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RCS (Real-time Control System) is a reference model architecture for intelligent sysiems that represents
an interrelated set of semiotic principles typical of natural and artificial intelligence. This architecture
allows both for interpreting sensory phenomena as well as for controlling complex technological systems
and processes. It consists of a hierarchically layered set of processing nodes. At each layer, entities
are recognized, tasks are deliberatively planned, and feedback from semsors closes a reactive comtrol
loop. RCS thus integrates and distributes deliberative and reactive functions throughout the entire
hierarchical architecture, at many different temporal and spatial scales. It is demonstrated that the system
of representation leads to nested knowledge structures which can be used for design and implementation
of intelligent controllers for a wide variety of complex systems.
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Introduction

In order to be considered as a reference model for the
study and design of intelligent systems, an architec-
ture should have the following properties:

(1)

The architecture should provide a conceptual
framework for understanding both natural and
artificial intelligence, and should suggest an en-
gineering methodology for designing large scale
intelligent systems and processes.

The architecture should demonstrate how to
combine and blend both deliberative and
reactive behaviors in a single integrated archi-
tecture. It should incorporate deliberative mech-
anisms that can reason about the past and
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(3)

generate plans and strategies for avoiding
danger and achieving desirable future goals. It
should also contain reflexive mechanisms that

can evoke immediate reactions to sensed
conditions.
The architecture should describe how to repre-

sent knowledge about the world in both long-
term and short-term memory, in both iconic
and descriptive forms. It should explain how
to transform information from one form to the
other. It should deal with the abundance of in-
formation that needs to be processed, stored, up-
dated, and retrieved. It should show how stored
knowledge can be used to predict the results of
tentative plans, generate expectations of sensory
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Fig. 1. A RCS reference model atchitecture for intelligent syst

ems. Processing nodes are organized such that the BG

modules form a command tree. Information in the knowledge database is shared between WM modules in nodes within

the same subtree. On the right, are examples of the functional

characteristics of the BG modules at each level. On the

left, are examples of the type of entities recognized by the SP modules and stored by the WM in the knowledge database
at each level. Sensory data paths flowing up the hierarchy typically form a graph, not a tree.

input, and respond appropriately to unexpected
events.

(4) The architecture should describe how to process
signals from sensors into knowledge of situations
and relationships, and how to store such knowl-
edge in representational forms that can support
reasoning and decision making.

2. The RCS Paradigm

The Real-time Control System (RCS} developed at
the National Institute of Standards and Technology
and elsewhere over the past two decades possesses
the above properties'™ RCS is a reference model ar-
chitecture for the study of both natural and artificial
intelligence. It provides a model for bridging the gap
between the deliberative and the reactive control. It
suggests how to represent knowledge in a variety of
forms, and how to process sensory information into a
form useful for reasoning and decision making. RCS
has been used in the design of several large scale in-

telligent machine systems. A number of these are
described near the end of this paper.?

The RCS reference model architecture consists
of a hierarchically layered set of processing nodes
connected together by a network of communications
pathways as shown in Fig. 1. At each layer of the
RCS hierarchy, there are both deliberative and re-
flexive elements. At each level, sensory data are pro-
cessed, entities are recognized, world model represen-
tations are maintained, and tasks are deliberatively
decomposed into parallel and sequential subtasks,
to be performed by cooperating sets of subordinate
agents. Also at each level, feedback from sensors re-
flexively closes a control loop allowing each agent to
respond and react to unexpected events. The result

2The RCS reference model architecture has evolved over the
past 20 years, and has been implemented in many different
versions. The RCS described in this paper is the most recent
version, and contains a number of advanced concepts and
features that have not yet been implemented.
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is a system that combines and distributes delibera-
tive and reflexive features throughout the entire hier-
archical architecture, with both planned and reactive
capabilities tightly integrated at all levels and time
frames.

Each node in the RCS architecture can be
constructed from four basic types of processing
modules — Behavior Generating (BG), World Mod-
eling (WM), Sensory Processing (SP), and Value
Judgment {VJ} — plus a Knowledge Database (KD)
module. The nodes are interconnected in a system
architecture that communicates information between
and within the nodes.

3. Behavior Generating (BG) Modules

BG modules contain Job Assigner (JA), Scheduler
(SC), Plan Selector (PS), and Executor (EX) func-
tions (or submodules} as shown in Fig. 2.
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The Job Assigner accepts input task commands
from an Executor (or Agent) in a higher level BG
module. It also has access to the current plan of the
higher level BG module. The Job Assigner outputs
job assignments to a set of Schedulers within the BG
module.

The Schedulers, one for each agent in the BG
module, accepts job assignments from the Job As-
signer. The set of schedulers may coordinate their
activities to generate a coordinated plan for the
agents.

The Plan Selector sends tentative plans to a
World Model simulator, and receives back evalua-
tions from a Value Judgment plan evaluator. (The
WM simulator and VJ evaluator are not shown in
Fig. 2.} Based on this information it either selects
the best of the plans generated up to that time by
the Job Assigner and Schedulers, or requests further
planning.
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Fig. 2. A Behavior Generation (BG) module showing a Job Assigner that allocates jobs and resources to agents, and
three agents, each consisting of a Scheduler and an Executor. A plan selector selects the best of several alternative plans
generated by the Job Assigner and Schedulers for execution by the Executors. The Executors with their supporting
Schedulers, World Modeling, Knowledge Database, and Sensory Perception modules comprise agents.
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The Executors execute the selected plan, co-
ordinating actions between agents {when required),
and correcting for errors between planned and ob-
served states reported by the world model. Outputs
from the Executors become input task commands to
subordinate BG modules.

