
The NIST RS274/VGER Interpreter

Thomas R. Kramer
Frederick Proctor

Intelligent Systems Division
National Institute of Standards and Technology

Technology Administration
U.S. Department of Commerce
Gaithersburg, Maryland 20899

NISTIR 5754
November 9, 1995

RS274/VGER Interpreter

e of

sity
ment
Disclaimer
No approval or endorsement of any commercial product by the National Institut
Standards and Technology is intended or implied.

Acknowledgements
Partial funding for the work described in this paper was provided to Catholic Univer
by the National Institute of Standards and Technology under cooperative agree
Number 70NANB2H1213.
ii

NIST RS274/VGER Interpreter

CONTENTS

1

..1

.1
1
.1
1
2

.2

.2
..3
.3
..4

.4

..6

.6
.7
..7

..8

10

1

12

12

3

13

13
1.0 Introduction...

1.1 Background..

1.1.1 Enhanced Machine Controller Project ..
1.1.2 Numerical Control Programming Language RS274..............................
1.1.3 The RS274/NGC Language ..
1.1.4 Previous Work at NIST..
1.1.5 Current Work at NIST ...

1.2 Overview of the RS274/VGER Language..

1.2.1 Lines, Blocks, Commands, and Words...
1.2.2 Commands and Machine Modes..
1.2.3 Modal Groups ...
1.2.4 Language Extensions ...

1.3 Canonical Machining Functions ...

2.0 Overview of the Interpreter ... 6

2.1 Major Characteristics ...

2.1.1 Modes of Use ..
2.1.2 How it Runs ..
2.1.3 Speed..

2.2 Start-up...

2.3 Exiting..

3.0 Building a Stand-Alone Executable... 10

4.0 Using the Stand-Alone Interpreter.. 11

4.1 Invoking the Interpreter ...1

4.1.1 Invocation with Keyboard Input ..11
4.1.2 Invocation with NC File Input ...11

4.2 Tool and Setup Files ..

4.3 Keyboard User Interface..

5.0 INPUT .. 1

5.1 Overview..

5.1.1 White Space ...
iii

NIST RS274/VGER Interpreter

3

13

3
3
3
4
14
5
5

.15

16

16

6
6

16

6
7

..17

17
17

.17

18

8
8

19

19

19
1

 22

3

5.1.2 Case Sensitivity..1

5.2 Input Lines ...

5.2.1 Format of a Line...1
5.2.2 Word ..1
5.2.3 Number ..1
5.2.4 Line Number ..1
5.2.5 Parameter_value...
5.2.6 Expressions and Binary Operations...1
5.2.7 Unary Operation...1

5.3 Word Repeats..

5.4 Word order ...

5.5 Measurement Units ..

5.5.1 Linear units ..1
5.5.2 Angular units..1

5.6 Rotary Axes ...

5.6.1 Coordinate Values for Rotary Axes...1
5.6.2 Feed Rate for Rotary Axes...1

5.7 Messages and Comments...

5.7.1 Messages..
5.7.2 Comments ..

5.8 Programs ...

5.9 Control Panel Switches..

5.9.1 Block Delete Switch ..1
5.9.2 Other Switches...1

6.0 Capabilities of the RS274/VGER Interpreter 19

6.1 Words Recognized...

6.2 Input G Codes and M Codes..

6.2.1 G Codes Implemented..
6.2.2 Input M Codes Implemented ...2

7.0 Limitations of the Interpreter.. 21

References ..

Appendix A Software Details ... 23

A.1 Software Modules and Function Call Hierarchies.. 2
iv

NIST RS274/VGER Interpreter

29

0

0
30
0
1
1

2

32
32

33

4

4
4

 35

6

 36

 37

8
8
9
9
9
0
0
0
1
1

41

42

43

3
3

A.2 Source Code Documentation ..

Appendix B Functional Details .. 30

B.1 Error Handling and Exiting... 3

B.1.1 Basic Approach..3
B.1.2 Error Messages...
B.1.3 If an Error Occurs ..3
B.1.4 Handling Calculated Values ..3
B.1.5 Compiler Macros ...3
B.1.6 Use of MAKEMESS..31

B.2 Cyclic Operation ... 3

B.2.1 Read, Store, and Check..
B.2.2 Execute...

B.3 Tool Change..

B.4 Milling Arcs.. 3

B.4.1 Radius Format Arc...3
B.4.2 Center Format Arc ...3

B.5 Coordinate Systems ..

B.6 Tool Length Offsets .. 3

B.7 Inverse Time Feed Rate ..

B.8 Canned Cycles ..

B.8.1 Preliminary Motion..3
B.8.2 G81 Cycle ..3
B.8.3 G82 Cycle ..3
B.8.4 G83 Cycle ..3
B.8.5 G84 Cycle ..3
B.8.6 G85 Cycle ..4
B.8.7 G86 Cycle ..4
B.8.8 G87 Cycle ..4
B.8.9 G88 Cycle ..4
B.8.10 G89 Cycle ..4

B.9 Probing..

Appendix C Cutter Radius Compensation ... 42

C.1 Introduction...

C.2 Programming Instructions...

C.2.1 Turning Cutter Radius Compensation On..4
C.2.2 Turning Cutter Radius Compensation Off...4
v

NIST RS274/VGER Interpreter

43
3
3

3

4
4

5

5
6
6
6
6

7

8

50

0
1
1

53

57

9

60

60

62
C.2.3 Sequencing...
C.2.4 Use of D Number ...4
C.2.5 Tool Table..4

C.3 Two Kinds of Contour .. 4

C.3.1 Material Edge Contour...4
C.3.2 Tool Path Contour..4

C.4 Programming Errors and Limitations ... 4

C.4.1 Concave Corner and Tool Radius Not Less than Arc Radius..............4
C.4.2 Cannot Turn Compensation on When Already On..............................4
C.4.3 Cutter Gouging ..4
C.4.4 Tool Radius Index Too Big..4
C.4.5 Two G Codes Used from Same Modal Group.....................................4

C.5 First Move into Cutter Compensation .. 4

C.5.1 Algorithm for First Move...47
C.5.2 Programming Entry Moves..4

C.6 Other Items..

C.6.1 Where Cutter Radius Compensation is Performed5
C.6.2 Algorithms for Cutter Radius Compensation5
C.6.3 Data for Cutter Radius Compensation ...5

Appendix D Transcript of a Session .. 52

Appendix E Error Messages .. 53

E.1 Interpreter Kernel and Interface Input Error Messages

E.2 Interpreter Kernel Internal Error Messages ..

E.3 Interpreter Driver Input Error Messages... 5

Appendix F Production Rules for Line Grammar and Syntax 60

F.1 Production Language ..

F.2 Productions ...

F.3 Production Tokens in Terms of Characters ..

Appendix G Setup File Format .. 63

Appendix H Tool File Format .. 65
vi

 RS274/VGER Interpreter

de in
et of
-axis

logy
e of
s for

tations

has
h was

onic
n in
nd a

S274/
. The
ND
nd
uring
tional
The
any

ared a
ort,”
ts of
evels.
MC

EMC
-axis

hining
is was

1”
1 Introduction

The NIST “RS274/VGER interpreter” is a software system which reads numerical control co
the “NGC” dialect of the RS274 numerical control language and produces calls to a s
canonical machining functions. The output of the interpreter can be used to drive a 5
machining center. This report describes the RS274/VGER interpreter.

1.1 Background

1.1.1 Enhanced Machine Controller Project

The Intelligent Systems Division (ISD) of the National Institute of Standards and Techno
(NIST) is carrying out an Enhanced Machine Controller (EMC) project. The primary objectiv
the project is to build a testbed for evaluating application programming interface standard
open-architecture machine controllers. A secondary objective is to demonstrate implemen
of the Next Generation Controller (NGC) architecture.

1.1.2 Numerical Control Programming Language RS274

RS274 is a programming language for numerically controlled (NC) machine tools, which
been used for many years. The most recent standard version of RS274 is RS274-D, whic
completed in 1979. It is described in the document “EIA Standard EIA-274-D” by the Electr
Industries Association [EIA]. Most NC machine tools can be run using programs writte
RS274. Implementations of the language differ from machine to machine, however, a
program that runs on one machine probably will not run on one from a different maker.

1.1.3 The RS274/NGC Language

The NGC architecture has many independent parts, one of which is a specification for the R
NGC language, a numerical control code language for machining and turning centers
specification was originally given in an August 24, 1992 report “RS274/NGC for the LOW E
CONTROLLER - First Draft” [Allen Bradley] prepared by the Allen Bradley company. A seco
draft of that document was released in August 1994 by the National Center for Manufact
Sciences under the name “The Next Generation Controller Part Programming Func
Specification (RS-274/NGC)” [NCMS]. All references in this report are to the second draft.
term “the manual” in this report always means [NCMS]. The RS274/NGC language has m
capabilities beyond those of RS274-D.

1.1.4 Previous Work at NIST

As part of ISD assistance to the program which developed the NGC architecture, ISD prep
report “NIST Support to the Next Generation Controller Program: 1991 Final Technical Rep
[Albus] containing a variety of suggestions. Appendix C to that report proposed three se
commands for 3-axis machining, one set for each of three proposed hierarchical control l
The suite proposed for the lowest (primitive) control level was implemented in 1993 by the E
project as a set of functions in the C programming language. This suite, known in the
project and in this report as the “canonical machining functions,” was upgraded in 1994 for 4
machining and has now been revised to be suitable for 5-axis machining.

Also in 1993, the authors developed a software system in the C language for reading mac
commands in the RS274/NGC language and outputting canonical machining functions. Th
called “the RS274/NGC interpreter.” A report, “The NIST RS274/NGC Interpreter, Version
1

 RS274/VGER Interpreter

k to
was
GC

ct of
were
GC
was

en-
ym).

eing
the X
f the
h the

ome
the
lmost
] but
S274/

274/

may
by a

e or
letter
r give
code
feed
e) to

. The
s of
rs are
[Kramer1] was published in April 1994 describing that interpreter.

In 1994, the EMC project, in collaboration with the General Motors Company (GM), undertoo
retrofit a 4-axis Kearney and Trecker 800 machine with an EMC controller. The retrofit
successfully completed in 1995. For this project NIST built both Version 2 of the RS274/N
interpreter and an RS274KT interpreter, which interprets programs written in the K&T diale
RS274. These two interpreters were written in the C++ programming language. Reports
written describing the RS274KT interpreter [Kramer2] and version 2 of the RS274/N
interpreter [Kramer 3]. In addition, a report about the 4-axis canonical machining functions
written [Proctor].

1.1.5 Current Work at NIST

The EMC project is currently collaborating with several industrial partners in an op
architecture machine tool controller project known as VGER (which is a name, not an acron
This project is retrofitting an SNK 5-axis machine tool with the open architecture controller b
developed. The SNK machine has the usual X, Y, and Z axes, plus an A axis (parallel to
axis) and a C axis (parallel to the Z axis). The A axis is the axis of a barrel-shaped part o
machine which holds the spindle mechanism. The C axis is the axis of a rotary table to whic
workpiece is fixtured.

NIST is providing the RS274 interpreter for this project. It is intended to be able to interpret s
existing programs for the SNK machine which were written for its former Fanuc controller,
language for which is described in [Fanuc]. The NGC and Fanuc dialects of RS274 are a
identical, but there are minor differences and points where [Fanuc] is consistent with [NCMS
has additional requirements. Thus, the RS274/VGER interpreter takes Fanuc flavored R
NGC code as input. This language is called the RS274/VGER language in this report.

1.2 Overview of the RS274/VGER Language

This section gives an overview of RS274/VGER code. Further details of the meaning of RS
VGER code are given in later sections of this report.

1.2.1 Lines, Blocks, Commands, and Words

The RS274/VGER language is based on lines of code. Each line (also called a “block”)
include commands to a machine tool to do several different things. A line is terminated
carriage return or line feed. Lines of code may be collected in a file to make a program.

A typical line of code consists of an optional line number at the beginning followed by on
more “words,” possibly interspersed with comments. In this report, a word consists of a
followed by a number or an expression that can be evaluated to a number. A word may eithe
a command or provide an argument to a command. For example, “G1 X3” is a valid line of
with two words. “G1” is a command meaning “move in a straight line at the programmed
rate,” and “X3” provides an argument value (the value of X should be 3 at the end of the mov
the command. Most RS274/VGER commands start with either G or M (for miscellaneous)
words for these commands are called “G codes” and “M codes.” In addition to words, line
code may include other combinations of characters. The legal combinations of characte
presented in Appendix F.
2

 RS274/VGER Interpreter

er, and
ages
it is
nd is
ifying

ll) is

modal
which
e in
, with
er are

ccept
default
, the

tion

ction

es:
1.2.2 Commands and Machine Modes

In RS274/VGER, many commands cause the machine to change from one mode to anoth
the mode stays active until some other command changes it implicitly or explicitly [NCMS, p
71 - 73]. Such commands are called “modal”. If coolant is turned on, it stays on until
explicitly turned off. The G codes for motion are also modal. If a G1 (straight move) comma
given on one line, it will be executed again on the next line unless a command is given spec
a different motion (or some other command which implicitly cancels G1 is given).

“Non-modal” codes have effect only on the lines on which they occur. For example, G4 (dwe
non-modal.

1.2.3 Modal Groups

Modal commands are arranged in sets called “modal groups”, and only one member of a
group may be in force at any given time. In general, a modal group contains commands for
it is logically impossible for two members to be in effect at the same time — like measur
inches vs. measure in millimeters. A machine tool may be in many modes at the same time
one mode from each modal group being in effect. The modal groups used in the interpret
shown in Table 1.

For several modal groups, it is usual to provide that when the machine is ready to a
commands, one member of the group must be in effect. Controller manufacturers must set
values for those modal groups. When a machine is turned on or otherwise re-initialized
default values are automatically in effect.

The modal groups for G codes are:

group 1 = {G0, G1, G2, G3, G38, G80, G81, G82, G83, G84, G85, G86, G87, G88, G89} - mo
group 2 = {G17, G18, G19} - plane selection
group 3 = {G90, G91} - distance mode
group 5 = {G93, G94} - spindle speed mode
group 6 = {G20, G21} - units
group 7 = {G40, G41, G42} - cutter diameter compensation
group 8 = {G43, G49} - tool length offset
group 10 = {G98, G99} - return mode in canned cycles
group 12 = {G54, G55, G56, G57, G58, G59, G59.1, G59.2, G59.3} - coordinate system sele

The modal groups for M codes are:

group 4 = {M0, M1, M2, M30, M60} - stopping
group 6 = {M6} - tool change
group 7 = {M3, M4, M5} - spindle turning
group 8 = {M7, M8, M9} - coolant
group 9 = {M48, M49} - feed and speed override switch bypass

Table 1. Modal Groups
In addition to the above modal groups, the interpreter has two groups for non-modal G cod

group 0 = {G10, G28, G30, G92, G92.2} group 4 = {G4, G53}
3

 RS274/VGER Interpreter

nctions
ed in
S274/

In the
uses a

s with
ather
sage,

-axis
onical
ing
of the
imple
g with

nding

single
S274
S274
s like

all

. First,
n the
sired

ndors
-one
l board
nical

et can
nter.
en this
used for
cond

e.
1.2.4 Language Extensions

The RS274/VGER language includes three commands that are required to use common fu
of some machining centers but are missing from the RS274/NGC language, as defin
[NCMS]. These deal with pallet shuttle and operator messages. Other extensions to the R
NGC language are discussed in [Kramer3].

Pallet Shuttle
The pallet shuttle function of a machining center causes two pallets to change places.
RS274/VGER language, M30 causes a pallet shuttle and the end of a program, and M60 ca
pallet shuttle and program stop.

Messages for the Operator
In the interpreter, a comment is anything enclosed in parentheses. If a comment begin
“MSG,” it is considered to be a message, and the MESSAGE canonical function is called r
than the COMMENT canonical function. The MESSAGE canonical function causes the mes
which is the rest of what is in parentheses, to be displayed on the operator console.

1.3 Canonical Machining Functions

The EMC canonical machining functions called by the interpreter are given in Table 2. Four
versions of these commands are described in more detail in a separate report, “Can
Functions for 4-Axis Machining” [Proctor]. That report includes additional canonical machin
functions which are not used by the interpreter but may be in future versions. The names
functions explain roughly what they do. The 5-axis canonical commands given here are a s
extension of the 4-axis commands. Wherever the 4-axis commands have arguments dealin
the B axis (a rotary axis parallel to the Y axis), the 5-axis commands have two correspo
arguments, one for the A axis and one for the C axis.

