from this cam-
era is shown in Figure 13(a). The camera is mounted on a pan motor. The images are sub-
sampled and full flow is computed in this half-height image. Flow divergence is estimated
and spatio-temporal median filters are applied to reduce momentary fluctuations in the di-
vergence field. Hazard maps are derived from the divergence field’s middle row, the pre-
vious steering decision, and the goal direction. A composite hazard map (in this case sim-
ply a row vector) is used to steer the robot around objects as it drives in the goal direction.
(The temporal concatenation of the one-dimensional hazard vectors is shown in Figure
13(b).) Using active gaze control, the camera is rotationally stabilized to reduce the mag-
nitude of the flows in the image stream. When the camera points too far away from the

115°

16

heading, a saccade is made to realign gaze with the anticipated heading. These saccades
introduce momentary disturbances of the flow data, but the temporal median filter effec-
tively eliminates disruptive effects. When divergence data indicate imminent collision
ahead, the robot stops, turns away, and resumes wandering. The inputs to the body and
gaze controllers consist of driving, steering, and gaze velocities. The path of the robot ap-
pears in Figure 13(c) for the gauntlet of office chairs seen in (a) from the robot’s view-
point before the trial began. The accumulated composite hazard map (b) shows the suc-
cession of one-dimensional maps used by the robot to control driving throughout the trial.

SP WM BG

SERVO

PRIM

EMOVE

motorswide angle video

Figure 12. Obstacle Avoidance Architecture

Compute flow diver-

gence everywhere

Derive hazard maps
from divergence, goal,

and previous choice

Compute full optical
flow

Generate steering com-
mand;

Detect imminent collision

Determine steering, speed

Determine gaze control

Issue steering, speed
and gaze commands

Apply spatial and tem-
poral medians

xy

Y

X
0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

0.00 200.00

XY Path

(b)
(c)

(a)

Figure 13: (a) Robot’s view of the gauntlet of office chairs before the trial: (b) hazard
map (time increasing upward): (c) XY path trace begins at (0,0).

17

The selected heading is highlighted, and the path can be seen to veer around the stool on
the right and then back from the chairs on the left.

The software modules produce and consume data at various rates, and the interactions
of the unequal cycle times have considerable consequences. Flow and divergence esti-
mates are produced approximately every 260 ms (3.85 Hz). The robot accepts speed and
steering commands at about 3 Hz. Hence, at a robot velocity of 20 cm/s, visual data be-
come available about every 5 cm of robot travel and steering is adjusted about every 7 cm.
To avoid losing valuable data, especially time-critical impending collision indications, the
behavior controller runs at 20 Hz, evaluating any fresh data and writing appropriate steer-
ing and speed commands. These commands are only single buffered, so only the most re-
cent command is read by the robot controller when it is ready for a new one. The systems
are designed to require only approximate knowledge of the robot’s current motion state if
they use any at all. As well, robust data filters are employed to ignore momentary noise
and artifacts that result from system module interactions. This approach enables modules
to cooperate without delicate synchronization.

Although image motion has long been considered a fundamental element in the per-
ception of space, attempts to use it in real-world mobility tasks have been hampered by
noise, brittleness, and computational complexity. These results demonstrate that real-time
robot vision and control can be achieved with careful implementations on ordinary com-
puting platforms and environments. Similarly, an extensible framework can combine sim-
ple robust components in a manner than minimizes requirements for tight synchroniza-
tion.

5 Conclusion

A portable computer vision platform has been described. The platform has been used
to implement and test not only fundamental computer vision functionality such as image
flow estimation but also applications supported by such capabilities, including outdoor
surveillance and indoor mobility. The platform has served well as a focal point for bring-
ing together components developed at separate sites by the partners of the RSTA project.
Systems were developed using Datacube and ordinary workstations, and the code was
readily ported. The platform provides the convenience of a workstation development and
testing environment with the rugged portability of a field unit. Future work will focus on
integrating the platform onto a HMMWV and performing real-time field tests.