4, Planning

BG modules can accommodate a variety of plan-
ning algorithms. These can range from simple ta-
ble lock-up of pre-computed plans or scripts, to
real-time search of configuration space, or game the-
oretic or operations research algorithms for multi-
agent groups. Regardless of how plans are synthe-
sized, a plan consists of a spatial decomposition of a
task into a set of job assignments and resource alle-
cations to agents, plus a schedule of subtasks ordered
along the time line for each agent. In many cases, it
is required that the agents’ schedules be coordinated
s0 as to produce coordinated actions.

In general, planning consists of the following
steps:

» Generating a set of tentative plans.
Simulating the likely results of those plans.

Evaluating those results according to some cost/
benefit criterion.

Selecting the tentative plan with the best evalua-
tion for execution.

The evolution of the generic planning process is
shown in Fig. 3. JA submodule distributes jobs and
resources to agents, and transforms coordinate sys-
tems from task to subtask coordinates (e.g. from
end-point or tool coordinates to joint actuator co-
ordinates). The SC submodules compute a tempo-
ral schedule of subtasks for each agent and coordi-
nate schedules between cooperating agents (e.g. joint
actuator trajectories are coordinated to generate
desired end-point trajectories). Together, the assign-
ment of jobs and resources to agents, the transforma-
tion of coordinates, and the development of a (possi-
bly coordinated) schedule for each agent, constitutes
the synthesis of a plan. Therefore, output from the
JA and SC submodules is an alternative plan.

Each alternative plan is submitted to the WM
module for simulation of predicted results. The
predicted results are evaluated by the VJ module
for cost and benefit of predicted results. The Plan
selector then either selects the plan for execution,
or requests another alternative plan be generated.
Alternatives may involve alternative job assignments
or alternative scheduling of jobs.

In highly structured and predictable environ-
ments, plans may be computed off-line, long before
execution. For example, in manufacturing plants,
shop level planning is often done off-line in a batch
mode computing environment, once a day, or once a
week, However, this often produces plans that be-
come obsolete shortly after execution begins. As the
uncertainty in the environment increases, plans need
to be computed nearer to the time when they will be
executed, and be recomputed as execution proceeds
in order to address unexpected events.

RCS can accommodate either pre-computed
plans, or planning functions that recompute plans
on demand, or on repetitive cyclical intervals. The
repetition rate of a real-time planning loop must
be at least such that a new plan is generated at
each level before the corresponding executor fin-
ishes the old plan. In highly uncertain environ-
ments, the planner should generate a new plan nearly
as fast as the executor completes each step in the
plan.

At each RCS level, the schedulers compute plans
out to a given planning horizon. The length of the
planning horizon is a distinguishing characteristic of
a RCS level. The resolution of plans is such that at
each level, plans contain on the order of ten sequen-
tial subtasks for each agent. Thus, planning hori-
zons shrink and temporal resolution of subtasks in-
creases about an order of magnitude at each lower
level, while the number of subtasks in each plan re-
mains constant. Planning horizons at high levels may
span months or years, while the planning horizon
at the bottom level may be 30 milliseconds or less.
The number of levels required in a RCS hierarchy
is approximately equal to the logarithm of the ra-
tio between the planning horizons at the highest and
lowest levels.
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Fig. 3. Evolution of the generic planning process. The JA function generates alternative assignments for agents. The
5C function generates schedules for each agent. The resulting tentative plan is submitted to the WM simulator which
predicts a result. The VI module computes a cost-benefit analysis on that result. The PS then either selects the plan to
be executed, or requests additional planning. By iteration through this planning loop, the space of possible plans can be
searched, with the PS function selecting for execution the plan receiving the best VI evaluation.
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5. Execution

A plan represents a path, or set of reference trajec-
tories, from the current state to a desired goal state
expressed in a vocabulary of task commands that
can be accepted as inputs by the Executor (EX)
submodules. For each agent at each level, there is
an executor that executes its part of the plan. The
EX function compares the desired subgoal of its cur-
rent plan subtask with the current estimated state of
the world from the World Model. The EX function
then executes a control law designed to reduce the
difference between its subgoal and the state of the
world. Each EX module thus functions as a closed
loop servomechanism, steering its agent to follow the
reference trajectory which is the plan.

The loop bandwidth of the control loop at each
level is defined by the repetition rate of the EX
function at that level. This repetition rate should
be an order of magnitude faster than the average
step in the plan is completed, and hence about one
hundred times the reciprocal of the planning horizon
at each level.

Qutput from each EX submodule becomes an
input command to a BG module at the next lower
level. At the lowest level, the output from each EX
goes to an actuator. At all other levels, the output
goes to the Job Assignment submodule in the BG
module at the next lower level.

6. Integration of Deliberative
and Reactive

The closed feedback loops through the EX functions
provide reactive, or reflexive, responses that generate
sensory interactive behavior. The planning functions
that take place in the job assignment, scheduling,
WM simulation, VJ evaluations, and plan selection
modules provide deliberative behavior. The RCS ar-
chitecture thus mixes reactive and deliberative ele-
ments in BG modules at each level of architecture.
At lower levels of the RCS hierarchy, the planning
elements are relatively simple, and the reflexive ex-
ecution elements predominate. At higher levels, the
reverse is true — deliberative planning elements con-
sume most the computing resources, and reflexive ex-
ecution elements decrease in relative computational
demands.

7. World Medeling (WM) Modules

The WM modules perform four basic functions:

{1) WM modules maintain the knowledge database,
keeping it current and consistent. They up-
date state estimates in the Knowledge Database
(KD) based on correlations and variance be-
tween world model predictions and sensory ob-
servations at each node. WM update functions
may include recursive estimation algorithms, or
processes that compute lists of attributes from
images, as well as recognition and detection al-
gorithms that perform pattern matching oper-
ations necessary to verify the identification of
features, surfaces, objects, and groups. Both
iconic and symbolic representations are main-
tained. Updating symbolic representations re-
quires a transformation from iconic to symbolic
representations. WM functions enter new enti-
ties into the knowledge database and maintain
the links between symbolic data structures that
define relationships between entities.