The canonical machining commands are atomic commands. Each command produces a
action. RS274 commands, on the other hand, include two types: those for which a single R
command corresponds exactly to a canonical command, and those for which a single R
command will be decomposed into several canonical commands (possibly dozens). Thing
“move in a straight line” or “turn flood coolant on” are of the first type. Things like “turn
coolant off” or “run a peck drilling cycle” are of the second type.

The canonical commands used in the interpreter were devised with three objectives in mind
all the functionality of the SNK machine had to be covered by the commands; for any functio
machine can perform, there has to be a way to tell it to do that function. Second, it was de
that it be possible to use readily available commercial motion control boards from various ve
to carry out those canonical commands which call for motion, with roughly a one-to
correspondence between a canonical motion command and a command a commercia
recognizes. Third, it must be possible to interpret RS274/VGER commands into cano
commands.

Two sets of definitions for the canonical machining functions have been written, and either s
be linked into the interpreter. The first set is used for direct control of the machining ce
Executing a function from this set causes a command message to be generated. Wh
command message is executed, the machine’s actuators are activated. The second set is
testing or for writing a command file that can be used later. Executing a function from the se
set causes a line of text containing the command to be written to standard output or to a fil
4

 RS274/VGER Interpreter

 c)
Representation SET_ORIGIN_OFFSETS (double x, double y, double z, double a, double
USE_LENGTH_UNITS (CANON_UNITS units)

Free Space STRAIGHT_TRAVERSE (double x, double y, double z,
Motion int a_turn,double a_position, int c_turn, double c_position)

Machining SELECT_PLANE (CANON_PLANE plane)
Attributes SET_FEED_RATE (double rate)

SET_FEED_REFERENCE (CANON_FEED_REFERENCE reference)
START_SPEED_FEED_SYNCH()
STOP_SPEED_FEED_SYNCH()

Machining ARC_FEED (double first_end, double second_end, double first_axis,
Functions double second_axis, int rotation, double axis_end_point,

int a_turn, double a_position, int c_turn, double c_position)
DWELL (double seconds)
STRAIGHT_FEED (double x, double y, double z,

int a_turn, double a_position, int c_turn, double c_position)

Probe STRAIGHT_ PROBE (double x, double y, double z,
Functions int a_turn, double a_position, int c_turn, double c_position)

Spindle SET_SPINDLE_SPEED (double r)
Functions START_SPINDLE_CLOCKWISE ()

START_SPINDLE_COUNTERCLOCKWISE ()
STOP_SPINDLE_TURNING ()
ORIENT_SPINDLE (double orientation, CANON_DIRECTION direction)

Tool Functions CHANGE_TOOL (int slot)
SELECT_TOOL (int i)
USE_TOOL_LENGTH_OFFSET (double offset)

Miscellaneous COMMENT (char * s)
Functions DISABLE_FEED_OVERRIDE()

DISABLE_SPEED_OVERRIDE()
ENABLE_FEED_OVERRIDE()
ENABLE_SPEED_OVERRIDE()
FLOOD_OFF ()
FLOOD_ON ()
MESSAGE (char * s)
MIST_OFF ()
MIST_ON ()
PALLET_SHUTTLE()

Program OPTIONAL_PROGRAM_STOP ()
Functions PROGRAM_END ()

PROGRAM_STOP ()

Table 2. Canonical Machining Functions Called By Interpreter
Function arguments are written in ANSI C style. All functions return nothing.
5

 RS274/VGER Interpreter

ost of
eader

) and
f the
en to
When
rface

onical
control
ontrol
r to its

lated,
restart

must
er must

must
aking
es the
error

nd file
board.

tand-
al by
ken

e, the
ing the
stop

ithout
2 Overview of the Interpreter

2.1 Major Characteristics

2.1.1 Modes of Use

The interpreter runs integrated with the EMC control system or as a stand-alone system. M
the software is the same in the two cases. Software details are given in Appendix A. The r
may find it helpful to look at Figure 1 in Appendix A at this point.

2.1.1.1 Integrated with EMC Control System

In the EMC control system, the interpreter is used both to interpret NC programs (from files
to interpret individual commands entered using the manual data input (MDI) capability o
control system. When running an NC program, the control system tells the interpreter wh
read another line of code from the program and when to execute the last line that was read.
using MDI input, the controller sends the interpreter a line of code it gets from the user inte
with a single command that tells the interpreter to read the line and execute the line.

The interpreter does not control machine action directly. Rather, the interpreter calls can
functions which generate messages which are passed back to the control system, and the
system decides what to do with the messages. In normal operation the top level of the c
system decides whether each message should be sent to its motion control subordinate o
discrete I/O subordinate and sends the message at an appropriate time.

If an error occurs, the user is sent an error message. If an NC program is being trans
execution of the program stops at the line where the error occurred, and it is not possible to
the program from that line. To use a program which causes an interpreter error, the program
be edited to remove the error, and the program must be restarted at the beginning. The us
determine if the partially cut workpiece can be saved or whether it must be scrapped, and
consider the effect of re-running the portion of the program before the error occurred in m
this decision. Of course the user has the option of running a revised program which delet
code that ran successfully at the beginning of the original program. Further details of
handling are given in Appendix B.1

2.1.1.2 Stand-alone

In stand-alone mode, the interpreter has two input modes: keyboard (interactive) mode a
(batch) mode. In the interactive mode, the user types lines of RS274/VGER code at the key
In the batch mode, the interpreter reads lines of code from a file.

Only the set of canonical machining functions which prints text has been linked into the s
alone interpreter, so the output is always text. The output is printed to the computer termin
default, but may be redirected to a file. In general, an output file is useful only if input is ta
from a file and errors do not occur during interpretation.

Error handling differs between the interactive mode and the batch mode. In interactive mod
interpreter always continues after an error. In batch mode the user has an option when start
interpreter of telling the interpreter to try to keep going after an error or having the interpreter
interpreting if an error occurs (which is the default behavior).

The stand-alone mode is valuable because it allows a user to pre-test an NC program w
6

 RS274/VGER Interpreter

one
ve tests
egrated

f use
o-step

rnal

o.

del in
d be.

for a
te an
s. A
327 to
recent

as on a

ed the
the Sun

nput
cimal
when

-alone

tively
a line

eting
, the

. This
meter
having to run it on the machine controller itself. Any computer for which the stand-al
interpreter can be compiled can be used to pre-test NC programs. Pre-tests are conclusi
because the interpreter runs exactly the same way in the stand-alone mode as it does int
with the control system.

Section 4.1 explains how to use the various options available in stand-alone mode.

2.1.2 How it Runs

Once initialized, the interpreter runs in various ways (depending on which of the modes o
just described is being used) but in all of them, the basic operation that gets repeated is a tw
process:

1. Get a line of RS274/VGER code and read it into memory, building an inte
representation of the meaning of the entire line.

2. Call one or more canonical machining functions which will do what the line says to d

The interpreter maintains a model of the machine while it is interpreting and uses the mo
determining what canonical machining functions to call and what their arguments shoul
Initialization of the model is performed when the interpreter starts up.

2.1.3 Speed

2.1.3.1 Stand-alone Speed

Using an input test file for machining a semicircular arc back and forth 1000 times in a row (
total of 2000 lines), running on a SUN SPARCstation 2, the stand-alone interpreter wro
output file in 4 seconds. A second file with 3600 small arcs lying on a helix took 11 second
third file with 2000 straight line segments took 5 seconds. These three tests show a rate of
500 lines per second for the stand-alone interpreter on a Sun SPARCstation 2 computer. In
tests on a Sun SPARCstation 20, the stand-alone interpreter ran about five times as fast
SPARC2. The program with 3600 arcs, for example, ran in 2 seconds.

Running on a 486 PC using the Lynx operating system, the stand-alone interpreter handl
same three test files in 14 seconds, 25 seconds, and 13 seconds, about a third as fast as on
SPARC. The output from the two computers was byte-by-byte identical for the first two i
programs. For the third program there were about 100 numbers which differed in the last de
place, apparently because of different conventions for rounding used by the two computers
the digit after the last decimal place to be kept is a 5.

Tests with other types of programs show similar results. Thus, it is clear that using the stand
system for pre-testing NC programs takes little time.

2.1.3.2 Interpreter Speed in the Integrated System

When the interpreter is being used integrated with the EMC control system, there are rela
few situations in which a modern PC would be challenged, since the tool path prescribed by
found in a typical program will rarely take less than a tenth of a second to cut, while interpr
that line will rarely take more than a hundredth of a second. Thus, for most NC programs
interpreter speed will not be a significant factor.

There is one known class of program for which interpreter speed may be a significant factor
class is those programs which include many consecutive short lines or arcs (say 0.1 milli
7

 RS274/VGER Interpreter

wing
e), a
ystem
unning
, this

ecided
f pre-

s data
which
r tool

ools is
tand-

m the
sensors
a about

(using
ch has
present

by data
data

ual or
ted to
vided,
. The

ively,

to slot

l for
so the
e tool

eters)
long each). This type of program is produced by many NC program post-processors for follo
complex contours approximately. At 1000 millimeters per minute feed rate (a realistic valu
2000-line file should run in 12 seconds. Tests of this type of program on the integrated s
have not yet been conducted, but the results just mentioned for the stand-alone interpreter r
on a PC indicate that even without all the other tasks the integrated system must perform
speed challenges the interpreter. The interpreter has not been optimized for speed. If it is d
more speed is required during execution, that may be accomplished by various types o
processing which are not difficult to implement.

2.2 Start-up

When the interpreter starts up, before accepting any input, it sets up a model that include
about itself, data about the setup of the machine to be controlled, and data about the tools
are in the tool carousel of the machine. The interpreter’s data about itself (such as whethe
radius compensation is on) has default values. The data about the machine and the t
obtained in two different ways depending upon whether the interpreter is integrated or s
alone.

In the integrated mode, machine setup data for the model is obtained by the interpreter fro
(real) control system database. This data (such as axis positions) has been read from the
on the machine and represents the actual state of the machine. Also in this mode, the dat
tools is obtained from the information that has been input by an operator.

In the stand-alone interpreter, machine setup data and tool data for the model is obtained
exactly the same queries) from a stub version of the database of the control system whi
default values for the data the interpreter needs. The default data does not necessarily re
the actual state of the machine or the tools in the carousel.

In the stand-alone interpreter, all the machine setup data and the tool data may be replaced
from files designated by the user. In this way the stand-alone interpreter can be given
representing different conditions of the machine and tools; the data in the files may be act
hypothetical. When the interpreter starts up in the stand-alone mode, the user is promp
provide the name of a setup file and the name of a tool file. In both cases, if a name is pro
the data from the file is used. If a name is not provided, the data already loaded is used
formats for setup files and tool files are described in Appendix G and Appendix H, respect
with examples of both types of file.

Default setup data is shown in Table 3. The tool table indexes used in Table 3 correspond
numbers from the tool changer on the machine.

Default tool data is shown in Table 4. The default tool table is not intended to be usefu
preparing or testing any real NC programs. Data has been placed in the default tool table
interpreter can be used without having to prepare a tool table. The default tool table has th
length offset and the tool diameter as zero for all slots except slots 1 and 2.

The values in the tool table are used as though they are in the units (inches or millim
currently in use; the tool table values are not adjusted automatically if units are changed.
8

 RS274/VGER Interpreter
Item Setting RS274/VGER code Internal/External

axis_offset_a 0.0 G92.2 I
axis_offset_c 0.0 G92.2 I
axis_offset_x 0.0 G92.2 I
axis_offset_y 0.0 G92.2 I
axis_offset_z 0.0 G92.2 I
block delete switch off console switch E
coordinate system number 1 G54 - G59.3 I
current_a 0.0 E
current_c 0.0 E
current_x 0.0 E
current_y 0.0 E
current_z 0.0 E
cutter radius compensation off G40 I
distance mode absolute G90 I
feed mode units per minute G94 I
feed override enabled M48 I
feed rate 15 I
flood coolant off M9 E
length units millimeters G21 I
mist coolant off G9 E
motion mode 80 G80 I
plane for arcs XY plane G17 E
origin_offset_a 0.0 G10 & G54 - G59.3 E
origin_offset_c 0.0 G10 & G54 - G59.3 E
origin_offset_x 0.0 G10 & G54 - G59.3 E
origin_offset_y 0.0 G10 & G54 - G59.3 E
origin_offset_z 0.0 G10 & G54 - G59.3 E
slot in use 1 E
slot selected 1 I
slot for length offset 1 I
slot for radius comp 1 I
speed_feed_mode independent I
speed override enabled M48 I
spindle speed 0.0 E
spindle turning not turning M5 E
tool length offset 0.0 I
traverse rate 100 E

Table 3. Default Setup Data for the Interpreter
In addition to the data shown here, the values of many parameters in the
parameter table are set.
9

 RS274/VGER Interpreter

uit”.
n it
n it.
e file

read
and.

from
on any
puters
d C++

g with

ning
lone
ernel
s. The
at are

:

2.3 Exiting

When using keyboard input, the interpreter exits only if it reads a line with the one word “q
Most variations of “quit” are valid, e.g., “Q uI t”. In any other mode, the interpreter exits whe
reads a line with an M2 (program exit) or M30 (program exit with pallet shuttle) command o
The rest of the line is executed before the interpreter exits. If there are more lines in th
following the line which causes a program exit, they are ignored.

As stated earlier, in some modes which use file input, the interpreter will also exit if a line is
that causes an error. It is an error for the file to come to an end without an M2 or M30 comm

3 Building a Stand-Alone Executable

On a SUN SPARCstation 2, an executable file for the stand-alone interpreter may be built
source code in about a minute, as described below. The same procedure should work
computer running a Unix operating system and having the standard C++ libraries. On com
running other operating systems, compilation should be similarly easy, provided the standar
libraries are available.

To make an executable, eight source code files must be placed in the same directory alon
the Makefile shown in Table 5 below. The source code files are:

canon.cc
canon.hh
rs274vger.cc
rs274vger.hh
nce_code.h
nce_err_sun.c
driver.cc
nml_emc.hh

The first two files are the function definitions and header file for the canonical machi
functions. The version of canon.cc which prints function calls is used with the stand-a
interpreter. The second two are the function definitions and header file for the interpreter k
and interface functions. The next two are the header file and definition file for error message
last two are the function definitions and header file needed for the stand-alone interpreter th
not needed in the integrated interpreter.

An executable file named “rs274vger” is built in the same directory by giving the command
make rs274vger.

Slot ID Length Diameter

1 1 2.0 1.0
2 2 1.0 0.2

Table 4. Default Tool Data for the Interpreter
All other slots have the id, length, and diameter set to zero.
10

 RS274/VGER Interpreter

be

or file
onse;

ed, the

unOS
ction

nd of

tput
lly the
to an
In the Makefile, we are using the Gnu C++ compiler, “g++.” Any other C++ compiler may
substituted for g++.

4 Using the Stand-Alone Interpreter

4.1 Invoking the Interpreter

As mentioned earlier, the stand-alone interpreter may be used with either keyboard input
input. This section tells how to do that. The user must press the “return” key after each resp
the return key presses are not printed here.

This section describes several input files. If any input file named by the user cannot be open
interpreter prints a message to that effect and quits.

This section refers to redirecting output. The methods described here work with both the S
and LynxOS and may be expected to work on other Unix-like systems. Other forms of redire
are possible.