6 References

[1] Albus, J., “Outline for a Theory of Intelligence,” IEEE Transactions on Systems, Man and Cybernetics, 21(3):473-
509, 1991.

[2] Anandan, P., “Measuring Visual Motion from Image Sequences”, Ph.D. Thesis, COINS TR 87-21, University of
Massachusetts, Amherst MA, 1987.

[3] Barron, J. L., Fleet, D. J. and Beauchemin, S. S., “Performance of Optical Flow Techniques”, International Journal
of Computer Vision, vol. 12, no. 1, pp. 43-77, 1994.

[4] Bober, M. and Kittler, J., “Robust Motion Analysis”, Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, Seattle, WA, pp. 947-952, 1994.

[5] Camus, T., Coombs, D., Herman, M. and Hong, T., “Real-time Single-workstation Obstacle Avoidance Using Only
Wide-field Flow Divergence”, NISTIR, Gaithersburg, MD, in press 1996.

[6] Camus, T., “Real-Time Quantized Optical Flow”, Proceedings of IEEE Conference on Computer Architectures for

18

Machine Perception, Como, Italy, 1995.
[7] T. Camus, “Real-Time Quantized Optical Flow”, to appear in The Journal of Real-Time Imaging (special issue on

Real-Time Motion Analysis), Academic Press, 1996.

[8] Camus, T., “Calculating Time-to-Contact Using Real-Time Quantized Optical Flow”, NISTIR-5609, Gaithersburg,
MD, 1995.

[9] Catanzaro, B., Multiprocessor System Architectures, SUN Microsystems, Mountain View, CA, 1994.
[10] Davis, L.S., Bajcsy, R., Herman, M. and Nelson, R. “RSTA on the Move”, Proceedings of the ARPA Image Un-

derstanding Workshop, Monterey, CA, November 1994.
[11] Davis, L.S., Bajcsy, R., Herman, M. and Nelson, R. “RSTA on the Move: Detection and Tracking of Moving Ob-

jects from an Autonomous Mobile Platform”, Proceedings of the ARPA Image Understanding Workshop, Palm
Springs, CA, February 1996.

[12] Delta Tau PMAC Users Manual, Version 1.13, December 1992.
[13] Fleet, D.J. and Jepson, A.L., “Computation of Component Image Velocity from Local Phase Information”, Inter-

national Journal of Computer Vision, vol. 5, no.1, pp. 77-104, 1990.
[14] Horn, B. K. P. and Schunck, B. G., “Determining Optical Flow”, Artificial Intelligence, vol. 17, pp. 185-204, 1981.
[15] Liu, H., “A General Motion Model and Spatio-Temporal Filters for Motion Implementation”, Ph. D. Dissertation,

University of Maryland, September 1995; NIST-IR 5763, Gaithersburg, MD, March 1996.
[16] Liu, H., Hong, T., Herman, M. and Chellappa, R., “A General Motion Model and Spatio-temporal Filters for Com-

puting Optical Flow”, University of Maryland TR -3365, November 1994; NIST-IR 5539, Gaithersburg MD, No-
vember 1994, to appear in International Journal of Computer Vision.

[17] Liu, H., Hong, T., Herman, M. and Chellappa, R., “Accuracy vs. Efficiency Trade-offs in Optical Flow Algo-
rithms”, Proceedings of the Fourth European Conference on Computer Vision, Cambridge, England, 1996.

[18] Lucas, B. D. and Kanade, T., “An Iterative Image Registration Technique with an Application to Stereo Vision”,
Proceedings of the DARPA Image Understanding Workshop, pp.121-130, 1981.