(ii) WM modules generate predictions of expected
sensory observations that enable Sensory Pro-
cessing (SP) modules to perform correlation and
predictive filtering. They use symbolic repre-
sentations to generate iconic images, masks, and
windows that can support visualization, atten-
tion, and model matching.

(iii) WM functions respond to queries from the BG
modules regarding the state of the world or the
state of the controller. They act as question
answering systems, and transform information
into the coordinate system required by the task.

(iv) WM functions perform simulations necessary
to support the planning requirements of the
BG modules. This requires dynamic models to
generate expectations, and predict the results of
current and future actions. Results predicted by
the WM simulations are sent to the VJ modules
for evaluations, which are returned to the BG
module for plan selection.

8. Sensory Processing (SP) Modules

SP modules process data from visual, auditory, tac-
tile, proprioceptive, force, velocity, position, ac-
celeration, temperature, magnetic, radiation, taste,
or smell sensors. SP modules contain filtering,
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masking, differencing, correlation, matching, and
recursive estimation algorithms, as well as feature
detection, clustering, and pattern recognition algo-
rithms. Interactions between WM and SP modules
can generate a variety of filtering and detection pro-
cesses such as Kalman filtering and recursive esti-
mation, Fourier transforms, and phase-lock loops.
In the vision system, SP modules process images
to detect brightness, color, and range discontinu-
ities, optical flow, and stereo disparity. They may
utilize a variety of signal detection and pattern
recognition algorithms to analyze scenes and com-
pute information needed for manipulation, locomo-
tion, communication, attention tracking, and spatial-
temporal reasoning.

9. Value Judgment (VJ) Modules

VJ modules contain algorithms for computing cost,
risk, and benefit, for evaluating states and situa-
tions, for estimating the reliability of state estima-
tions, and for assigning cost-benefit values to objects
and events. VJ modules may compute Bayesian and
Dempster-Schafer statistics on information about the
world based on the correlation and variance between
observations and predictions in order to assign con-
fidence values to data from varicus sources.

10. Knowledge Database (KD) Modules

KD modules store the data that support the BG,
WM, SP, and VJ processing modules in each node.
KD modules store information about the world in the
form of state variables, entity frames, event frames,
rules and equations, and images or maps.

(1) State variables represent the current estimated
state of the world.

(2) Entity frames are list data structures that store
symbolic representations of features, objects, or
groups that exist in the world, or in the imagina-
tion. An entity frame consists of a list head with
a name as an address, plus a set of attribute-
value pairs, and a set of relations to other entities
or events. These relationships represent seman-
tic meaning,.

(3) Event frames are list data structures that store
symbolic representations of state transitions, or
situations at particular times and places, or se-
quences of states or situations that transpire over

intervals of time and space in the world. An
event frame also consists of a name, a set of
attribute-value pairs, and a set of relationships
to other events or entities.

(4) Rules and equations such as if /then rules, the
predicate calculus, and differential equations can
express physical laws that describe the way the
world works, as well as mathematical and logical
formulae that describe the way things relate to
each other. Control laws and plant models can
also be represented in the knowledge database.

(5) Images are two-dimensional arrays of attribute
values. Images may be generated in a number
of ways. For example, an image may be formed
by the optical projection of light from a scene in
the world through a lens onto an array of pho-
toreceptors (or pixels) such as the retina or a
CCD TV camera. An image may also be formed
by pressure on an array of tactile sensors on the
skin. An image consists of attributes such as
brightness, pressure, spatial or temporal gradi-
ents, stereo disparity, or computed values such
as range, or flow that are derived from other im-
ages. An image may also be generated by in-
ternal mechanisms (such as a computer graphics
engine) from information stored in symbolic en-
tity frames. In biological systems, this process
corresponds to imagination.

{6) Maps are also two-dimensional arrays of pixels,
wherein icons or symbolic names, in addition to
attributes, are attached to pixels.

The KD contains both short term (dynamic) and
long term (static) memory elements.

(1) Short term memory consists of both symbolic
and iconic representations:

{a) Short term symbolic entity frames represent
current entities-of-attention that have either
been specified by the current task, or are
particularly noteworthy entities observed in
current sensory input. Short term entity
frames include attributes, pointers to iconic
images, and pointers to entities stored in
long term memory.

{b) Short term iconic representations can con-
gist of attribute images generated directly
from sensory observations, or by recursive
estimation. Short term iconic images can
also be generated by internal mechanisms
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from short term entity frames. In ma-
chine systems, this is donme through sim-
ulation/animation. In biological systems,
it corresponds to imagination. Short term
iconic images can be used to mask or win-
dow incoming data, or to fuse incoming sen-
gory observations with internally generated
images. Short term iconic images persist in
memory only so long as they are refreshed
by incoming sensory data or by internally
generated images.

(2) Long term memory contains the entire dic-
tionary of entities that the intelligent system
knows about. It consists entirely of symbolic en-
tity and event frames, plus rules and equations.
Attributes from long term frame representations
may be transferred into short term memory, or
vice versa. If a long term symbolic entity is
specified by a task command, attributes of the
long term memory entity frame can be added
to the attribute list of the short term entity-
of-attention frame. Alternatively, if a match is
recognized between a current entity-of-attention
and a long term entity, newly observed attributes
from the short term entity can be used to up-
date the attributes of the long term entity, and
attributes of the long term memory symbolic en-
tity can be added to the short term entity. If
nothing in long term memory is recognized as
corresponding to what is observed, and if the ob-
served entity is judged noteworthy by the Value
Judgment function, the short term symbolic en-
tity will be entered as a new entity into long term
memory.