4.1.1 Invocation with Keyboard Input

The interpreter is invoked with keyboard input by giving the command:

rs274vger

4.1.2 Invocation with NC File Input

4.1.2.1 Invocation to Stop After an Error

To use NC file input and stop if an error is encountered, invoke the interpreter with a comma
the form:

rs274vgerinput_filename

where input_filename is the name of the NC input file. With this invocation, normal printed ou
from the interpreter (everything but error messages) appears on stdout, which is norma
terminal on which the command was invoked. Printed output may be usefully redirected
output file by giving a command of the form:

canon.o: canon.cc canon.hh nml_emc.hh rs274vger.hh
g++ -c -v -g -O canon.cc

rs274vger.o: rs274vger.cc canon.hh nml_emc.hh rs274vger.hh nce_code.h
g++ -c -v -g -O rs274vger.cc

driver.o: driver.cc canon.hh nml_emc.hh rs274vger.hh
g++ -c -v -g -O driver.cc

nce_err_sun.o: nce_err_sun.c
g++ -c -v -g -O nce_err_sun.c

rs274vger: rs274vger.o canon.o driver.o nce_err_sun.o
g++ -v -o rs274vger rs274vger.o canon.o driver.o nce_err_sun.o -lm

Table 5. Makefile for Interpreter
11

 RS274/VGER Interpreter

is file

ith a

ars on
h the
output

t be
utput

ser to

tup file

.

ively.

t. The

button.

d.

ine just
otect

than
rs274vgerinput_filename > output_filename

where output_filename is the name the output file should have. The interpreter will create th
if it does not exist; if it does exist, it will be overwritten.

4.1.2.2 Invocation to Continue After an Error

To use file input and attempt to continue if an error is encountered, invoke the interpreter w
command of the form:

rs274vgerinput_filename continue

As above, normal printed output from the interpreter (everything but error messages) appe
stdout. Error messages are printed to stderr, which is also normally the terminal from whic
interpreter was invoked. Printed output (excluding error messages) may be redirected to an
file by giving a command of the form:

rs274vgerinput_filename continue >output_filename

If there are errors during interpretation, any input line which causes an error will no
interpreted, and the output file may be incorrect on any line after the last line which was o
before the first error occurred.

4.2 Tool and Setup Files

As soon as the interpreter is invoked by any of the methods just described, it prompts the u
enter the name of a tool file. The user may enter a tool file name, as follows:

name of tool file => tool_file_name

or the user may press only the return key, and the interpreter will use the default tool data.

The interpreter next prompts the user for the name of a setup file. The user may enter a se
name as follows:

name of setup file => setup_file_name

or the user may press only the return key, and the interpreter will use the default setup data

The format of setup files and tool files is described in Appendix G and Appendix H, respect

4.3 Keyboard User Interface

The interpreter has a simple line-based user interface for when it is used with keyboard inpu
normal pattern of use is a read-execute cycle with four steps:

1. The interpreter prints the promptREAD =>

2. The user enters a line of RS274/VGER code at the keyboard and hits the carriage return

3. The interpreter reads the line and prints the promptEXEC <-

4. The user enters a semicolon and hits the carriage return button, and the line is interprete

Steps 3 and 4 have been included in the interface to give the user a chance to check the l
typed. If anything but a semicolon is entered in step 4, the line is not interpreted. This will pr
the user who accidentally hits the return button during step 2.

The user interface provides no capability to edit ahead, undo, or anything else involving more
12

 RS274/VGER Interpreter

ix D.

for
.

allows
rpreter
y were

alent

put is
g of a

ction
be
any

sages

is a

ber. A
ession,

ming
the current line.

A transcript of a short session with the interpreter using keyboard input is shown in Append

5 INPUT

5.1 Overview

In general, allowable inputs are as described in [NCMS] or [Fanuc]. [EIA], the standard
RS274-D is used where the [NCMS] and [Fanuc] are silent, but [EIA] has something to say

5.1.1 White Space

The manual says nothing about space characters or tab characters. [EIA, page 6, last line]
spaces and tabs anywhere and provides that they should be “ignored by control.” The inte
allows spaces and tabs anywhere on a line of code and behaves the same as it would if the
not there. This makes some strange-looking input legal. The line “g0x +0. 12 34y 7” is equiv
to “g0 x+0.1234 y7”, for example.

Blank lines are allowed in the input by the interpreter. They are ignored.

5.1.2 Case Sensitivity

The manual and [EIA] do not explicitly discuss character case. The interpreter assumes in
case insensitive, i.e., any letter may be in upper or lower case without changing the meanin
line.

5.2 Input Lines

To make the specification of an allowable line of code precise, we have defined it in a produ
language (Wirth Syntax Notation) in Appendix F. The description here is intended to
consistent with the appendix. In order that the definition in the appendix not be unwieldy, m
constraints imposed by the interpreter are omitted from that appendix. The list of error mes
in Appendix E indicates all of the additional constraints.

5.2.1 Format of a Line

A permissible line of input consists of the following, in order, with the restriction that there
maximum (currently 256) to the number of characters allowed on a line.

1. an optional block delete character, which is a slash / .
2. an optional line number.
3. any number of segments, where a segment is a word or a comment.
4. an end of line character.

5.2.2 Word

A word is a letter followed by a real_value.

A real_value is some collection of characters that can be processed to come up with a num
real_value may be an explicit number (such as 341 or -0.8807), a parameter_value, an expr
or a unary operation value.

5.2.3 Number

The manual is not clear regarding what a valid number is. On page 2 it says “The program
13

 RS274/VGER Interpreter

s is
luding
The
ay not

oes
point
ints to

ingle

a

the
ritten
e not

set of
tegers;
le), M
ed be

MS,

to an
of the

ans the
his is
eter
whose
resolution of the axis word formats word length will be 8.” The most likely interpretation of thi
that a word representing an axis motion can have at most eight characters (presumably inc
one letter at the beginning and a decimal point in the middle), providing room for six digits.
table on pages 5 and 6 provides for up to 14 digits, but a sentence on page 5 says the table m
be valid, and “the control allows a maximum of 8 total digits.”

[NCMS, page 2] says “Decimal Point Programming of Axis motion will be the standard.” It d
not say what Decimal Point Programming is, however. [EIA, page 3] does describe decimal
programming. It allows all unnecessary zeros to be included or suppressed and decimal po
be omitted if whole numbers are used.

The interpreter uses the following rules regarding numbers. In these rules a digit is a s
character between 0 and 9.

• A number consists of (i) an optional plus or minus sign, followed by (ii) zero to many
digits, followed, possibly, by (iii) one decimal point, followed by (iv) zero to many
digits — provided that there is at least one digit somewhere in the number.

• There are two kinds of numbers: integers and decimals. An integer does not have
decimal point in it; a decimal does.

• Numbers may have any number of digits, subject to the limitation on line length.

• A non-zero number with no sign as the first character is assumed to be positive.

Notice that initial (before the decimal point and the first non-zero digit) and trailing (after
decimal point and the last non-zero digit) zeros are allowed but not required. A number w
with initial or trailing zeros will have the same value when it is read as if the extra zeros wer
there.

Numbers used for specific purposes in RS274/VGER are often restricted to some finite
values or some to some range of values. In many uses, decimal numbers must be close to in
this includes the values of indexes (for parameters and changer slot numbers, for examp
codes, and G codes multiplied by ten. In the interpreter, a decimal number which is suppos
close to an integer is considered close enough if it is within 0.0001 of an integer.

5.2.4 Line Number

A line number is the letter N followed by an integer (with no sign) between 0 and 99999 [NC
page 7].

5.2.5 Parameter_value

A parameter_value is the pound character # followed by a real_value which must evaluate
integer between 1 and 5399. The integer is an index of a parameter table and the value
parameter_value is whatever number is stored in the parameter table at that index.

The # character takes precedence over other operations, so that, for example, “#1+2” me
number found by adding 2 to the value of parameter 1, not the value found in parameter 3. T
implied but not explicit in the manual. Of course, #[1+2] does mean the value found in param
3. The # character may be repeated; for example ##2 means the value of the parameter
index is the (integer) value of parameter 2.
14

 RS274/VGER Interpreter

right
ns, and
r does

of an

preter.
, and
and
inth
the

ion,
gical
ssion
s in

such as
ple is

ot just
logical

her
an
(arc

ole
ations

down
wn,”
”. A

s -3,

occur
that
ning

s the
5.2.6 Expressions and Binary Operations

An expression is a set of characters starting with a left bracket [and ending with a balancing
bracket]. In between the brackets are numbers, parameter_values, mathematical operatio
other expressions. An expression may be evaluated to produce a number. The interprete
expression evaluation while it is reading, before executing anything in a block. An example
expression is [1 + acos[0] - [#3 ** [4.0/2]]].

[NCMS section 3.5.1.1] discusses expression evaluation.

The manual provides for eight binary operations, and a ninth has been added to the inter
There are four basic mathematical operations: addition (+), subtraction (-), multiplication (*)
division (/). There are three logical operations: non-exclusive or (OR), exclusive or (XOR),
logical and (AND). The eighth operation is the modulus operation (MOD). The added n
operation is the “power” operation (**) of raising the number on the left of the operation to
power on the right; this is needed for many basic machining calculations.

The binary operations are divided into two groups. The first group is: multiplication, divis
modulus, and power. The second group is: addition, subtraction, logical non-exclusive or, lo
exclusive or, and logical and. If operations are strung together (for example in the expre
[2.0 / 3 * 1.5 - 5.5 /11.0]), operations in the first group are to be performed before operation
the second group. If an expression contains more than one operation from the same group (
the first / and * in the example), the operation on the left is performed first. Thus, the exam
equivalent to: [((2.0 / 3) * 1.5) - (5.5 / 11.0)] , which simplifies to [1.0 - 0.5] , which is 0.5.

The logical operations and modulus are apparently to be performed on any real numbers, n
on integers or on some other data type. In the interpreter, the number zero is equivalent to
false, and any non-zero number is equivalent to logical true.

5.2.7 Unary Operation

A unary operation value is either “ATAN” followed by one expression divided by anot
expression (for example “ATAN[2]/[1+3]”) or any other unary operation name followed by
expression (for example “SIN[90]”). The unary operations are: ABS (absolute value), ACOS
cosine), ASIN (arc sine), ATAN (arc tangent), COS (cosine), EXP (e raised to the given power),
FIX (round down), FUP (round up), LN (natural logarithm), ROUND (round to the nearest wh
number), SIN (sine), SQRT (square root), and TAN (tangent). The arguments to unary oper
which take angle measures, such as sine, are in degrees.

The meaning of FIX for negative numbers is not clear in the manual. The interpreter rounds
towards zero, so that FIX[-2.8] is -2, for example. A second possible meaning of “round do
which is not used in the interpreter, is “round towards the less positive or more negative
similar ambiguity exists for FUP. The interpreter rounds up away from zero, so FUP[-2.8] i
for example.

5.3 Word Repeats

The manual does not specify explicitly whether two words starting with the same letter can
in the same line, but portions of the manual ([NCMS], page 73], for example) imply clearly
this is legal. [EIA] has an explicit statement (item 3.12, page 5) that “words (apparently mea
words with the same initial letter) shall not be repeated in a block.” The interpreter use
following rules:
15

 RS274/VGER Interpreter

rds
n any

for
other
arts up

se of
Where
it is
reter

rpreter

alues

r axes.
full

nd 2 x
o full
eeps

ssed
of the
d of its
e or
• A line may have any number of G words, but two G words from the same modal group
(or from either non-modal group 0 or group 4) may not appear on the same line.

• A line may have zero to four M words. Two M words from the same modal group may
not appear on the same line.

• For all other legal letters, a line may have only one word beginning with that letter.

5.4 Word order

The manual does not specify word order explicitly or implicitly. The interpreter allows wo
starting with any letter except N (which denotes a line number and must be first) to occur i
order. Execution of the line will be the same regardless of the order.

5.5 Measurement Units

5.5.1 Linear units

The manual specifies that either “inch” or “metric” units may be used by programming G20
inch or G21 for metric [NCMS, page 15]. The default is up to the system builder. One or the
is automatically to be chosen when the system starts up. The stand-alone interpreter st
using millimeters, as shown in Table 3.

The manual uses the term “metric” frequently ([NCMS, pages 2 and 15] for example). The u
the term implies clearly that in many cases it is meant to denote a linear measurement.
“metric” is used as a linear measurement, [NCMS] does not say directly what metric un
intended, although “millimeters” is used in at least one table [NCMS, page 35]. The interp
uses millimeters.

5.5.2 Angular units

[NCMS, pages 18, 19, 34] specifies using degrees for measuring angles, so the inte
assumes angular dimensions in the input are given in degrees.

5.6 Rotary Axes

The SNK machine being controlled has A and C rotary axes, as described earlier.

5.6.1 Coordinate Values for Rotary Axes

The coordinate values for the A and C axes in the input NC code may be any real number. V
for these axes are always given in degrees.

In the RS274/VGER language, the scales for the rotary axes are treated like wound-up linea
For example, if the original position of the A axis is 0.0, and the axis is rotated through two
turns counterclockwise, its new value is 720.0 (since there are 360 degrees in a full turn, a
360 = 720). This is somewhat awkward, since the machine configuration is unchanged by tw
turns, and the axis looks like it is back to 0.0. Another awkwardness is that if the axis k
turning in the same direction the value of its position keeps getting larger.

In some other dialects of RS274, [K&T] for example, the value of a rotary axis is also expre
as a real number, but the meaning is quite different. In this other method, the absolute value
number represents a position between 0 and 359.999 where the axis must stop at the en
motion, and the plus or minus sign in front of the number means to turn counterclockwis
clockwise. In this method, after two full turns starting from 0.0, the position is still 0.0.
16

 RS274/VGER Interpreter

d is
used in

XYZ

eaning

h the
C axis
that
at each
e to

hether
being
line but
end of

), but
read

of the
essage”
hich

side the
ments

aps as
ence of

put; it
NC

nd of
In [NCMS] and [Fanuc] it is not possible to tell which of the two methods just describe
intended. The method selected for RS274/VGER was selected because it is the method
some existing NC programs which the interpreter was designed to handle.

5.6.2 Feed Rate for Rotary Axes

If a rotary axis moves when any of the X, Y, or Z axes moves, the rotary axis is slaved to the
axis motion.

If one rotary axis moves and no other axis moves, the current feed rate is interpreted as m
degrees per minute.

If two rotary axes move and none of the X, Y, or Z axes move, the move is treated as thoug
size of the move were the square root of the sum of the squares of the amounts of A and
moves. That is, the total amount of time the move will take is calculated by dividing
calculated size by the current feed rate, and the two axes are rotated simultaneously so th
moves at the constant angular rate which will make the axis take the right amount of tim
complete its motion.

5.7 Messages and Comments

[NCMS, page 3] prescribes using parentheses to give comments. It does not specify w
nested comments are allowed or whether a line can end in the middle of a comment without
closed by a right parenthesis. The interpreter assumes comments can occur anywhere in a
may not contain left parentheses and must be terminated by a right parenthesis before the
the line, or the line is invalid and will not be executed.

In the interpreter, it is allowed to have more than one set of parentheses on a line (like) (this
if this is done, only the last one will be processed as described below. All the others will be
and their format will be checked, but they will be ignored thereafter.

5.7.1 Messages

If “MSG,” appears after a left parenthesis before any other printing characters, the rest is
characters before the right parenthesis are considered to be a message, and the “m
canonical function is called to deliver the message to the operator. Variants of “MSG,” w
include white space and lower case characters are allowed.

5.7.2 Comments

If the characters inside parentheses are not a message, as just described, then everything in
parentheses is treated as a comment, and the “comment” canonical function is called. Com
do not cause the machine to do anything.

5.8 Programs

By “program” we mean a sequence of lines of RS274/VGER NC code (at least one and perh
many as several thousand) that are intended to be executed one after another. The sequ
lines is normally kept in together in a file.

The stand-alone interpreter has no concept of a program when it is running with keyboard in
only understands lines. When it runs with input from a file, it expects the file to be an
program. The interpreter exits when a line with M2 or M30 is executed, since they mean e
program.
17

 RS274/VGER Interpreter

of the

first
ord.
The
not

ds to
EMC

elete
ns. If

e.

block
gram.
cution

in the
ult is

actual
ed rate.
ontrol

r ever
M49
ettings

is on
start
an

in this
itch.

EMC
nical
In the integrated interpreter, programs are recognized and handled by the user interface
EMC control system.

[NCMS, pages 5, 6, 7] discusses “main programs” and “subprograms.” It is provided that the
word on the first line of a file containing a main program or a subprogram should be an O w
This word is to be considered to be the name of the file for calling it from another program.
last line of a file for a main program should have M2, M30, or M99 on it. The interpreter does
read O words, does not deal with subprograms, and does not recognize M99.

[EIA] does not discuss programs, so it has nothing to add to the above.