[19] MaxVideo 200 Hardware Reference Manual, Datacube Inc., Danvers, MA, October, 1993.
[20] Morimoto, C.H., DeMenthon, D., Davies, L.S., Chellappa, R. and Nelson, R., “Detection of Independently Moving

Objects in Passive Video”, Proc. of IEEE Intelligent Vehicles Symposium, I. Masaki (ed.), Detroit, MI, Sept. 1995.
[21] Nelson, R., “Qualitative Detection of Motion by a Moving Observer”, International Journal of Computer Vision

7, 33-46, November 1991.
[22] Reference Manual for Solaris 2.4, Product # SOL-24-RD, SUN Microsystems, Mountain View, CA, 1994.
[23] Solaris Multithreaded Programming Guide, SUN Microsystems, Mountain View, CA, 1995.
[24] TRC Pan/Tilt/Vergence Platform Specifications, Transitions Research Corporation, Danbury, CT, 1995.
[25] Uras, S., Girosi, F., Verri, A., Torre, V. “A Computational Approach to Motion Perception”, Biological Cybernet-

ics, vol. 60, pp. 79-97, 1988.
[26] The VMEbus Specification, VME International Trade Association, Scottsdale, AZ, October 19, 1987.

A. Solaris 2.4 Description
The Solaris environment is based on the SunOS 5/SVR4 (Unix System V Release 4)

operating system. Several features of the environment make it a desirable operating sys-
tem for a general-purpose, real-time, image-processing platform.

The environment defines an Application Binary Interface (ABI) Standard which en-
ables developers to run their applications on a wide variety of hosts. Different ABI's exist
for each processor architecture, including the Sparc, 680X0, 88000, 80x86, and MIPS
RISC. The ABI lets a developer write an application and have the executable code run on
any processor within an architecture. The source code can be compiled to produce exe-
cutable code for each processor architecture. Thus, applications developed on Sparc ar-
chitectures can be ported to run on lower cost personal computers.

The environment provides an extensive set of utilities for multiprocessor applications.
The core of the utilities is a multithreaded kernel that supports symmetric multiprocessing
(SMP). A multithreaded process can execute several instruction streams concurrently on
individual processors. In an SMP system each processor shares the kernel image and each

19

processor can execute kernel instructions simultaneously. Alternatively, in an asymmetric
MP system only one processor can run kernel operations simultaneously. Finally, in other
MP systems, each processor has its own copy of the operating system with the major dis-
advantage of increased complexity in communications between instructions streams.

In the environment, parallelism and efficient use of processors is achieved using
threads. SunOS uses a two-level thread model [23]. At the user level are those threads
identified by the programmer. These threads contain the sequences of instructions that the
programmer determines may be executed in parallel. The second level involves the inter-
face to the operating system. At this level, threads are mapped to light weight processes
(LWPs). The LWPs, also termed virtual processors, are scheduled by the kernel. The pro-
grammer can rely on the thread scheduler (part of the thread library) to handle mapping
of threads to LWPs (called unbound threads), or can explicitly map threads to LWPs
(called bound threads). The threads scheduler maps threads on available LWPs based on
the relative priority of threads within a process.

One advantage of bounded threads is that the programmer can explicitly assign the
thread to a physical processor. This might be done in order to create an optimal processor
architecture that reflects the programmer’s insight into how best to parallelize the algo-
rithm. A second advantage is that the programmer can explicitly specify the priority of the
bound thread, i.e., the LWP which may be critical in a real-time application.

The scheduling of LWPs is handled by the kernel. The kernel scheduler is fully pre-
emptive and supports three classes for scheduling LWPs. In the lowest level class, called
Time Share (TS), each LWP is scheduled a fixed time quantum (a few hundred millisec-
onds) and switching takes place in a round-robin fashion. At the next higher level of pri-
ority is the System class which consists mostly of kernel processes. The programmer can
not schedule LWPs to run within the system class.

The highest priority level of scheduling is the real-time class (RT). Real-time LWPs
are scheduled on the basis of their priority and time quantum. An LWP with infinite time
quantum runs until it terminates, blocks or is preempted by a higher priority real-time pro-
cess (typically as a result of an interrupt). An LWP with finite time quantum has the same
stop conditions but also ceases to run when the time quantum expires.