The KD is implemented in a distributed fashion,
with representations at each node defined by the
requirements of the BG and SP functions being
carried out in each node.

11. A System Architecture

The system architecture defines the relationships be-
tween the functional modules and the knowledge
database, and provides a communication system that
transmits messages between them. The communica-
tions system conveys commands from a BG modules
to their subordinates, and returns status. It conveys
tentative plans from the BG planners to the WM
simulators. It transmits simualtion results to the VJ

evaluators, and returns plan evaluations to the BG
Plan Selectors. It moves sensory data from sensors to
filters and transfers WM predictions to SP compara-
tors. It applies windows to SP spatial integrators
and thresholds to SP detectors and recognizers. It
communicates the names of recognized entities to the
WM knowledge database and conveys correlations
and variance to WM update mechanisms. It com-
municates reward and punishment data to the V]
modules, and communicates evaluations to wherever
they are needed.

The various processing and data modules in the
RCS architecture act as a collection of intelligent
agents (or software objects), sending and receiv-
ing messages to and from each other. These mes-
sages convey commands and requests, and return
status. RCS does not specify the communication
mechanism. Messages may actually be communi-
cated by point to point message passing, network
broadcast, or shared common memory. In biologi-
cal systems, messages are conveyed by impulses on
neural axons, or via hormones through the blood
stream. The RCS reference model requires only that
any particular state variable have a single functional
source, or writer, but it may have many destinations,
or readers.

12. A Generic Processing Node

The relationships and interactions between the BG,
WM, SP, VI, and KD modules in a generic node of
the RCS architecture are shown in Fig. 4. The Be-
havior Generating {BG) modules contain submod-
ules of Planner {PL} and Executor (EX). Planner
has submodules of Job Assignment {JA), Schedul-
ing (SC) and Plan Selector (PS). The World Model-
ing (WM} module contains the Knowledge Database
(KD), with both long term and short term symbolic
representations and short term iconic images. In ad-
dition, WM contains a Simulator where the alterna-
tive plans generated by JA and SC are simulated for
predicting results. The Value Judgment (VJ) mod-
ule evaluates predicted results. The Sensory Process-
ing (5P) module contains filtering, detecting, and
estimating algorithms, plus mechanisms for compar-
ing predictions generated by the WM module with
observations from sensors. It has algorithms for rec-
ognizing entities and clustering entities into higher
level entities. Perceived results are analyzed in VJ
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Fig. 4. Relationships within a single node of the RCS architecture. The Behavior Generating {(BG) modules contain
Job Assignment (JA), Scheduling (SC), Plan Selector (PS) and Executor (EX) submodules. The World Modeling (WM)
module contains a plan simulator and mechanisms for updating the Knowledge Database (KD), which contains both
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sensory input.
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as good or bad, successful or unsuccessful, and con-
fidence factors are computed based on the variance
between observed and predicted sensory input.

Each node of the RCS hierarchy closes a control
loop. Input from sensors is processed through Sen-
sory Processing (SP) modules and used by the World
Modeling (WM) modules to update the Knowledge
Database (KD). This provides a current best esti-
mate X of the state of the world x. This informa-
tion provides a feedback signal to the EX module
which compares it with the planned reference tra-
jectory. The EX submodule then uses a control law
to compute the compensation required to minimize
the eventual difference between the planned refer-
ence trajectory and the system performance which
emerges as a result of the control process. The cur-
rent best estimate of the world state is also used by
the JA and SC submodules and by the WM plan sim-
ulator to perform their respective planning functions.
% is also used in generating a short term iconic image
that forms the basis for masking, filtering, window-
ing, comparison, recognition, and recursive estima-
tion in the image domain in the sensory processing
SP module.

13. Elementary Loop of Functioning

The bandwidth of the control loop through each node
is determined by the sampling rate of the sensors,
the filter properties of the SP and WM submodules,
and the computation update frequency of the EX
submodule. The control loop, or elementary loop of
functioning, through a typical control node is shown
in Fig. 5.

A task command specifying a goal G arrives into
BG module of a generic control node. The function of
the BG module is to transform the task into a set of
subtasks to be submitted to the set of Actuators {A}.
All actuators operate on their respective Worlds {W}
producing effects that are monitored by the set of
Sensors {S}. The signals from the sensors are pro-
cessed and integrated within the Sensory Perception
{SP) module which updates the representation con-
tained in the World Model (WM). The dotted lines
between the WM and the set {W} indicate a vir-
tual correspondence between the real world W and
its representation in WM. The knowledge in WM is
the system’s best estimate of the real state of W. The
virtual correspondence is maintained via noisy chan-

P<—-IWM BG
==
B

Fig. 5. An elementary loop of functioning.

nel through the Sensors {S} by filtering and recursive
estimation processes in the SP and WM modules. To
the extent that the correspondence between W and
WM is an accurate, or at least adequate, representa-
tion of reality, the behavior generated by BG is more
likely to be successful in achieving the goal G. To the
extent that the correspondence is incorrect, behavior
is less likely to be successful.

Figure 5 describes the Loop of Functioning con-
sisting of two domains — Controller System and
Controlled System. The line AB is a divider between
these domains. It denotes the fact that the modules
above this line are components of the controller sys-
tem while the modules underneath are the controlled
system.

In Fig. 6, a second control level is shown. The
upper, or outer loop, has lower resolution in both
time and space. It has a lower bandwidth, a longer
planning horizon, a larger span of control over subor-
dinate agents, and typically deals with larger range
of space. The inner loop, has a higher loop band-
width, a shorter planning horizon, a smaller span of
control and deals with a smaller spatial range with
higher resolution. The diagram in Fig. 6 is essentially
an expanded version of one of the nodes in level two
of the architecture shown in Fig. 1.