5.9 Control Panel Switches

The EMC controller is sensitive to all switches on the control panel. The interpreter nee
know the setting of only one switch, block delete. The other switches are handled by the
controller without the interpreter knowing what the settings are.

5.9.1 Block Delete Switch

If the block delete switch is on, the interpreter skips lines which start with a slash (the block d
character). Internally, the interpreter reads the line but does not try to figure out what it mea
the switch is off, lines starting with a slash are processed as though the slash was not ther

When the interpreter is used as part of the EMC control system, information about the
delete switch setting is passed to the interpreter during the initialization of executing a pro
The interpreter does not check again, so changing the setting of that switch during the exe
of a program will not change the way the program is executed.

When the interpreter is used stand-alone, a block delete switch setting may be included
setup file. The default setting of the block delete switch is off, as shown in Table 3. The defa
used when a setting is not specified in a setup file.

5.9.2 Other Switches

The speed or feed override switches on the control panel let the operator specify that the
feed rate or spindle speed used in machining should be some percentage of the programm
The EMC control system reacts to the setting of the speed or feed override switches on the c
panel, when those switches are enabled. It does this, however, without the interprete
knowing their settings. As mentioned elsewhere, the interpreter will interpret M48 and
commands which enable or disable the switches, but it does not need to know what their s
are to do that. In Table 3 there is no representation of the settings of these switches.

The optional program stop switch on the machine console works as follows. If this switch
and an input line contains an M1 code, program execution is supposed to stop until the cycle
button is pushed. The interpreter interprets an M1 on an input line into
OPTIONAL_PROGRAM_STOP canonical command in the output, as described elsewhere
report. The interpreter itself has no knowledge of the setting of the optional program stop sw
In Table 3 there is no representation of the setting of this switch. It is up to the rest of the
control system to check the optional stop switch when the optional_program_stop cano
command is executed and either stop or not.
18

 RS274/VGER Interpreter

rsion
to

of the

preter.

ument,
6 Capabilities of the RS274/VGER Interpreter

The interpreter implements only a portion of the RS274/NGC language. The current ve
includes the following capabilities. Any capability not explicitly included is excluded. Trying
use any excluded capability in an NC program will cause an error in the interpreter.

6.1 Words Recognized

The interpreter recognizes words beginning with the letters shown in Table 6. The meanings
letters are as given in [NCMS, pages 8 - 11 and elsewhere]:

6.2 Input G Codes and M Codes

This section describes the specific G codes and M codes which are implemented in the inter

6.2.1 G Codes Implemented

The G codes shown in Table 7 have been implemented. Unless noted otherwise in this doc
implementation is as described in [NCMS]:

Letter Meaning
A A-axis of machine
C C-axis of machine
D tool radius compensation number
F feedrate
G general function (see below)
H tool length offset
I X-axis offset for arcs

X offset in G87 canned cycle
J Y-axis offset for arcs

Y offset in G87 canned cycle
K Z-axis offset for arcs

Z offset in G87 canned cycle
L number of repetitions in canned cycles

key used with G10
M miscellaneous function (see below)
N line number
P dwell time in canned cycles

dwell time with G4
key used with G10

Q feed increment in G83 canned cycle
R arc radius

canned cycle plane
S spindle speed
T tool selection
X X-axis of machine
Y Y-axis of machine
Z Z-axis of machine

Table 6. Letters Recognized by the Interpreter
19

 RS274/VGER Interpreter
G Code Meaning
G0 rapid positioning
G1 linear interpolation
G2 circular/helical interpolation (clockwise)
G3 circular/helical interpolation (counterclockwise)
G4 dwell
G10 coordinate system origin setting
G17 xy plane selection
G18 xz plane selection
G19 yz plane selection
G20 inch system selection
G21 millimeter system selection
G28 return to home
G30 return to secondary home
G38 straight probe
G40 cancel cutter diameter compensation
G41 start cutter diameter compensation left
G42 start cutter diameter compensation right
G43 tool length offset (plus)
G49 cancel tool length offset
G53 motion in machine coordinate system
G54 use preset work coordinate system 1
G55 use preset work coordinate system 2
G56 use preset work coordinate system 3
G57 use preset work coordinate system 4
G58 use preset work coordinate system 5
G59 use preset work coordinate system 6
G59.1 use preset work coordinate system 7
G59.2 use preset work coordinate system 8
G59.3 use preset work coordinate system 9
G80 cancel motion mode (including any canned cycle)
G81 drilling canned cycle
G82 drilling with dwell canned cycle
G83 chip-breaking drilling canned cycle
G84 right hand tapping canned cycle
G85 boring, no dwell, feed out canned cycle
G86 boring, spindle stop, rapid out canned cycle
G87 back boring canned cycle
G88 boring, spindle stop, manual out canned cycle
G89 boring, dwell, feed out canned cycle
G90 absolute distance mode
G91 incremental distance mode
G92 offset coordinate systems
G92.2 cancel offset coordinate systems
G93 inverse time feed mode
G94 feed per minute mode
G98 initial level return in canned cycles
G99 R-point level return in canned cycles

Table 7. G Codes Implemented in the Interpreter
20

 RS274/VGER Interpreter

es a

used,
f the

CMS]
MS],

of the
mands

des:

written
at the
.

While
aning
some
]. The
6.2.2 Input M Codes Implemented

The following M codes are implemented as described in [NCMS], except that M30 also do
pallet shuttle and M60 is a language extension as described in Section 1.2.4.

7 Limitations of the Interpreter

The interpreter implements the parts of RS274/NGC which are expected to be most heavily
but this includes only about half the language. This section calls out the major limitations o
interpreter.

Many G Codes and M Codes are not implemented. The interpreter handles 47 G codes; [N
defines just over 100 G codes. The interpreter handles 13 of the 20 M codes defined in [NC
plus one not defined there. None of the canned cycles for milling are implemented, none
skip functions are implemented, paramacros are not implemented, most of the setup com
are not implemented, and computational programming is not implemented.

No commands for transfer of control are implemented [NCMS, pages 74 - 76]. This inclu
conditional operators and GOTO, IF-GOTO, and WHILE-DO-END commands.

The interpreter does not save input. This means that RS274/VGER programs cannot be
using the interpreter, which is of little importance. It also means that there is no record of wh
user did, which is more important. The manual makes no provisions regarding saving input

The manual [NCMS, pages 47, 49, 53 - 58] specifies the meaning of many parameters.
these parameters exist in the interpreter, only a modest fraction of them have the me
specified in the manual, and are initialized or maintained. The manual specifies that
parameter values should be saved even when the power goes off [NCMS, page 54
interpreter saves no parameter values.

M Code Meaning

M0 program stop
M1 optional program stop
M2 program end
M3 turn spindle clockwise
M4 turn spindle counterclockwise
M5 stop spindle turning
M6 tool change
M7 mist coolant on
M8 flood coolant on
M9 mist and flood coolant off
M30 program end, pallet shuttle, and reset
M48 enable speed and feed overrides
M49 disable speed and feed overrides
M60 pallet shuttle and program stop

Table 8. M Codes Implemented in the Interpreter
21

 RS274/VGER Interpreter

r

g/

urg,

r
y,

an
No.

l

g
d

References

[Albus] Albus, James S; et al;NIST Support to the Next Generation Controlle
Program: 1991 Final Technical Report; NISTIR 4888; National Institute of
Standards and Technology, Gaithersburg, MD; July 1992

[Allen Bradley] Allen Bradley;RS274/NGC for the Low End Controller; First Draft; Allen
Bradley; August 1992

[EIA] Electronic Industries Association;EIA Standard EIA-274-D Interchangeable
Variable Block Data Format for Positioning, Contouring, and Contourin
Positioning Numerically Controlled Machines; Electronic Industries
Association; Washington, DC; February 1979

[Fanuc] Fanuc Ltd.;Fanuc System 9-Model A Operators Manual; Pub B-52364E/03;
Fanuc Ltd; 1981

[Kramer1] Kramer, Thomas R.; Proctor, Frederick M.; Michaloski, John L.;The NIST
RS274/NGC Interpreter, Version 1; NISTIR 5416; National Institute of
Standards and Technology, Gaithersburg, MD; April 1994

[Kramer2] Kramer, Thomas R.; Proctor, Frederick M.;The NIST RS274KT Interpreter;
NISTIR 5738; National Institute of Standards and Technology, Gaithersb
MD; October 1995

[Kramer3] Kramer, Thomas R.; Proctor, Frederick M.;The NIST RS274/NGC Interprete
- Version 2; NISTIR 5739; National Institute of Standards and Technolog
Gaithersburg, MD; October 1995

[Proctor] Proctor, Frederick M.; Kramer, Thomas R.; Michaloski, John L.;Canonical
Functions for 4-Axis Machining; NISTIR in draft; National Institute of
Standards and Technology, Gaithersburg, MD; September 1995

[K&T] Kearney and Trecker Co.;Part Programming and Operating Manual, KT/CNC
Control, Type C; Pub 687D; Kearney and Trecker Corp.; 1980

[Martin] Martin Marietta;Controls Standardized Application (CSA); Draft Volume V of
Next Generation Workstation/Machine Controller (NGC) Specification for
Open System Architecture Standard (SOSAS); Martin Marietta Document
NGC-0001-14-000-CSA; March 1992

[Monarch] Monarch Cortland;Programming Manual for Monarch VMC-75 with Genera
Electric 2000MC Controls; Monarch Cortland Publication Number PRG
GE2000MC-4

[NCMS] National Center for Manufacturing Sciences;The Next Generation Controller
Part Programming Functional Specification (RS-274/NGC); Draft; NCMS;
August 1994

[Trellis] Trellis Software and Controls, Inc.;Trellis MAKEMESS Message Processin
Utility User’s Guide, Version 1.0; Part Number TD-1012; Trellis Software an
Controls, Inc.; 1995
22

 RS274/VGER Interpreter

rs and

rated
hods.
ne set
un.

rows
e left
iddle
grated
ible of
data

rface
n in
are
nd-

MC
ation
and

rated
while
sed with

atically
the

the
Appendix A Software Details

This appendix describes the software for the interpreter. The appendix is intended for use
programmers who might want to modify the software or simply understand it.

A.1 Software Modules and Function Call Hierarchies

The interpreter is written in C++. Two methods of using the interpreter, stand-alone and integ
with the rest of EMC, are provided. The use of programs files differs between the two met
Some code is common to both, and some code differs. Additionally, the stand-alone uses o
of files for error handling when compiled on a PC, but a different set when compiled on a S

The program files are:

1. rs274vger.cc and its header file, rs274vger.hh — 10228 lines
2. canon.cc and its header file, canon.hh — 830 lines
3. driver.cc and its header file, nml_emc.hh — 1069 lines
4a. (for Sun) nce_err_sun.c and nce_code.h — 497 lines
4b. (for PC) nce_err.c and nce_code.h — 3890 lines

The organization of the software by module and file is shown in Figure 1. In the figure, ar
show the direction of function calls. The stand-alone interpreter uses the files shown in th
and middle columns. The integrated interpreter uses the files shown in the right and m
columns. The stand-alone files are arranged so that they mimic the arrangement of the inte
interpreter. The mimicry is so that running the stand-alone provides as good a test as poss
running integrated. If there were no integrated interpreter, the EMC emulation functions and
shown in the left column would not be needed.

The rs274vger.cc file has two parts, kernel functions (about 88% of the file) and inte
functions. In the file itself the interface functions are given after the kernel functions. As show
Figure 1, kernel functions are called only by interface functions, while interface functions
called by and call back to either EMC functions (if integrated) or driver functions (in the sta
alone). Both kernel functions and interface functions call canonical functions.

The driver.cc file also has two parts. In the file itself, the driver functions are given after the E
emulation functions. The driver functions provide the user interface, and the EMC emul
functions provide an EMC-like environment for modeling data about the machine tool
controller settings.

Different versions of the canonical functions are used in the stand-alone and integ
interpreters. The canonical functions used with the stand-alone simply print themselves,
those used integrated send messages describing themselves. The same header file is u
both versions of the functions.

As described in Appendix B.1.6, the nce_code.h and the nce_err.c files are prepared autom
by MAKEMESS from a text-like error message definition file, nce_err.mdf, prepared by
programmer. The nce_err_sun.c file is extracted automatically by a small lex program from
nce_code.h file.
23

 RS274/VGER Interpreter

re 4
re 5

ction
Function call hierarchies are shown in the following five figures. Figure 2, Figure 3, and Figu
show kernel function calls. All kernel functions appear on one or both of the two figures. Figu
shows the function calls from the interface functions. Figure 6 shows the hierarchy of fun
calls from the driver.

STAND-ALONE
ONLY

STAND-ALONE
AND INTEGRATED

INTEGRATED
ONLY

canon.hh canon.cc
(send message)

canon.cc
(print self)

driver.cc EMC files

nml_emc.hh stub nml_emc.hh

rs274vger.hh

rs274vger.cc

interface
functions

kernel
functions

EMC emulation
functions & data

driver
functions

Figure 1. Interpreter Software

nce_code.h

PC:nce_err.c
Sun:nce_err_sun.c
24

 RS274/VGER Interpreter

nd
er
alls
read_text close_and_downcase

read_line
check_items check_g_codes

check_m_codes
check_other_codes

init_block
read_items read_line_number

read_integer_unsigned
read_one_item

read_a read_real_value
read_c read_real_value
read_comment
read_d read_integer_value read_real_value
read_f read_real_value
read_g read_real_value
read_h read_integer_value read_real_value
read_i read_real_value
read_j read_real_value
read_k read_real_value
read_l read_integer_value read_real_value
read_m read_integer_value read_real_value
read_p read_real_value
read_parameter_setting

read_integer_value read_real_value
read_real_value

read_q read_real_value
read_r read_real_value
read_s read_real_value
read_t read_integer_value read_real_value
read_x read_real_value
read_y read_real_value
read_z read_real_value

utility_enhance_block

read_real_value
read_real_expression

execute_binary1
execute_binary2
read_operation

read_parameter
read_integer_value

read_real_number
read_unary execute_unary

read_atan
read_operation_unary

Figure 2. Interpreter Kernel Function Call Hierarchy
(all but execute_block)

This shows the hierarchy of function calls from interpreter kernel functions read_text a
read_line defined in rs274vger.cc to other kernel functions (excluding utility_error_numb
and nml_log_error - see text). Canonical functions calls are not shown. The hierarchy of c
from execute_block is shown in Figure 3 and Figure 4.
25

 RS274/VGER Interpreter

ons
re

 2.
execute_block

convert_comment

convert_feed_mode

convert_feed_rate

convert_g convert_coordinate_system

utility_in_range

convert_cutter_compensation

convert_cutter_comp_off

convert_cutter_comp_on

convert_distance_mode

convert_dwell

convert_length_units

convert_modal_0
convert_axis_offsets utility_in_range

convert_home utility_find_ends utility_find_rotary

utility_find_relative

utility_find_rotary utility_in_range

convert_setup utility_in_range

convert_motion (see Figure 4)

convert_retract_mode

convert_set_plane

convert_tool_length_offset

convert_m convert_tool_change

convert_speed

convert_stop

convert_tool_select

Figure 3. Interpreter Kernel Function Call Hierarchy
(execute_block only)

This shows function calls from execute_block, defined in rs274vger.cc to other kernel functi
(excluding utility_error_number and nml_log_error - see text). Canonical function calls a
not shown. The hierarchy of calls from other top-level kernel functions is shown in Figure
26

 RS274/VGER Interpreter

el
on
ies
convert_motion

convert_arc convert_arc_comp1 arc_data_comp_ijk

arc_data_comp_r

utility_find_arc_length utility_find_turn

convert_arc_comp2 arc_data_ijk

arc_data_r

utility_find_arc_length utility_find_turn

convert_arc2 arc_data_ijk

arc_data_r

utility_find_arc_length utility_find_turn

utility_find_ends utility_find_rotary utility_in_range

convert_cycle convert_cycle_xy cycle_traverse

convert_cycle_g81 cycle_feed
cycle_traverse

convert_cycle_g82 cycle_feed
cycle_traverse

convert_cycle_g83 cycle_feed
cycle_traverse

convert_cycle_g84 cycle_feed

convert_cycle_yz convert_cycle_g85 cycle_feed

convert_cycle_g86 cycle_feed
cycle_traverse

convert_cycle_g87 cycle_feed
cycle_traverse

convert_cycle_g88 cycle_feed

convert_cycle_zx convert_cycle_g89 cycle_feed

convert_probe utility_find_ends

convert_straight convert_straight_comp1

convert_straight_comp2

utility_find_ends

utility_find_straight_length

Figure 4. Interpreter Kernel Function Call Hierarchy
(convert_motion only)

This shows function calls from convert_motion, defined in rs274vger.cc to other kern
functions (excluding utility_error_number and nml_log_error - see text). Canonical functi
calls are not shown. Convert_motion is shown called by convert_g in Figure 3. The hierarch
of calls from top-level kernel functions are shown in Figure 2 and Figure 3.
27

 RS274/VGER Interpreter

ted

r

not
active_g_codes
active_m_codes
nml_interp_block_delete
nml_interp_close reset_interp_wm
nml_interp_exec_optional_stop
nml_interp_execute execute_block

read_line
read_text
write_g_codes
write_m_codes
nml_log_error

nml_interp_exit reset_interp_wm
nml_interp_halt nml_interp_exit
nml_interp_init CANON_VECTOR::CANON_VECTOR

GET_A_ORIGIN
GET_C_ORIGIN
GET_LENGTH_UNITS
GET_PLANE
GET_PROGRAM_ORIGIN
INIT_CANON
io_wm_flood
io_wm_mist
io_wm_pocket
io_wm_speed
io_wm_spindle
io_wm_tool
io_wm_tool_table
NML_ROTPOSE::NML_ROTPOSE
reset_interp_wm
traj_wm_feed
traj_wm_pos
traj_wm_traverse
write_g_codes
write_m_codes

nml_interp_open nml_log_error
nml_interp_optional_stop
nml_interp_pause
nml_interp_read nml_log_error

read_line
read_text
reset_interp_wm

nml_interp_resume
nml_interp_run
nml_interp_single_block
nml_interp_step
read_keyboard_line close_and_downcase

Figure 5. Interpreter Interface Function Call Hierarchy

This shows the hierarchy of function calls from interface functions in rs274vger.cc to:

1. kernel functions defined in rs274vger.cc (shown in ordinary typeface).