14. Hierarchical Layering

Intelligent control systems can be extremely com-
plex. Maintaining a rich representation of the world
in the knowledge database, and using this represen-
tation to plan and execute sophisticated behavior
with high probability of success can require enor-
mous amounts of computing power. An intelligent
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Fig. 6. An elementary loop with two control levels.

control system may need to store symbolic informa-
tion about thousands of entities in long term mem-
ory. Visual images in short term memory may con-
sist of hundreds of thousands of pixels, each of which
may have numerous attributes that change from one
frame to the next. Correlating incoming sensory data
with stored information is a computationally inten-
sive process. Sophisticated intelligent control sys-
tems can require gigabytes of memory and gigaflops
of processing power.

Hierarchical layering is a means for managing the
complexity that is inherent in intelligent systems.
In a hierarchical system, higher levels have broader
scope and longer time horizons, with less detail.
Lower levels have narrower scope and shorter time
horizons, with more detail. For example, Behavior
Generating modules at the upper levels can make
long range plans consisting of very general goals,

while at lower levels, Behavior Generating modules
can successively refine the long range plans into
short term tasks with great detail. At lower levels,
Sensory Processing modules typically process data
over local neighborhoods and short time intervals;
while at higher levels, Sensory Processing modules
integrate data over long time intervals and large
spatial regions. At low levels, World Model data is
typically short term and detailed; while at the higher
levels it is broad in scope and general. At every
level, feedback loops are closed to provide reactive
behavior, with high-bandwidth fast-response loops
at lower levels, and slower reactions at higher levels.

Intelligent systems typically operate in a real
world environment which is infinitely rich with de-
tail. Yet the computational resources available to
any intelligent system are finite. No matter how
fast and powerful computers become, the amount of
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computational resources that can be embedded in
any practical system will be limited. Even the
number of neurons in the human brain is limited.
Fortunately, at any point in time and space, most
of the detail in the environment is irrelevant to the
immediate task of the intelligent system. Therefore,
the key to building practical intelligent system lies in
understanding how to focus the available computing
resources on what is important, and ignoring what
ig irrelevant.

Hierarchical perception and task decomposition
enables the higher levels with broad perspective to
determine where and when to focus computing re-
sources of the lower levels. The higher levels main-
tain a broad perspective necessary for determining
what is important, while the lower levels attend to
details, The problem of distinguishing what is im-
portant from what can be safely ignored is the central
problem of attention. Top down, what is important
is defined by behavioral goals and priorities. Bottom
up, what is important is defined as the unexpected,
unexplained, unusnal, or threatening. In either case,
hierarchical layering provides a mechanism for focus-
ing attention on what is important in both time and
space.

At the top of the hierarchy, categorial impera-
tives such as {make a profit) {for intelligent manufac-
turing systems), or {propagate genes) (for biological
creatures), influence the selection of goals and the
prioritization of tasks throughout the hierarchy.

At intermediate levels, tasks with goals and prior-
ities are received from the level above, and subtasks
with subgoals and attention priorities are output to
the level below. For example, in military unmanned
ground vehicles, intermediate level tasks might be
of the form {go to map position {z, ¥)), or (provide
reconnaissance and target acquisition functions for
sector (al, a2)).

At the bottom of the hierarchy and external
to the control system, are actuators that act on
the world environment, and sensors that transform
events in the world into information signals for the
control system.

In each node at each level of the hierarchy, a set
of lower level agents work together under supervision
of a higher level agent. Each of the lower level agents
is considered a subagent for the higher level agent.
At each level, global goals are refined and focused
onto more narrow and higher resolution subgoals. At

each level, attention is focused into a more narrow
and higher resolution view of the world. Each hier-
archical level geometrically refines the detail of the
task and the view of the world, while only linearly
increasing the computational demands placed upon
the intelligent system.

At all levels, agents process input from sensors, or
from lower levels via SP and WM modules; they es-
timate the state of the world as perceived from their
level of resolution; they accept goals and priorities
from higher level agents; they make plans to accom-
plish those goals; and they close a control loop. At
each level, there is a characteristic loop bandwidth,
a characteristic planning horizon, a characteristic set
of task skills, a characteristic range of temporal inte-
gration of sensory data, and a characteristic window
of spatial integration. The result is a system with
both deliberative and reactive capabilities tightly in-
tegrated at all levels of resolution in space and time.

15. Applications

Over the past two decades, the RCS architecture
has been used in the implementation of a number
of experimental projects. These include:

{1) A horizontal machining workstation

This project was part of the NBS Automated Manu-
facturing Research Facility (AMRF).® It included an
integrated sensory-interactive real-time contrel sys-
tem for a robot with a structured light machine vi-
sion system, a machine tool, an automatic fixturing
system, and a pallet shuttle. The robot included
a quick change wrist, a part handling gripper with
tactile sensors, and a tool handling gripper for load-
ing and unloading tools in the machine tool mag-
azine. Plans were represented as state-tables, and
a wide variety of sensory interactive behaviors were
demonstrated. These included locating and recog-
nizing parts and determining part orientation of un-
oriented parts presented in trays, and avtomatically
generating part handling sequences for part and tool
loading and unloading.®

(2) A cleaning and deburring workstation

This project was also part of the AMRF. It in-
cluded two robots, a set of buffing wheels, a part
washer/dryer machine, and a variety of abrasive
brushes, Part geometry was input from a CAD
database. Deburring tool paths were automatically
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planned from knowledge of the part geometry plus
operator input indicating which edges were to be de-
burred. Deburring parameters such as forces and
feed rates were also selected from a menu by the op-
erator. Part handling sequences were planned au-
tomatically for loading parts in a vise, and turning
parts over to permit tool and gripper access. Force
sensors and force control algorithms were used dur-
ing task execution to modify the planned paths so as
to compensate for inaccuracies in robot kinematics
and dynamics.”

{3) An advanced deburring and chamfering system
This project is currently nearing completion. The
project integrates off-line programming, real-time
control, and active tool technologies to automatically
place precision chamfers on complex parts manufac-
tured from hard materials such as aircraft jet en-
gine components. The workstation consists of a force
sensitive active tool integrated with a 6 degree-of-
freedom robot and an indexing table used for part
manipulation. The active tool, the Chamfering and
Deburring End-of-arm Tool (CADET), incorporates
actuators and force sensors to provide control over
cutting force and tool stiffness at the part edges.
Part geometry is derived from standard IGES CAD
data formats. Edge selection is performed by a hu-
man operator. Required toocl force is automatically
generated by formula using the cutting depth, feeds,
and speeds input by the operator. A prototype
production cell will be installed at Pratt & Whit-
ney’s East Hartford, CT site upon completion of the
project.’

(4) NBS/NASA standard reference model
architecture for the space station
telerobotic servicer (NASREM)
This project was funded by NASA Goddard Space
Flight Center. NASREM was used by Martin Mari-
etta to develop the control system for the space sta-
tion teletobotic servicer. Algorithms were developed
for force servoing, impedance control, and real-time
image processing of robotic and telerobotic systems
at NIST, Martin Marietta, Lockheed, Goddard, and
in a number of university and industry labs in the
United States and Europe.?

(5) An architecture for coal mining automation
This project transferred RCS architecture and
methodology to a team of researchers in the U.S.

Bureau of Mines, and in turn, to the mining indus-
try. A comprehensive mining scenario was developed
starting with a map of the region to be excavated,
the machines to be controlled, and the mining pro-
cedures to be applied. Based on this scenario, an
intelligent control system with simulation and ani-
mation was designed, built, and demonstrated. The
same control system was later demonstrated with an
actual mining machine and sensors.1?

{6) A nuclear submarine maneuvering system

This project demonstrated the design and imple-
mentation in simulation of maneuvering and
engineering support systems for a 637 class nuclear
submarine. The maneuvering system involves an
automatic steering, trim, speed and depth control
system. The system demonstrated the ability to ex-
ecute a lengthy and complex mission involving tran-
sit of the Bering Straits under ice. Ice avoidance
sonar signals were integrated into a local map using
a CMAC!! peural network memory model. Steering
and depth control algorithms were developed that
enabled the sub to avoid hitting either the bottom
or the ice while detecting and compensating for ran-
dom salinity changes under the ice by making trim
and ballast adjustments. The engineering support
system demonstrated the ability to respond to an
emergency such as a lubrication oil fire by reconfig-
uring ventilation systems, rising in depth to snorkel
level, and engaging the diesel engines for emergency
propulsion.!2

{7} A control system for a US postal service
antomated stamp distribution center
This system demonstrated the ability to route pack-
ages through a series of carousels, conveyors, and
storage bins, to maintain precise inventory control,
provide security, and generate maintenance diagnos-
tics in the case of system failure. The distribution
center was designed and tested first in simulation,
and then implemented as a full scale system. The
system contained over 220 actuators, 300 sensors,
and ten operator workstations. An even larger and
more complex RCS system for controlling a general
mail facility is still under development.!?

(8) A control system for multiple autonomous
undersea vehicles

This system was developed for controlling a pair

of experimental vehicles designed and built by the
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University of New Hampshire. The RCS control sys-
tem included a real-time path planner for obstacle
avoidance, and a real-time map builder for construct-
ing a topological map of the bottom. A series of tests
was conducted in Lake Winnipasaki during the fall
of 198714

(9) An RCS system for remote driving
This system was implemented on an Army HMMWYV
light truck. One version of the system enables
the vehicle to be driven remotely by an operator
using TV images transmitted from the vehicle to
an operator control station. This version has a
retrotraverse mode that permits the vehicle to au-
tonomously retrace paths previously traversed under
remote control, using GPS and an inertial guidance
system.!®

A second version of this RCS system has demon-
strated the ability to drive the HMMWYV automati-
cally using TV images processed through a machine
vision system with a real-time model matching algo-
rithm for tracking lane markings. The RCS real-time
vision processing system has enabled this vehicle to
drive automatically at speeds up to sixty miles per
hour on the highway, and at speeds up to thirty-five
miles per hour on a winding test track used by the
county police for driver-training.'®

{10} An open architecture enchanced
machine controller

The RCS reference model is being used as the
basis for an open architecture Enhanced Machine
Controller (EMC) for machine tools, robots, and co-
ordinate measuring machines. The EMC combines
NASREM with the Specification for an Open Sys-
tem Architecture Standard (SOSAS} developed un-
der the Next Generation Controller program spon-
sored by the Air Force and National Center for
Manufacturing Sciences. In cooperation with the
DoE TEAM (Technology for Enabling Agile Man-
ufacturing) program, EMC functional modules have
been defined, and Application Programming Inter-
faces (APIs) are being specified for sending mes-
sages between the functional modules. A proto-
type machine tool controller has been installed and
is being used in preduction in a General Motors
plant as part of the DoE-TEAM/NIST-EMC govern-
ment /industry consortium. The goal of this effort
is to develop API standards for open architecture
controllers.'?

{11) A planning and control system for a

spray casting machine
The RCS architecture has been applied for planning
and control of the automated Spray Casting Machine
“OSPREY” which has been developed and manu-
factured by MTS Corporation (Minneapolis, MN) in
cooperation with Drexel University. The system has
three levels of resolution.?