2. world modeling functions which are externally defined when the interpreter is integra
with the rest of EMC, but are defined in driver.cc in the stand-alone (shown initalic)

3. other interface functions defined in rs274vger.cc (shown inboldface)

4. special functions (not canonical functions) defined in canon.cc (or, fo
CANON_VECTOR::CANON_VECTOR, in canon.hh) (shown inbold italic).

Eight interface functions defined in rs274vger.cc but not used in the stand-alone are
shown.
28

 RS274/VGER Interpreter

:

which
ecific

e) of
tatus,

aced
ents.

es) of
n (as
, the
ed in

c,

ted
A.2 Source Code Documentation

The source code is heavily documented. In general, for each function, four fields are given

1. Returned Value - a description of possible returned values and the circumstances in
particular values may be returned. In most kernel functions, either RET_OK or some sp
error code (which is a long unsigned int) may be returned.

2. Side Effects - a description of the important side effects (things other than the returned valu
executing a function. Since the returned value of most functions is used to indicate error s
the side effects of most functions are important.

3. Called By - a list of functions which call the function being documented.

4. Argument Values - a one-line description of the meaning of each argument to a function, pl
immediately after the declaration of the argument. This field is omitted if there are no argum

In addition to these four fields, most functions have a paragraph or two (up to several pag
discussion. Where a function implements an algorithm for geometric or numerical calculatio
do many of the functions having to do with cutter radius compensation, for example)
algorithm is described. Many citations to specific pages of the NCMS manual are includ
these discussions.

main interpret_from_file active_g_codes
active_m_codes
io_wm_init
nml_interp_execute
nml_interp_init
nml_interp_open
nml_interp_read
read_setup_file
read_tool_file
traj_wm_init NML_ROTPOSE::NML_ROTPOSE

interpret_from_keyboard active_g_codes
active_m_codes
io_wm_init
nml_interp_execute
nml_interp_init
read_keyboard_line
read_setup_file
read_tool_file
traj_wm_init NML_ROTPOSE::NML_ROTPOSE

Figure 6. Interpreter Driver Function Call Hierarchy
(for stand-alone interpreter)

This shows the hierarchy of function calls from main in the stand-alone driver file, driver.c
to:

1. world modeling functions which are externally defined when the interpreter is integra
with the rest of EMC but are defined in driver.cc in the stand-alone (shown initalic)

2. other functions defined in driver.cc (shown inboldface)

3. interface functions defined in rs274vger.cc (shown in ordinary typeface).
29

 RS274/VGER Interpreter

ords,
re all
peeds,
ething

of it.

ctions
rellis
use

value

nel,

n the

ur).

essage
r NC
alone
om a
.

call
ated
ns do
rnel
Appendix B Functional Details

B.1 Error Handling and Exiting

The interpreter detects and flags most kinds of illegal input. Unreadable input, missing w
extra words, out-of-bounds numbers, and illegal combinations of words, for example, a
detected. The interpreter does not check for axis overtravel or excessively high feeds or s
however. The interpreter also does not detect situations where a legal command does som
unfortunate, such as machining a fixture.

B.1.1 Basic Approach

The basic approach to error handling is:

1. Check carefully for errors.
2. If an error occurs, identify it specifically so that the user can be informed.
3. If an error occurs, return through the function call hierarchy rather than jumping out

The data type used for error codes (and other return codes) differs between the kernel fun
and the interface functions. Kernel functions return unsigned long ints - because the T
MAKEMESS utility is used, and it requires the use of unsigned long ints. Interface functions
ints. In the source code, unsigned long int is typedef’d as “how” (as in “how did it go?”).

Error handling and exiting are handled together by having each function return a status
meaning one of three things:

1. No error has occurred and it is not time to exit (symbolic value of RET_OK in the ker
OK in the interface).

2. It is time to exit (symbolic value of NCE_EXIT in the kernel, EXIT in the interface).
3. An error has occurred (symbolic value is a specific error code in the kernel, ERROR i

interface).

B.1.2 Error Messages

There are three sets of error messages:

1. input errors detected in the kernel or interface functions.
2. input errors detected in the stand-alone driver.
3. interpreter bugs detected in the kernel or interface functions (which should never occ

The three sets of error messages are listed in the three subsections of Appendix E. Each m
is intended to explain the error that triggered it clearly enough that a machine operator o
programmer will be able to understand it and locate the error in the input. In the stand-
interpreter, the line of NC code that caused the error will be printed, if the code is coming fr
file. If the code is coming from the keyboard, it is already printed when the error is detected

B.1.3 If an Error Occurs

If an error occurs, or if it is time to exit, control is passed back up through the function
hierarchy to some driver function (for the stand-alone) or to an EMC function (for the integr
interpreter). Section 2.1.1 describes interpreter behavior in case of an error. Kernel functio
not report errors directly (that is, they do not call an error reporting routine). Rather, if a ke
30

 RS274/VGER Interpreter

to the
urns
t called

rs, an
value
and

mpiler
ve, the
ction
n uses
code

on, it
for

for
th
ent,

alone

acro
sages
bug

both
t prints

ny’s
and
the
f, not
name.
in the

The
files:
function detects an error itself, the function stops where it is and returns the error code
function that called it. If a subordinate kernel function called by a superior kernel function ret
an error code, the superior stops where it is and passes the error code up to the function tha
it. When the error code reaches an interface function, it is reported.

B.1.4 Handling Calculated Values

Since returned values are usually used as just described to handle the possibility of erro
alternative method of passing calculated values is required. In general, if function A needs a
for variable V calculated by function B, this is handled by passing a pointer to V from A to B,
B calculates and sets V.

B.1.5 Compiler Macros

Handling errors detected in the kernel or interface functions (set 1 above) is done using co
macros. Macros are used because a “return” statement may be included. As noted abo
function that initially detects an error simply returns an error code. Where one kernel fun
calls a second kernel function and the second function returns an error code, the first functio
a compiler macro called ERROR_MACRO_PASS. All that macro does is return the error
received from the second function.

If an interface function detects an error itself or is returned an error code from a kernel functi
calls ERROR_REPORT_MACRO. Two different versions of that macro are used, one
compiling on a PC (which includes calls to functions in the MAKEMESS library), and one
compiling on a Sun. Both versions call the nml_log_error function. Bo
ERROR_MACRO_PASS and ERROR_REPORT_MACRO have a function_name argum
which is not currently being used. Different versions of nml_log_error are used the stand-
and integrated interpreters. In the stand-alone, nml_log_error prints the error to stderr.

Reporting errors which are interpreter bugs (set 3 above) is handled by the compiler m
BUG_MACRO. This behaves the same as ERROR_MACRO_PASS. However, all the mes
which can be sent via the BUG_MACRO include the name of the function in which the
occurred.

Reporting input errors in the driver is handled by the macro DRIVER_ERROR, which takes
a message string and a value as arguments, so that it can identify the error more precisely. I
messages to stderr and returns ERROR.

B.1.6 Use of MAKEMESS

Error handling is managed with the help of the Trellis Software and Controls Compa
MAKEMESS facility [Trellis]. MAKEMESS has two parts, a pre-source code file processor,
a library of functions (which is available only in object code). To use MAKEMESS,
programmer writes a message definition file. In the message definition file (nce_err.md
distributed with the source code for the interpreter), each error message is given a symbolic
The programmer uses that name in source code to refer to the error message. Functions
MAKEMESS library may be called in source code (for reporting an error, for example).
MAKEMESS processor reads the message definition file and writes two C language source
a header file (nce_code.h) and a file of function definitions (nce_err.c).
31

 RS274/VGER Interpreter

ated by
ers,
use the
atically
each
in the
eter is
rr.c,
t use

ch a

rom
rd of
place.
g the
ays
, and
ers
ase is
se is

uffer.
nts are

around
er
g the
d to be
checks

has a
tion

ld
tions

ook for

hich
Both the integrated interpreter and the stand-alone use the nce_code.h header file gener
MAKEMESS. Because the MAKEMESS library is available for PC’s but not for Sun comput
and we are using Sun computers as well as PC’s, the stand-alone interpreter does not
library functions. Rather, an array of error messages (nce_err_sun.c) is generated autom
by a short lex program from the header file generated by MAKEMESS. The array index of
error message may be computed easily from the value of its symbolic name. Error reporting
stand-alone interpreter is performed using this array. Error reporting in the integrated interpr
performed using a MAKEMESS library function. The C source function definition file, nce_e
written by MAKEMESS is used in the integrated interpreter. Since the stand-alone does no
the MAKEMESS library, it can be compiled on a Sun, a PC, or any other computer for whi
C++ compiler is available.

B.2 Cyclic Operation

In the integrated interpreter, input may be taken from a file or via manual data input (MDI) f
the controller console. In the stand-alone, input may be taken from a file or from the keyboa
the computer running the interpreter. In all cases, two major phases of interpretation take
The first phase consists of reading a line of code, checking it somewhat, and storin
information from the line in a structure called a “block”. The second phase, which is alw
started by a call to nml_interp_execute, consists of examining the block, checking it further
making calls to canonical functions. With MDI input the nml_interp_execute function trigg
both phases. With file input, in both the stand-alone and the integrated version, the first ph
started by a call to nml_interp_read. In the stand-alone with keyboard input, the first pha
started by a call to read_keyboard_line.

B.2.1 Read, Store, and Check

The software reads lines of RS274/VGER code one at a time. First the line is read into a b
Next, any spaces not in comments are removed, and any upper case letters not in comme
changed to lower case letters.

Then the buffer and a counter holding the index of the next character to be read are handed
among a lot of functions named read_XXXX. All such functions read characters from the buff
using the counter. They all reset the counter to point at the character in the buffer followin
last one used by the function. The first character read by most of these functions is expecte
a member of some set of characters (often a specific single character), and each function
the first character.

Each line of code is stored until it has been executed in a reusable “block” structure, which
slot for every potential piece of information on the line. Each time a useful piece of informa
has been extracted from the line, the information is put into the block.

The read_XXXXfunctions do a lot of error detection, but they only look for errors which wou
cause reading or storing to fail. After reading and storing is complete, more checking func
(check_g_codes, check_m_codes, and check_other_codes) are run. These functions l
logical errors, such as all axis words missing with a G code for motion in effect.

B.2.2 Execute

Once a block is built and checked, the block is executed by the execute_block function, w
32

 RS274/VGER Interpreter

274,
other

der of
ea to

block.
ode
curred

ince
nge is

.3).

.2).
calls one or more functions named convert_XXXX. In RS274/VGER, as in all dialects of RS
a line of code may specify several different things to do, such as moving from one place to an
along a straight line or arc, changing the feed rate, starting the spindle turning, etc. The or
execution of items in a block is critical to safe and effective machine operation (it is a good id
start the spindle before cutting, for example), but is not specified clearly in the manual.

In the interpreter, items are executed in the order shown in Table 9 if they occur in the same
Many of the kernel functions rely implicitly on this order being used. The source c
documentation does not generally call out the fact that some other operation must have oc
before the one being documented.

B.3 Tool Change

A CHANGE_TOOL canonical command call is made when an M6 code occurs on a line. S
this is a canonical command, it is not specialized to a particular machine. When the tool cha
complete, the following conditions should prevail.

• The spindle should be stopped.

• The tool that was selected (by a T word on the same line or on any line after the
previous tool change) should be in the spindle. The T number is an integer giving the
id of the tool, not its changer slot.

1. comment (includes message).
2. set feed mode (G93, G94 — inverse time or per minute).
3. set feed rate (F).
4. set spindle speed (S).
5. select tool (T).
6. change tool (M6).
7. spindle on or off (M3, M4, M5).
8. coolant on or off (M7, M8, M9).
9. enable or disable overrides (M48, M49).
10. dwell (G4).
11. set active plane (G17, G18, G19).
12. set length units (G20, G21).
13. cutter radius compensation on or off (G40, G41, G42)
14. cutter length compensation on or off (G43, G49)
15. coordinate system selection (G54, G55, G56, G57, G58, G59, G59.1, G59.2, G59
16. set distance mode (G90, G91).
17. set retract mode (G98, G99).
18. home (G28, G30), change coordinate system data (G10) or axis offsets (G92, G92
19. perform motion (G0 to G3, G80 to G89).
20. stop (M0, M1, M2, M30, M60).

Table 9. Order of Execution
33

 RS274/VGER Interpreter

e

in

otion
y such

ally in
o error
ected

r G2
el to
lane
), or

hese
t to a

xis or
otion

ecified
grees
arc is

helix

hose
the

ecified
• If the selected tool was not in the spindle before the tool change, the tool that was in th
spindle (if there was one) should be in its changer slot.

• The coordinate axes should be stopped in the same absolute position they were
before the tool change (but the spindle may be re-oriented).

• No other changes should be made.

The tool change may include axis motion while it is in progress. For any machine, this m
must be predictable. It is up to the system programmers and operators to ensure that an
motion will not damage the machine or the workpiece.

If the tooling data is incorrect, so that the tool that was supposed to be selected is not actu
the expected slot, the tool change operation is not expected to be able to detect this, and n
will necessarily result. If the machine is able to detect this error, however, it should be det
and program execution should stop.

B.4 Milling Arcs

In RS274/VGER code [NCMS, pages 20, 21] a circular or helical arc is specified using eithe
(clockwise arc) or G3 (counterclockwise arc). The axis of the circle or helix must be parall
the X, Y, or Z-axis of the machine coordinate system. The axis (or, equivalently, the p
perpendicular to the axis) is selected with G17 (Z-axis, XY-plane), G18 (Y-axis, ZX-plane
G19 (X-axis, YZ-plane). If the arc is circular, it lies in the selected plane.

In the RS274/VGER language, two formats are allowed for specifying an arc. We will call t
the center format and the radius format. The interpreter converts an arc in either forma
canonical ARC_FEED command, as described in Table 2.

If a line of RS274/VGER code makes an arc and includes a rotary axis move (A-axis or C-a
both), the rotary axis turns at a constant rate so that it starts and finishes when the XYZ m
starts and finishes.

B.4.1 Radius Format Arc

In the radius format, the coordinates of the end point of the arc in the selected plane are sp
along with the radius of the arc. A positive radius indicates that the arc turns through 180 de
or less, while a negative radius indicates a turn of 180 degrees to 359.999 degrees. If the
helical, the value of the end point of the arc on the coordinate axis parallel to the axis of the
is also specified.

Here is an example of a radius format RS274/VGER command to mill an arc:
G17 G2 x 10 y 15 r 20 z 5

That means to make a clockwise (as viewed from the positive Z-axis) circular or helical arc w
axis is parallel to the Z-axis, ending where X=10, Y=15, and Z=5, with a radius of 20. If
starting value of Z is 5, this is a circular arc; otherwise it is a helical arc.

B.4.2 Center Format Arc

In the center format, the coordinates of the end point of the arc in the selected plane are sp
along with the offsets of the center of the arc from the current location.
34

 RS274/VGER Interpreter

hose
e X
the
arc.
ter of
both
being

ds for
, G58,
rating

S] is:

dinate

tem 1,

olute

for the

o all

ystems

hine

the
ter, a

gram
Here is an example of a center format RS274/VGER command to mill an arc:
G17 G2 x 10 y 15 i 7 j 8 z 5

That means to make a clockwise (as viewed from the positive z-axis) circular or helical arc w
axis is parallel to the Z-axis, ending where X=10, Y=15, and Z=5, with its center offset in th
direction by 7 units from the current X location and offset in the Y direction by 8 units from
current Y location. If the starting value of Z is 5, this is a circular arc; otherwise it is a helical
The radius of the arc is not specified, but it may be found easily as the distance from the cen
the circle to either the current point or the end point of the arc. The interpreter calculates
these distances and signals an error if they differ by more than 0.0002 inch (if inches are
used) or 0.002 millimeter (if millimeters are being used).

B.5 Coordinate Systems

The handling of coordinate systems by the interpreter involves the RS274/VGER comman
setting coordinate systems (G10 L2), selecting coordinate systems (G54, G55, G56, G57
G59, G59.1, G59.2, and G59.3), offsetting all coordinate systems (G92 and G92.2), and ope
in the absolute machine coordinate system temporarily (G53).

The canonical machining functions view of coordinate systems is:

1. There are two coordinate systems: absolute and program.
2. All coordinate values are given in terms of the program coordinate system.
3. The offsets of the program coordinate system may be reset.

The RS274/VGER view of coordinate systems, as given in section 3.2 of the manual [NCM

1. There are ten coordinate systems: absolute and 9 program. The program coor
systems are numbered 1 to 9.

2. You can switch among the 9 but not to the absolute one. G54 selects coordinate sys
G55 selects 2, and so on through G56, G57, G58, G59, G59.1, G59.2, and G59.3.

3. You can set the offsets of the 9 program coordinate systems using G10 L2 Pn (n is the
number of the coordinate system) with values for the axes in terms of the abs
coordinate system.

4. The first one of the 9 program coordinate systems is the default.
5. Data for coordinate systems is stored in parameters [NCMS, pages 59 - 60].
6. G53 means to interpret coordinate values in terms of the absolute coordinate system

one block in which G53 appears.
7. You can offset the current coordinate system using G92. This offset will then apply t

nine program coordinate systems. This offset may be cancelled with G92.2.

The approach used in the interpreter mates the canonical and VGER views of coordinate s
as follows:

During initialization, the first VGER coordinate system is selected (origin_vger in the mac
model is set to 1) with the offsets for that system all set to 0.0.

If a G code in the range G54 - G59.3 is encountered in an NC program, the data from
appropriate VGER coordinate system is copied into the origin offsets used by the interpre
SET_ORIGIN_OFFSETS function call is made, and the current position is reset.

If a G10 L2 Pn is encountered, the convert_setup function is called to reset the offsets of pro
35

 RS274/VGER Interpreter

n

t the
E or

ffset

G92
del, a
ffsets
lts in
ade,

et is
his
74].
haves

de
s
model
n the

t is
ted.

e time
G93

inute,
r axes

n [one
leted

have
UG
g it is
coordinate systemn. If coordinate systemn is the one in use, a SET_ORIGIN_OFFSETS functio
call is made, and the current position is reset.

If a G53 is encountered, the axis values given in that block are used to calculate wha
coordinates are of that point in the current coordinate system, and a STRAIGHT_TRAVERS
STRAIGHT_FEED function call to that point using the calculated values is made. No o
values are changed.

If a G92 or G92.2 is encountered, that is handled by the convert_axis_offsets function. A
results in an axis offset for each axis being calculated and stored in the machine mo
SET_ORIGIN_OFFSETS function call is made, and the current position is reset. The axis o
are applied with all nine coordinate systems. Axis offsets are initialized to zero. A G92.2 resu
the axis offsets for all axes being reset to zero, a SET_ORIGIN_OFFSETS function call is m
and the current position is reset.

B.6 Tool Length Offsets

Tool length offsets are given as positive numbers in the tool table. Using a tool length offs
programmed using G43 Hn, wheren is the desired table index. It is expected that all entries in t
table will be positive. Using no tool length offset is programmed using G49 [NCMS, page
The H number is checked for being a non-negative integer when it is read. The interpreter be
as follows.

1. If G43 Hn is programmed, A USE_TOOL_LENGTH_OFFSET(length) function call is ma
(where length is the value of the tool length offset entry in the tool table whose index in),
tool_length_offset is reset in the machine settings model, and the value of current_z in the
is adjusted. Note thatn does not have to be the same as the slot number of the tool currently i
spindle.

2. If G49 is programmed, USE_TOOL_LENGTH_OFFSET(0.0) is called, tool_length_offse
reset to 0.0 in the machine settings model, and the value of current_z in the model is adjus

B.7 Inverse Time Feed Rate

In the RS274/VGER language, two feed modes are recognized: units per minute and invers
[NCMS, pages 35 - 37]. Programming G94 starts the units per minute mode. Programming
starts the inverse time mode.

In units per minute feed mode, an F word (no, notthatF word; we meanfeedrate) is interpreted to
mean the tool tip should move at a certain number of inches per minute, millimeters per m
or degrees per minute, depending upon what length units are being used and which axis o
are moving.

In inverse time feed mode, an F word is interpreted to mean the move should be completed i
divided by the F word] minutes. For example, if the F word is 2.0, the move should be comp
in half a minute.

The interpreter handles the inverse time feed rate mode internally. The canonical functions
no command for putting a machine into this mode. If the interpreter is compiled with DEB
#defined, when the interpreter converts a G93 or G94 command, it prints a comment sayin
going into inverse time feed mode (if G93) or into units per minute feed mode (if G94).
36

 RS274/VGER Interpreter

must
), the
in the

nute)
ord

are on
.

]. The
scribes
f G81

three
cles,
, and
tions

-plane

ine X,
lar to
e).

ted as
move
es is
in the

repeats
sed,
peated
tance
anual,

ined
und)
ive go-

tions
at is
As specified in the manual, when the interpreter is in inverse time feed mode, an F word
appear on every line which has a motion. For each programmed motion (G1, G2, or G3
interpreter calculates what the feed rate must be in units per minute to accomplish the move
specified time. A SET_FEED_RATE canonical command (which always means units per mi
is output by the interpreter with this calculated rate. The calculation is: multiply the input F w
by the path length of tool tip motion appropriate to the given kind of motion.

Being in inverse time feed mode does not affect G0 (rapid traverse) motions.

When in the inverse time feed mode, the interpreter reads but then ignores F words which
lines that do not have G1, G2, or G3. This is not an error, but should probably be made one

B.8 Canned Cycles

The canned cycles G81 through G89 have been implemented [NCMS, pages 98 - 100
manual is very sketchy regarding what these cycles are supposed to do. This section de
how each cycle has been implemented. Two examples are given with the description o
below.

All canned cycles are performed with respect to the currently selected plane. Any of the
planes (XY, YZ, ZX) may be selected. No rotary axis motion is allowed during canned cy
inverse time feed rate is not allowed (but the interpreter is currently not detecting this error)
cutter radius compensation is not allowed. Throughout this section, most of the descrip
assume the XY-plane has been selected. The behavior is always analogous if the YZ or ZX
is selected.

All canned cycles use X, Y, R, and Z values in the NC code. These values are used to determ
Y, R, and Z positions. The R (usually meaning retract) position is along the axis perpendicu
the currently selected plane (Z-axis for XY-plane, X-axis for YZ-plane, Y axis for ZX-plan
Some canned cycles use additional arguments.

In incremental distance mode: when the XY-plane is selected, X, Y, and R values are trea
increments to the current position and Z as an increment from the Z-axis position before the
involving Z takes place; when the YZ or ZX-plane is selected, treatment of the axis valu
analogous. In absolute distance mode, the X, Y, R, and Z values are absolute positions
current coordinate system, and it does not matter which plane is selected.

The repeat feature has been implemented, wherein the L word represents the number of
[NCMS, page 99]. We are not allowing L=0, contrary to the manual. If the repeat feature is u
it is normally used in incremental distance mode, so that the same sequence of motions is re
in several equally spaced places along a straight line. We are allowing L > 1 in absolute dis
mode to mean “do the same cycle in the same place several times”, as provided in the m
although this seems abnormal. Omitting the L value is equivalent to specifying L=1.

When L>1 in incremental mode with the XY-plane selected, the X and Y positions are determ
by adding the given X and Y values either to the current X and Y positions (on the first go-aro
or to the X and Y positions at the end of the previous go-around (on the second and success
arounds). The R and Z positions do not change during the repeats.

The height of the retract move at the end of each repeat (called “clear Z” in the descrip
below) is determined by the setting of the retract_mode: either to the original Z position (if th
37

 RS274/VGER Interpreter

his is
al Z

ed, if
This

of the

ition.

nd the

G81
ition
. The

nd the

r the
-0.6

the
above the R position and the retract_mode is G98, OLD_Z), or otherwise to the R position. T
a slight departure from [NCMS, page 98], which does not require checking that the origin
position is above the R position.

B.8.1 Preliminary Motion

At the very beginning of the execution of any of the canned cycles, with the XY-plane select
the current Z position is below the R position, the Z axis is traversed to the R position.
happens only once, regardless of the value of L.

In addition, for each repeat as specified by L, one or two moves are made before the rest
cycle:

1. a straight traverse parallel to the XY-plane to the given XY-position
2. a straight traverse of the Z-axis only to the R position, if it is not already at the R pos

B.8.2 G81 Cycle

The G81 cycle is intended for drilling.

0. Preliminary motion, as described above.
1. Move the Z-axis only at the current feed rate to the Z position.
2. Retract the Z-axis at traverse rate to clear Z.

Example 1. Suppose the current position is (1, 2, 3) and the XY-plane has been selected, a
following line of NC code is interpreted.

G90 G81 G98 X4 Y5 Z1.5 R2.8

This calls for absolute distance mode (G90) and OLD_Z retract mode (G98) and calls for the
drilling cycle to be performed once. The X value and X position are 4. The Y value and Y pos
are 5. The Z value and Z position are 1.5. The R value and clear Z are 2.8. Old Z is 3
following moves take place.

1. a traverse parallel to the XY plane to (4,5,3).
2. a traverse parallel to the Z-axis to (4,5,2.8)
3. a feed parallel to the Z-axis to (4,5,1.5)
4. a traverse parallel to the Z-axis to (4,5,3)

Example 2. Suppose the current position is (1, 2, 3) and the XY-plane has been selected, a
following line of NC code is interpreted.

G91 G81 G98 X4 Y5 Z-0.6 R1.8 L3

This calls for incremental distance mode (G91) and OLD_Z retract mode (G98) and calls fo
G81 drilling cycle to be repeated three times. The X value is 4, the Y value is 5, the Z value is
and the R value is 1.8. The initial X position is 5 (=1+4), the initial Y position is 7 (=2+5),
clear Z position is 4.8 (=1.8+3), and the Z position is 4.2 (=4.8-0.6). Old Z is 3.

The first move is a traverse along the Z axis to (1,2,4.8), since old Z < clear Z.

The first repeat consists of 3 moves.

1. a traverse parallel to the XY-plane to (5,7,4.8)
2. a feed parallel to the Z-axis to (5,7, 4.2)
38

 RS274/VGER Interpreter

tion to

to 17

cle
ycle

tion,
3. a traverse parallel to the Z-axis to (5,7,4.8)

The second repeat consists of 3 moves. The X position is reset to 9 (=5+4) and the Y posi
12 (=7+5).

1. a traverse parallel to the XY-plane to (9,12,4.8)
2. a feed parallel to the Z-axis to (9,12, 4.2)
3. a traverse parallel to the Z-axis to (9,12,4.8)

The third repeat consists of 3 moves. The X position is reset to 13 (=9+4) and the Y position
(=12+5).

1. a traverse parallel to the XY-plane to (13,17,4.8)
2. a feed parallel to the Z-axis to (13,17, 4.2)
3. a traverse parallel to the Z-axis to (13,17,4.8)

B.8.3 G82 Cycle

The G82 cycle is intended for drilling.

0. Preliminary motion, as described above.
1. Move the Z-axis only at the current feed rate to the Z position.
2. Dwell for the given number of seconds.
3. Retract the Z-axis at traverse rate to clear Z.

B.8.4 G83 Cycle

The G83 cycle is intended for deep drilling or milling with chipbreaking. The dwell in this cy
causes any long stringers (which are common when drilling in aluminum) to be cut off. This c
takes a Q value which represents a “delta” increment along the Z-axis.

0. Preliminary motion, as described above.
1. Move the Z-axis only at the current feed rate downward by delta or to the Z posi

whichever is less deep.
2. Dwell for 0.25 second.
3. Repeat steps 1 and 2 until the Z position is reached.
4. Retract the Z-axis at traverse rate to clear Z.

B.8.5 G84 Cycle

The G84 cycle is intended for right-hand tapping.

0. Preliminary motion, as described above.
1. Start speed-feed synchronization.
2. Move the Z-axis only at the current feed rate to the Z position.
3. Stop the spindle.
4. Start the spindle counterclockwise.
5. Retract the Z-axis at the current feed rate to clear Z.
6. If speed-feed synch was not on before the cycle started, stop it.
7. Stop the spindle.
8. Start the spindle clockwise.
39

 RS274/VGER Interpreter

ber of

dified
cycle

le. To
of its
t fits
indle,
hole,

and J
mode
ition
tance
B.8.6 G85 Cycle

The G85 cycle is intended for boring or reaming.

0. Preliminary motion, as described above.
1. Move the Z-axis only at the current feed rate to the Z position.
2. Retract the Z-axis at the current feed rate to clear Z.

B.8.7 G86 Cycle

The G86 cycle is intended for boring. This cycle uses a P value, where P specifies the num
seconds to dwell.

0. Preliminary motion, as described above.
1. Move the Z-axis only at the current feed rate to the Z position.
2. Dwell for the given number of seconds.
3. Stop the spindle turning.
4. Retract the Z-axis at traverse rate to clear Z.
5. Restart the spindle in the direction it was going.

B.8.8 G87 Cycle

The G87 cycle is intended for back boring. The cycle which has been implemented is a mo
version of [Monarch, page 5-24] since [NCMS, pages 98 - 100] gives no clue as to what the
is supposed to do. [K&T] does not have a back boring cycle.

The situation is that you have a through hole and you want to counterbore the bottom of ho
do this you put an L-shaped tool in the spindle with a cutting surface on the UPPER side
base. You stick it carefully through the hole when it is not spinning and is oriented so i
through the hole, then you move it so the stem of the L is on the axis of the hole, start the sp
and feed the tool upward to make the counterbore. Then you stop the tool, get it out of the
and restart it.

This cycle uses I and J values to indicate the position for inserting and removing the tool. I
will always be increments from the X position and the Y position, regardless of the distance
setting, as implied in [NCMS, page 98]. This cycle also uses a K value to specify the pos
along the Z-axis of the top of counterbore. The K value is an absolute Z-value in absolute dis
mode, and an increment (from the Z position) in incremental distance mode.

0. Preliminary motion, as described above.
1. Move at traverse rate parallel to the XY-plane to the point indicated by I and J.
2. Stop the spindle in a specific orientation.
3. Move the Z-axis only at traverse rate downward to the Z position.
4. Move at traverse rate parallel to the XY-plane to the X,Y location.
5. Start the spindle in the direction it was going before.
6. Move the Z-axis only at the given feed rate upward to the position indicated by K.
7. Move the Z-axis only at the given feed rate back down to the Z position.
8. Stop the spindle in the same orientation as before.
9. Move at traverse rate parallel to the XY-plane to the point indicated by I and J.
10. Move the Z-axis only at traverse rate to the clear Z.
11. Move at traverse rate parallel to the XY-plane to the specified X,Y location.
40

 RS274/VGER Interpreter

ber of

ber of

the
bing
ults of
probe
of the

274/
ical
setting
ndled.
12. Restart the spindle in the direction it was going before.