(12) An autonomous mobile vehicle

An autonomous vehicle was assembled and tested
by Drexel University in 1984-1987. The goal of
the effort was to investigate the RCS architecture
with four levels of resolution “Planner-Navigator-
Pilot” on the top of the lower level control of steering
and propulsion. The results of this research was
described in Ref. 21.

All of the projects listed above that have used the
RCS architecture have implemented only a subset of
the features of the most advanced theoretical form
of the RCS reference model architecture. This is be-
cause the RCS theoretical development has remained
well advanced over what it has been possible to im-
plement, given programmatic limitations in funding.
Current work at NIST and elsewhere is pursuing
more complex implementations of RCS. For exam-
ple, efforts to incorporate human operator interfaces
into the RCS architecture that began with NASREM
have continued with the Air Force/JPL/NIST Uni-
versal Telerobotic Architecture Project (UTAP), and
the NIST RoboCrane. Work 1s also under way to in-
tegrate the RCS architecture with the NIST Manu-
facturing Systems Integration (MSI) factory control
architecture, and the NIST Quality In Automation
(QIA) architecture.'® When complete, this joint ar-
chitecture will define a reference model architecture
for manufacturing systems that extends all the way
from the servomechanism level to the enterprise inte-
gration level. Work is also in progress to develop an
engineering design methodology and a set of software
engineering tools for developing RCS systems.!?

16. Discussion and Conclusions

The RCS reference model architecture derives from
a control theory approach. It has evolved over the
past two decades from a rather simple robot control
schema, to a reference model architecture for intel-
ligent control system design. From the beginning,
work on RCS has represented a conscious attempt to
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emulate the function and structure of the neurologi-
cal machinery in the brain. For example, each RCS
state variable is analogous to a firing-rate signal on
a neuronal axon. Each RCS function, or submodule,
has properties that are known, or at least hypothe-
sized, to exist in the neurological structures in the
brain. Moest RCS functions can be constructed from
neural nets such as CMAC!! that compute arith-
metic and/or logical functions on a set of inputs
to produce a set of output state variables. These
can be carried over communications pathways that
mimic neural axons to other functional modules that
may use them to perform further functional compu-
tations, or to generate addresses, or to store informa-
tion in memory. RCS functional modules may add,
subtract, multiply, differentiate, integrate (both spa-
tially and temporally), compute variance and cor-
relation functions, recognize patterns, transform co-
ordinates, compute statistical parameters, perform
filtering, masking, warping, and scrolling operations
on arrays and images, generate names or addresses
of symbolic variables and lists, remember state and
act as finite state machines, store and recall at-
tribute values, perform recursive estimation, execute
control laws, and formulate and test hypothesized
actions. RCS modules are arranged so as to close
control loops and planning loops and to process sen-
sory feedback through a variety of filters and inte-
grators with different time intervals so as to create
servo loops with a variety of bandwidths at a hierar-
chy of levels. All the functional modules in RCS are
designed as independent concurrently executing ana-
log, or cyclically executing sampled data processes,
that continuously monitor their inputs and compute
their outputs in a manner similar to the way that
tightly coupled collections of neurons in the brain do.
Each RCS module may be implemented as an inde-
pendent task in a multitasking operating system, as
an object in an object oriented software architecture,
or as an independent agent in an agent architecture.
Just as neurons continuously monitor their synaptic
inputs and compute axonal outputs, so RCS modules
in a Von Neumann computer cyclically sample their
inputs and compute their outputs on a clock cycle
determined by the bandwidth of the process.

The RCS reference model architecture thus pro-
vides a framework for integrating control concepts
with artificial intelligence, neural nets, machine vi-
sion, robotics, computer science, operations research,

game theory, signal processig, filtering, and commu-
nications theory.

References

1. J. 8. Albus, Qutline for a theory of intelligence,
IEEE Trans. Systems, Man and Cybernatics, 21 3,
May/June 1991, 473-509.

2. 1. 8. Albus, Brains, Behavior, and Robotics
(Byte/McGraw-Hill, 1981).

3. 1. 8. Albus, A reference model architecture for intel-
ligent systems design, An Introduction to Intelligent
and Autonomous Conirel, eds. P. J. Antsaklis and
K. M. Passino, 1993.

4. A. Meystel, Nested hierarchical control, An Intro-
duction to Intelligent and Autonomous Control, eds.
P. J. Antsaklis and K. M. Passino, 1993.

5. J. 8. Albus, C. R. McLean, A. J. Barbera and M.
L. Fitzgerald, Architecture for real-time sensory-
interactive control of robots in a manufacturing
facility, Proc. Fourith IFAC/IFIP Symposium —
Information Control Problems in Manufacturing
Technology, Gaithersburg, MD, October 2628, 1982.

6. A. J. Wavering and J. C. Fiala, Real-time control
system of the horizontal workstation robot, NBSIR
88-3692, National Institute of Standards and Tech-
nology, Gaithersburg, MD, December 1987.

7. K. N. Murphy, R. J. Norcross and F. M. Proe-
tor, CAD directed robotic deburring Proe. Sec-
ond Int. Symp. on Robotics and Manufacturing Re-
search, Education, and Applications, Albuquerque,
NM, November 16—18, 1988.

8. K. Stoufler, J. Michaloski, R. Russell and F. Proc-
tor, ADACS — An automated system for part fin-
ishing, NISTIR. 5171, National Institute of Standards
and Technology, Gaithersburg, MD, April 1993, and
Proc. IECON '93 Int. Conf. on Industrial FElec-
tronics, Control and Insirumentation, Maui, Hawaii,
November 15-19, 1993.