B.8.9 G88 Cycle

The G88 cycle is intended for boring. This cycle uses a P value, where P specifies the num
seconds to dwell.

0. Preliminary motion, as described above.
1. Move the Z-axis only at the current feed rate to the Z position.
2. Dwell for the given number of seconds.
3. Stop the spindle turning.
4. Stop the program so the operator can retract the spindle manually.
5. Restart the spindle in the direction it was going.

B.8.10 G89 Cycle

The G89 cycle is intended for boring. This cycle uses a P value, where P specifies the num
seconds to dwell.

0. Preliminary motion, as described above.
1. Move the Z-axis only at the current feed rate to the Z position.
2. Dwell for the given number of seconds.
3. Retract the Z-axis at the current feed rate to clear Z.

B.9 Probing

The RS274/VGER Interpreter implements a very simple form of probing, which is to call
canonical function STRAIGHT_PROBE when G38 is interpreted. The results of the pro
operation do not affect the operation of the machining center (as would be the case if the res
probing were saved by resetting parameter values, for example). It is expected that the
results are just collected and used in some way that does not affect the interpretation
program that is running.

A more sophisticated form of probing has been implemented in version 3 of the four-axis RS
NGC interpreter, in which the TURN_PROBE_ON and TURN_PROBE_OFF canon
commands are defined and used, the results of probing do affect machine operation by re
parameter values, and the matter of coordinating interpretation and execution has been ha
41

 RS274/VGER Interpreter

cify
lane
aterial
ure 7
leaves
e.

f the
next

s may

adius
o the

tting,
oth

path
stay
Appendix C Cutter Radius Compensation

C.1 Introduction

The cutter radius compensation1capabilities of the interpreter enable the programmer to spe
that a cutter should travel to the right or left of an open or closed contour in the XY-p
composed of arcs of circles and straight line segments. The contour may be the outline of m
not to be machined away, or it may be a tool path to be followed by an exactly sized tool. Fig
shows two examples of the path of a tool cutting using cutter radius compensation so that it
a triangle of material remaining. The figure gives corner coordinates for one shaded triangl

Z axis motion may take place while the contour is being followed in the XY plane. Portions o
contour may be skipped by retracting the Z axis above the part, following the contour to the
point at which machining should be done, and re-extending the Z-axis. These skip motion
be performed at feed rate (G1) or at traverse rate (G0).

Inverse time feed rate (G93) or units per minute feed rate (G94) may be used with cutter r
compensation. Under G94, the feed rate will apply to the actual path of the cutter tip, not t

1. The term “cutter diameter compensation” is often used to mean the same thing.

This way

NOT This way

Tool Path

Figure 7. Two Cutter Radius Compensation Methods

In both examples, the shaded triangle represents material which should remain after cu
and the line outside the shaded triangle represents the path of the tip of a cutting tool. B
paths will leave the shaded triangle uncut. The one on the left (with rounded corners) is the
the interpreter will generate. In the method on the right (the one not used), the tool does not
in contact with the shaded triangle at sharp corners.

(2,2)

(2, -1)(-2,-1)
42

 RS274/VGER Interpreter

f the
41
G42

e.

ill be
st be

m a D

ber of
zero
the

he slot

he D

t in the
ence
exed
ussed

y. We

ctly
programmed contour.

C.2 Programming Instructions

C.2.1 Turning Cutter Radius Compensation On

To start cutter radius compensation, program either G41 (for keeping the tool to the left o
contour) or G42 (for keeping the tool to the right of the contour). In Figure 7, for example, if G
were programmed, the tool would stay left and move clockwise around the triangle, and if
were programmed, the tool would stay right and move counterclockwise around the triangl

C.2.2 Turning Cutter Radius Compensation Off

To stop cutter radius compensation, program G40.

C.2.3 Sequencing

If G40, G41, or G42 is programmed in the same block as tool motion, cutter compensation w
turned on or off before the motion is made. To make the motion come first, the motion mu
programmed in a separate, previous block.

C.2.4 Use of D Number

Programming the tool radius for cutter compensation may be done two ways: Either progra
number on the same line with G41 or G42, or program nothing.

If a D number is programmed, it must be a non-negative integer. It represents the slot num
the tool whose radius (half the diameter given in the tool table) will be used, or it may be
(which is not a slot number). If it is zero, the value of the radius will also be zero. Any slot in
tool table may be selected this way. The D number does not have to be the same as t
number of the tool in the spindle.

If a D number is not programmed, the slot number of the tool in the spindle will be used as t
number.

C.2.5 Tool Table

Cutter radius compensation uses data from the machining center’s tool table. For each slo
tool carrousel, the tool table contains the diameter of the tool in that slot (or the differ
between the actual diameter of the tool in the slot and its nominal value). The tool table is ind
by slot number. How to put data into the table when using the stand-alone interpreter is disc
in Appendix H.

C.3 Two Kinds of Contour

The interpreter handles compensation for two types of contour:

1. The contour given in the NC code is the edge of material that is not to be machined awa
will call this type a “material edge contour”.

2. The contour given in the NC code is the tool path that would be followed by a tool of exa
the correct radius. We will call this type a “tool path contour”.
43

 RS274/VGER Interpreter

ut the
d the

e NC

of the
edge

7. In
is 0.5,

the
le of
re not

ected
y. The
hich is
ays in
of the

part
sized

itive
ol is
reter
bsolute
ld be

med in
tool
The interpreter does not have any setting that determines which type of contour is used, b
description of the contour will differ (for the same part geometry) between the two types an
values for diameters in the tool table will be different for the two types.

C.3.1 Material Edge Contour

When the contour is the edge of the material, the outline of the edge is described in th
program.

For a material edge contour, the value for the diameter in the tool table is the actual value
diameter of the tool. The value in the table must be positive. The NC code for a material
contour is the same regardless of the (actual or intended) diameter of the tool.

Example 1 :

Here is an NC program which cuts material away from the outside of the triangle in Figure
this example, the cutter compensation radius is the actual radius of the tool in use, which
The value for the diameter in the tool table is twice the radius, which is 1.0.

N0010 G41 G1 X2 Y2 (turn compensation on and make entry move)
N0020 Y-1 (follow right side of triangle)
N0030 X-2 (follow bottom side of triangle)
N0040 X2 Y2 (follow hypotenuse of triangle)
N0050 G40 (turn compensation off)

This will result in the tool following a path consisting of an entry move and the path shown on
left in Figure 7 going clockwise around the triangle. Notice that the coordinates of the triang
material appear in the NC code. Notice also that the tool path includes three arcs which a
explicitly programmed; they are generated automatically.

C.3.2 Tool Path Contour

When the contour is a tool path contour, the path is described in the NC program. It is exp
that (except for during the entry moves) the path is intended to create some part geometr
path may be generated manually or by a post-processor, considering the part geometry w
intended to be made. For the interpreter to work, the tool path must be such that the tool st
contact with the edge of the part geometry, as shown on the left side of Figure 7. If a path
sort shown on the right of Figure 7 is used, in which the tool does not stay in contact with the
geometry all the time, the interpreter will not be able to compensate properly when under
tools are used.

For a tool path contour, the value for the cutter diameter in the tool table will be a small pos
number if the selected tool is slightly oversized and will be a small negative number if the to
slightly undersized. As implemented, if a cutter diameter value is negative, the interp
compensates on the other side of the contour from the one programmed and uses the a
value of the given diameter. If the actual tool is the correct size, the value in the table shou
zero.

Example 2 :

Suppose the diameter of the cutter currently in the spindle is 0.97, and the diameter assu
generating the tool path was 1.0. Then the value in the tool table for the diameter for this
44

 RS274/VGER Interpreter

angle

ng a
ngle.
se the

given

h it is
n was
ool is

ius is
should be -0.03. Here is an NC program which cuts material away from the outside of the tri
in Figure 7:

N0010 G1 X1 Y4.5 (make alignment move)
N0020 G41 G1 Y3.5 (turn compensation on and make first entry move)
N0030 G3 X2 Y2.5 I1 (make second entry move)
N0040 G2 X2.5 Y2 J-0.5 (cut along arc at top of tool path)
N0050 G1 Y-1 (cut along right side of tool path)
N0060 G2 X2 Y-1.5 I-0.5 (cut along arc at bottom right of tool path)
N0070 G1 X-2 (cut along bottom side of tool path)
N0080 G2 X-2.3 Y-0.6 J0.5 (cut along arc at bottom left of tool path)
N0090 G1 X1.7 Y2.4 (cut along hypotenuse of tool path)
N0100 G2 X2 Y2.5 I0.3 J-0.4 (cut along arc at top of tool path)
N0110 G40 (turn compensation off)

This will result in the tool making an alignment move and two entry moves, and then followi
path slightly inside the path shown on the left in Figure 7 going clockwise around the tria
This path is to the right of the programmed path even though G41 was programmed, becau
diameter value is negative.

C.4 Programming Errors and Limitations

The interpreter will issue the following messages involving cutter radius compensation.

1. Cannot change axis offsets with cutter radius comp
2. Cannot change units with cutter radius comp
3. Cannot turn cutter radius comp on out of XY-plane
4. Cannot turn cutter radius comp on when already on
5. Cannot use G28 or G30 with cutter radius comp
6. Cannot use G53 with cutter radius comp
7. Cannot use XZ plane with cutter radius comp
8. Cannot use YZ plane with cutter radius comp
9. Concave corner with cutter radius comp
10. Cutter gouging with cutter radius comp
11. D word on line with no cutter comp on (G41 or G42) command
12. Tool radius index too big
13. Tool radius not less than arc radius with cutter radius comp
14. Two G codes used from same modal group.

Most of these are self-explanatory. For those that require explanation, an explanation is
below.

Changing a tool while cutter radius compensation is on is not treated as an error, althoug
unlikely this would be done intentionally. The radius used when cutter radius compensatio
first turned on will continue to be used until compensation is turned off, even though a new t
actually being used.

C.4.1 Concave Corner and Tool Radius Not Less than Arc Radius (9 and 13)

When cutter radius compensation is on, it must be physically possible for a circle whose rad
45

 RS274/VGER Interpreter

ntour.
ill not

igure 8.
t the

on. In
other
rner.

ust be
tween
as a

is on
sation

ation
int is
tails

error

radius
code.

n of a
h.)
the half the diameter given in the tool table to be tangent to the contour at all points of the co
In particular, the interpreter treats concave corners and concave arcs into which the circle w
fit as errors, since the circle cannot be kept tangent to the contour in these situations. See F
This error detection does not limit the shapes which can be cut, but it does require tha
programmer specify the actual shape to be cut (or path to be followed), not an approximati
this respect, the RS274/VGER interpreter differs from interpreters used with many
controllers, which often allow these errors silently and either gouge the part or round the co

C.4.2 Cannot Turn Compensation on When Already On (4)

If cutter radius compensation has already been turned on, it cannot be turned on again. It m
turned off first; then it can be turned on again. It is not necessary to move the cutter be
turning compensation off and back on, but the move after turning it back on will be treated
first move, as described below.

It is not possible to change from one cutter radius index to another while compensation
because of the combined effect of rules 4 and 11. It is also not possible to switch compen
from one side to another while compensation is on.

C.4.3 Cutter Gouging (10)

If the tool is already covering up the next XY destination point when cutter radius compens
is turned on, the gouging message is given when the line of NC code which gives the po
reached. In this situation, the tool is already cutting into material it should not cut. More de
are given in Section C.5.

C.4.4 Tool Radius Index Too Big (12)

If a D word is programmed that is larger than the number of tool carrousel slots, this
message is given. In the current implementation, the number of slots is 68.

C.4.5 Two G Codes Used from Same Modal Group (14)

This is a generic message used for many sets of G codes. As applied to cutter
compensation, it means that more than one of G40, G41, and G42 appears on a line of NC
This is not allowed.

Figure 8. Two Cutter Radius Compensation Errors

In both examples, the line represents a contour, and the circle represents the cross sectio
tool following the contour using cutter radius compensation (tangent to one side of the pat

concave corner - tool does not fit concave arc too small - tool does not fit
46

 RS274/VGER Interpreter

aight
t and
s the
his is
ircle

ich is
point,
. If the
so that

at the
used.
C.5 First Move into Cutter Compensation

C.5.1 Algorithm for First Move

The algorithm used for the first move when the first move is a straight line is to draw a str
line from the destination point which is tangent to a circle whose center is at the current poin
whose radius is the radius of the tool. The destination point of the tool tip is then found a
center of a circle of the same radius tangent to the tangent line at the destination point. T
shown in Figure 9. If the programmed point is inside the initial cross section of the tool (the c
on the left), an error is signalled as described in Section C.4.3.

If the first move after cutter radius compensation has been turned on is an arc, the arc wh
generated is derived from an auxiliary arc which has its center at the programmed center
passes through the programmed end point, and is tangent to the cutter at its current location
auxiliary arc cannot be constructed, an error is signalled. The generated arc moves the tool
it stays tangent to the auxiliary arc throughout the move. This is shown in Figure 10.

Regardless of whether the first move is a straight line or an arc, the Z axis may also move
same time. It will move linearly, as it does when cutter radius compensation is not being

Figure 9. First Cutter Radius Compensation Move - Straight

Second, construct this line to
determine the destination point

programmed point

current point

First, construct this line.

destination point of tool tippath of tool tip

Figure 10. First Cutter Radius Compensation Move - Arc

programmed center point

current point

First, construct this auxiliary arc.

programmed end point

destination point of tool tip

Second, construct this arc,
which is the path taken.
47

 RS274/VGER Interpreter

them

to the
d to go

ove is
evious

hen
with

rrectly.
corner
eneral

mer
Rotary axis motions (A and C axes) are allowed with cutter radius compensation, but using
would be very unusual.

After the entry moves of cutter radius compensation, the interpreter keeps the tool tangent
programmed path on the appropriate side. If a convex corner is on the path, an arc is inserte
around the corner. The radius of the arc is half the diameter given in the tool table.

When cutter radius compensation is turned off, no special exit move takes place. The next m
what it would have been if cutter radius compensation had never been turned on and the pr
move had placed the tool at its current position.

If the interpreter has been compiled with the “DEBUG” option on, the interpreter signals w
cutter radius compensation is turned on or off by calling the COMMENT canonical function
a message to that effect.

C.5.2 Programming Entry Moves

In general, an alignment move and two entry moves are needed to begin compensation co
However, where the programmed contour is a material edge contour and there is a convex
on the contour, only one entry move (plus, possibly, a pre-entry move) is needed. The g
method, which will work in all situations, is described first. We assume here that the program
knows what the contour is already and has the job of adding entry moves.
48

 RS274/VGER Interpreter

t code

n arc
ing in
larger

some
n is

sation
, line
move,

path
on of
n for
tool is
C.5.2.1 General Method

The general method includes programming an alignment move and two entry moves.

The entry moves given in Section C.3.2 will be used as an example. Here is the relevan
again:

N0010 G1 X1 Y4.5 (make alignment move to point C)
N0020 G41 G1 Y3.5 (turn compensation on and make first entry move to point B)
N0030 G3 X2 Y2.5 I1 (make second entry move to point A)

See Figure 11. The figure shows the two entry moves but not the alignment move.

First, pick a point A on the contour where it is convenient to attach an entry arc. Specify a
outside the contour which begins at a point B and ends at A tangent to the contour (and go
the same direction as it is planned to go around the contour). The radius of the arc should be
than half the diameter given in the tool table. Then extend a line tangent to the arc from B to
point C, located so that the line BC is more than one radius long. After the constructio
finished, the code is written in the reverse order from the construction. Cutter radius compen
is turned on after the alignment move and before the first entry move. In the code above
N0010 is the alignment move, line N0020 turns compensation on and makes the first entry
and line N0030 makes the second entry move.

In this example, the arc AB and the line BC are fairly large, but they need not be. For a tool
contour, the radius of arc AB need only be slightly larger than the maximum possible deviati
the radius of the tool from the exact size. Also for a tool path contour, the side chose
compensation should be the one to use if the tool is oversized. As mentioned earlier, if the
undersized, the interpreter will switch sides.