9. . 8. Albus, H G. McCain and R. Lumia,
NASA/NBS standard reference model for telerobot
control system architecture (NASREM), NISTTN
1235, 1989, Ed. National Institute of Standards and
Technology, Gaithersburg, MD, April 1989 {super-
sedes NBS Technical Note 1235, July 1987).

10. H. M. Huang, R. Quintero and J. S. Albus, A refer-
ence model, design approach, and development illus-
tration toward hierarchical real-time system control
for coal mining operations, Advances in Control and
Dynamic Systems (Academic Press, July 1991).

i1. J. S. Albus, New approach to manipulator con-
trol: The cerebellar model articulation controller
{CMAC), and Data storage in the cerebellar model
articulation controller (CMACQCY), Trans. ASME Jour-
nal of Dynamic Systems, Measurement, and Control,
September 1975.

12, H. M. Huang, R. Hira and R. Quintero, A subma-
rine maneuvering system demonstration based on




30 LS. Albus 6 A. M. Meystel

the NIST real-time control system reference model,
Proc. Eighth IEEE Int, Symp. on Inielligent Control,
Chicago, IL, August 24-27, 1993.

13. Stamp Distribution Network, USPS Contract
Number 104230-91-C-3127 Final Report, Advanced
Technology & Research Corp., Burtonsville, MD,
20866-1172.

14. M. Herman and J. 5. Albus, Overview of the Mul-
tiple Autonomous Underwater Vehicles (MAUV)
project, IEEE Int. Conf. on Robotics and Auloma-
tion, Philadelphia, PA, April 1988.

15. 8. Szabo, H. A. Scott, K. N. Murphy and S. A.
Legowik, Control system architecture for a remotely
operated unmanned land vehicle, Proc. Fifth IEEE
Ini. Symp. on Intelligent Control, Philadelphia, PA,
September 1990.

16. H. Schneiderman and M. Nashman, Visual tracking
for antonomous driving, IEEE Trans. or Robotics
and Automation, 10 6 (December 1994) T69-775.

17. F. Proctor and J. Michaloski, Enchanced ma-
chine controller architecture overview, NISTIR 5331,
National Institute of Standards and Technology,
Gaithersburg, MD, December 1993.

18. M. K. Senehi, T. J. Kramer, J. Michaloski, R. Quin-
tero, S. R. Ray, W. G. Rippey and S. Wallace,
Reference architecture for machine control systems
integration: Interim report, NISTIR. 5517, National
Institute of Standards and Technology, Gaithers-
burg, MD, 1994.

19. R. Quintero and A. J. Barbera, A software template
approach to building complex large-scale intelligent
control systems, Proc. Fighth IEEE Int. Symp. on
Intelligent Control, Chicago, IL, September 25-27,
1993,

20. B. Cleveland and A. Meystel, Predictive plan-
ning + fuzzy compensation equals intelligent control,
Proc. Fifth IEEE Int. Symp. on Intelligent Control,
Philadelphia, PA, September 1990.

21. A. Meystel, Autonomous Mobile Hobots: Vehicles
with Cognitive Conirol (World Scientific 1991) 600

pages.

J S Albus is presently Chief of
the Intelligent Systems Division, Cen-
ter for Manufacturing Engineering, Na-
tional Institute of Standards and Tech-
nology. He has been involved in the
study of intelligent systems for over
twenty five years. During that time,
he has designed and managed the de-
velopment of a number of intelligent
systems, including the NBS Automated
Manufacturing Research Facility and the NIST RoboCrane.
He was co-developer of the NIST Real-time Control System
{RCS) architecture, and has received several awards for his
work in control theory including the National Institute of
Standards and Technology Applied Research Award, the De-
partment of Commerce Gold and Silver Medals, the Industrial
Research IR-100 award, the Construction Equipment maga-
zine and Popular Science magazine best technologies awards,
and the Joseph F Engelberger Award for robotics technology,
presented at the 1984 International Robot Symposium by the
King of Sweden.

Before coming to the National Institute of Standards and
Technology, Dr Albus worked 15 years for NASA Goddard
Space Flight Center where he designed electro-optical systems
for more than 15 NASA spacecraft. For a short time, he
served as program manager of the NASA Artificial Intelligence
Program.

Dr Albus is the author of numerous scientific papers, journal
articles, and official government studies. He has also written
for popular publications such as Scientific American, OMNI,
BYTE, and the FUTURIST.

He has written two books, “Brains, Behavior, and Robotics”
(Byte/McGraw Hill 1981) and “Peocples’ Capitalism: The Eco-
nomics of the Robot Revolution” (New World Books 1976).

A M Meystel is a Professor of Electri-
cal and Computer Engineering at Drexel
University. Since 1995, he is at the Na-
tional Institute of Standards and Tech-
nology, on leave from Drexel Univer-
sity. He has developed a2 novel concept
and outlined the theory of nested mul-
tiresolutional control systems. His con-
cept of “Planner-Navigator-Pilot” archi-

tecture was broadly accepted in the area
of robotics in the ’80s. He is the author of the book “Au-
tonomous Mobile Robots: Vehicles with Cognitive Control”
(World Scientific Publishing, 1991). He is on the editorial
board of three journals in control and robotics.

Dr Meystel was an initiator of annual IEEE International
Symposium on Intelligent Control, and served as general and
program chairman at four out of eight Symposia since 1985.
He is responsible for Al at the IEEE Technical Committee
on Intelligent Control, and is the moderator of the AICS list:
an electronic discussion group of Architectures for Intelligent
Control Systems. He was the Chair and Co-Chair of four out
of five annual IEEE Workshops on Architectures for Intelligent
Control Systems. During the last three years, Dr Meystel
have presented 10 National and International Invited Lectures
dedicated to the design development and better understanding
of the multiresolutional approach in different areas of human
activity.