A (2,2.5)

Figure 11. Cutter Radius Compensation Entry Moves

•

•

•

B (1, 3.5)

C (1, 4.5)
49

 RS274/VGER Interpreter

tour, a

our
d the

e the
tly in
If not,
enter
ve is

ol is

ff, so
onical
nsation
ct the
C.5.2.2 Simple Method

If the contour is a material edge contour and there is a convex corner somewhere on the con
simpler method of making an entry is available. See Figure 12.

First, pick a convex corner, D. Decide which way you want to go along the contour from D. In
example we are keeping the tool to the left of the contour and going next towards F. Exten
line FD (if the next part of the contour is an arc, extend the tangent to arc FD from D) to divid
area outside the contour near D into two regions. Make sure the center of the tool is curren
the region on the same side of the extended line as the material inside the contour near D.
move the tool into that region. In the example, point E represents the current location of the c
of the tool. Since it is on the same side of line DF as the shaded triangle, no additional mo
needed. Now write a line of NC code that turns compensation on and moves to point D.

N0010 G41 G1 X2 Y2 (turn compensation on and make entry move)

This method will also work at a concave corner on a tool path contour, if the actual to
oversized, but it will fail with a tool path contour if the tool is undersized.

C.6 Other Items

C.6.1 Where Cutter Radius Compensation is Performed

The complete set of canonical functions includes functions which turn cutter radius on and o
that cutter radius compensation can be performed in the controller executing the can
functions. In the RS274/VGER interpreter, however, these commands are not used. Compe
is done by the interpreter and reflected in the output commands, which continue to dire

Figure 12. Simpler Cutter Radius Compensation Entry Move

D (2, 2)

F

E •

•

50

 RS274/VGER Interpreter

ing

n the
re not
ut the
uations

setting
ions
both

e
ition of
motion of the center of the cutter tip. This simplifies the job of the motion controller while mak
the job of the interpreter a little harder.

C.6.2 Algorithms for Cutter Radius Compensation

The algorithms for the linear first and last moves of cutter radius compensation used i
interpreter may differ from those in the manual [NCMS, pages 78 to 81], but these paths a
clearly described in the manual. The interpreter allows the entry and exit moves to be arcs, b
manual does not. The behavior for the intermediate moves is the same, except that some sit
treated as errors in the interpreter are not treated as errors in the manual.

C.6.3 Data for Cutter Radius Compensation

The interpreter machine model keeps three data items for cutter radius compensation: the
itself (right, left, or off), program_x, and program_y. The last two represent the X and Y posit
which are given in the NC code while compensation is on. When compensation is off, these
are set to a very small number (10-20) whose symbolic value (in a #define) is “unknown”. Th
interpreter machine model uses the data items current_x and current_y to represent the pos
the center of the tool tip (in the currently active coordinate system) at all times.
51

 RS274/VGER Interpreter

acters
t

Appendix D Transcript of a Session

This is a transcript of a session using the stand-alone interpreter with keyboard input. Char
entered by the user are shown inboldface . All user input is followed by a carriage return no
shown here.

1} rs274vger
1 N0 SET_FEED_REFERENCE(CANON_XYZ)
2 N0 SET_ORIGIN_OFFSETS(0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

name of tool file => ../tool/cds
name of setup file =>
using default machine setup
READ => g1 x3 y1 f20.0
EXEC <- ;
3 N ... SET_FEED_RATE(20.0000)
4 N ... STRAIGHT_FEED(3.0000, 1.0000, 0.0000, 0, 0.0000, 0, 0.0000)

READ => g2 x[6-[4*3/2]] r 7.01 z0.5
EXEC <- ;
5 N ... ARC_FEED(0.0000, 1.0000, 1.5000, 7.8476, -1, 0.5000, 0,

0.0000, 0, 0.0000)
READ => (that was a helical arc)
EXEC <- ;
6 N ... COMMENT(“that was a helical arc”)

READ => t2
EXEC <- ;
7 N ... SELECT_TOOL(2)

READ => m6 g43 h2
EXEC <- ;
8 N ... CHANGE_TOOL(2)
9 N ... USE_TOOL_LENGTH_OFFSET(1.0000)

READ => m2
EXEC <- ;
10 N ... PROGRAM_END()

READ => g1 x asim[0.5]
EXEC <- ;
interpreter error 136: Unknown word starting with A
READ => g1 x asin[0.5]
EXEC <- ;
11 N ... STRAIGHT_FEED(30.0000, 1.0000, -0.5000, 0, 0.0000, 0, 0.0000)

READ => g91 g81 x3 y2 z-0.8 r1.5 l2
EXEC <- ;
12 N ... COMMENT(“interpreter: distance mode changed to incremental”)
13 N ... STRAIGHT_TRAVERSE(30.0000, 1.0000, 1.0000, 0, 0.0000, 0, 0.0000)
14 N ... STRAIGHT_TRAVERSE(33.0000, 3.0000, 1.0000, 0, 0.0000, 0, 0.0000)
15 N ... STRAIGHT_FEED(33.0000, 3.0000, 0.2000, 0, 0.0000, 0, 0.0000)
16 N ... STRAIGHT_TRAVERSE(33.0000, 3.0000, 1.0000, 0, 0.0000, 0, 0.0000)
17 N ... STRAIGHT_TRAVERSE(36.0000, 5.0000, 1.0000, 0, 0.0000, 0, 0.0000)
18 N ... STRAIGHT_FEED(36.0000, 5.0000, 0.2000, 0, 0.0000, 0, 0.0000)
19 N ... STRAIGHT_TRAVERSE(36.0000, 5.0000, 1.0000, 0, 0.0000, 0, 0.0000)

READ => quit
52

 RS274/VGER Interpreter

ere are
erpreter
ribed in

ically.
the

ssage
e is the
. Each
essage
in

des
des
des
_r

nary
nary
ary1
_item
ned

mber
ts
its
ght
ycle
arc
es
es
1
n
n
e
es
ht

ne
ne
des
des
des
des
Appendix E Error Messages

The error messages used throughout the interpreter are intended to be self-explanatory. Th
three categories of error message: interpreter kernel and interface input error messages, int
kernel internal error messages, and interpreter driver input error messages. These are desc
Appendix E.1, Appendix E.2, and Appendix E.3, respectively. Each list is arranged alphabet
Messages are inboldfacetype. Following each message in Appendix E.1 and Appendix E.3 is
name of the function or functions in which it is found, printed initalics.

E.1 Interpreter Kernel and Interface Input Error Messages

This is a list of all 154 input error messages in the interpreter kernel and interface. Each me
describes some kind of error in the input to the interpreter. The number before each messag
index number of the message in the array of error messages in the nce_err_sun.c file
message has two other numbers of interest not given here: (1) the number given in the m
definition file for MAKEMESS, nce_err.mdf and (2) the symbolic value for the error given
nce_code.h.

0. All axis values missing with G28 . check_g_co
1. All axis values missing with G30 . check_g_co
2. All axis values missing with G92 . check_g_co
3. Arc radius too small to reach end point . arc_data
4. Argument to acos out of range. execute_u
5. Argument to asin out of range. execute_u
6. Attempt to divide by zero. execute_bin
7. Bad character used. read_one
8. Bad format unsigned integer .read_integer_unsig
9. Bad number format . read_real_nu
10. Cannot change axis offsets with cutter radius comp. convert_axis_offse
11. Cannot change units with cutter radius comp. convert_length_un
12. Cannot do G1 with zero feed rate . convert_strai
13. Cannot do zero repeats of cycle. convert_c
14. Cannot make arc with zero feed rate . convert_
15. Cannot put a C-axis command in a canned cycle check_other_cod
16. Cannot put an A-axis command in a canned cycle check_other_cod
17. Cannot raise negative number to non-integer power execute_binary
18. Cannot turn cutter radius comp on out of XY-plane. . . . convert_cutter_compensation_o
19. Cannot turn cutter radius comp on when already on . . . convert_cutter_compensation_o
20. Cannot use G28 or G30 with cutter radius comp . convert_hom
21. Cannot use G53 in incremental distance mode . check_g_cod
22. Cannot use G53 with cutter radius comp. convert_straig
23. Cannot use XZ plane with cutter radius comp . convert_set_pla
24. Cannot use YZ plane with cutter radius comp . convert_set_pla
25. Cannot use a G code for motion with G10 . check_g_co
26. Cannot use a G code for motion with G28 . check_g_co
27. Cannot use a G code for motion with G30 . check_g_co
28. Cannot use a G code for motion with G92 . check_g_co
53

 RS274/VGER Interpreter

des
des
es
ecute
p2
_r
p1
s
odes
ing
ht
rc
xt

ad_g
d_line
s
arc
ycle
s
arc
ycle
s
arc
ycle
s

es
n
ry
ber
des
d_m
arc
d_a
d_c
d_d
ad_f
d_h
ad_i
ad_j
d_k

ad_l
d_p
d_q
d_r

_s
d_t
29. Cannot use axis commands with G4. check_g_co
30. Cannot use axis commands with G80. check_g_co
31. Cannot use two G codes from group 0 on same line check_g_cod
32. Command too long . close_and_downcase, nml_interp_ex
33. Concave corner with cutter radius compconvert_arc_comp2, convert_straight_com
34. Current point same as end point of arc. arc_data_comp_r, arc_data
35. Cutter gouging with cutter radius comp. .convert_straight_com
36. D word on line with no cutter comp on (G41 or G42) command. check_other_code
37. Dwell time missing with G4 . check_g_c
38. Equal sign missing in parameter setting. read_parameter_sett
39. F word missing with inverse time G1 move . convert_straig
40. F word missing with inverse time arc move . convert_a
41. File ended with no stopping command given. .read_te
42. G code out of range. re
43. Gets failed . read_keyboar
44. H word on line with no tool length comp (G43) command. check_other_code
45. I word given for arc in YZ-plane. convert_
46. I word missing with G87. convert_c
47. I word on line with no G code (G2, G3, G87) that uses it check_other_code
48. J word given for arc in XZ-plane. convert_
49. J word missing with G87 . convert_c
50. J word on line with no G code (G2, G3, G87) that uses it. check_other_code
51. K word given for arc in XY-plane . convert_
52. K word missing with G87. convert_c
53. K word on line with no G code (G2, G3, G87) that uses it check_other_code
54. L word on line with no canned cycle or G10 to use it check_other_cod
55. Left bracket missing after slash with atan operator . read_ata
56. Left bracket missing after unary operation name. read_una
57. Line number greater than 99999. read_line_num
58. Line with G10 does not have L2 . check_g_co
59. M code greater than 99. rea
60. Mixed radius-ijk format for arc . convert_
61. Multiple A words on one line. rea
62. Multiple C words on one line. .rea
63. Multiple D words on one line. rea
64. Multiple F words on one line . re
65. Multiple H words on one line. rea
66. Multiple I words on one line . re
67. Multiple J words on one line . re
68. Multiple K words on one line. .rea
69. Multiple L words on one line. re
70. Multiple P words on one line . rea
71. Multiple Q words on one line. rea
72. Multiple R words on one line. .rea
73. Multiple S word spindle speed settings on one line .read
74. Multiple T words (tool ids) on one line. rea
54

 RS274/VGER Interpreter

d_x
d_y
d_z

odes
ad_f
ad_g
ad_l
d_m

ad_p
ad_q
nary
d_s
ad_t

_h
_d
case
ue
er
alue
case
ffset
des
des
cle
cle
cle
cle

ing
le
es
le
z
x
y
s
rc
.
at
p_r
tan
4
86
87
88
75. Multiple X words on one line. .rea
76. Multiple Y words on one line. .rea
77. Multiple Z words on one line. .rea
78. Must use G0 or G1 with G53. check_g_c
79. Negative F word used . re
80. Negative G code used . re
81. Negative L word used. re
82. Negative M code used. rea
83. Negative P word used . re
84. Negative Q value used. re
85. Negative argument to sqrt . execute_u
86. Negative spindle speed used. .rea
87. Negative tool id used. re
88. Negative tool length offset index (h word) used. read
89. Negative tool radius index (d word) used . read
90. Nested comment found. close_and_down
91. No characters found in reading real value . read_real_val
92. No digits found where real number should be . read_real_numb
93. Non-integer value for integer. .read_integer_v
94. Null missing after newline . close_and_down
95. Offset index missing .convert_tool_length_o
96. P value not an integer with G10 L2. check_g_co
97. P value out of range with G10 L2 . check_g_co
98. P word (dwell time) missing with G82 . convert_cy
99. P word (dwell time) missing with G86 . convert_cy
100. P word (dwell time) missing with G88 . convert_cy
101. P word (dwell time) missing with G89 . convert_cy
102. P word on line with no G code (G4 G10 G82 G86 G88 G89) that uses it
. check_other_codes
103. Parameter number out of range read_parameter, read_parameter_sett
104. Q word (depth increment) missing with G83. convert_cyc
105. Q word on line with no G83 cycle that uses it . check_other_cod
106. R clearance plane unspecified in canned cycle. convert_cyc
107. R value less than X value in canned cycle in YZ plane convert_cycle_y
108. R value less than Y value in canned cycle in XZ plane convert_cycle_z
109. R value less than Z value in canned cycle in XY plane convert_cycle_x
110. R word on line with no G code (arc or cycle) that uses it check_other_code
111. R, I, J, and K words all missing for arc . convert_a
112. Radius to end of arc differs from radius to start of arc.
. arc_data_comp_ijk, arc_da_ijk
113. Radius too small to reach end point .arc_data_com
114. Slash missing after first atan argument . read_a
115. Spindle not turning clockwise in G84 canned cycle. convert_cycle_g8
116. Spindle not turning in G86 canned cycle . convert_cycle_g
117. Spindle not turning in G87 canned cycle . convert_cycle_g
118. Spindle not turning in G88 canned cycle . convert_cycle_g
55

 RS274/VGER Interpreter

odes
d_h
d_d

comp2
_g
m

open
case
ation
d_g
d_m
on
on
on
on
ation
elect
ary
ary
ary
ary
ary
ary
ary
ary
y
rc
rc
yz
t
rc
zx
xy
ary
a_ijk
119. Too many M codes on line .check_m_c
120. Tool length offset index too big . rea
121. Tool radius index too big . rea
122. Tool radius not less than arc radius with cutter radius comp .
. arc_data_comp_r, convert_arc_
123. Two G codes used from same modal group . read
124. Two M codes used from same modal group . read_
125. Unable to open file. nml_interp_
126. Unclosed comment found. close_and_down
127. Unclosed expression .read_oper
128. Unknown G code used . rea
129. Unknown M code used . rea
130. Unknown operation name starting with A. .read_operati
131. Unknown operation name starting with M .read_operati
132. Unknown operation name starting with O. .read_operati
133. Unknown operation name starting with X. .read_operati
134. Unknown operation .read_oper
135. Unknown tool_id used . convert_tool_s
136. Unknown word starting with A . read_operation_un
137. Unknown word starting with C. read_operation_un
138. Unknown word starting with E . read_operation_un
139. Unknown word starting with F . read_operation_un
140. Unknown word starting with L . read_operation_un
141. Unknown word starting with R. read_operation_un
142. Unknown word starting with S . read_operation_un
143. Unknown word starting with T . read_operation_un
144. Unknown word where unary operation could be. read_operation_unar
145. X and Y words missing for arc in XY-plane. convert_a
146. X and Z words missing for arc in XZ-plane. convert_a
147. X value unspecified in YZ-plane canned cycle. convert_cycle_
148. X, Y, Z, A, and C words all missing with G0 or G1. convert_straigh
149. Y and Z words missing for arc in YZ-plane. convert_a
150. Y value unspecified in XZ-plane canned cycle. convert_cycle_
151. Z value unspecified in XY-plane canned cycle . convert_cycle_
152. Zero or negative argument to ln . execute_un
153. Zero radius arc . arc_dat
56

 RS274/VGER Interpreter

nternal
ed is
code for
.nist.gov

f error
t given

d (2)
E.2 Interpreter Kernel Internal Error Messages

The following error messages should never appear but are provided as a check on the i
workings of the interpreter kernel. The name of the function in which the error has occurr
part of each message. The appearance of one of these means there is a bug in the source
the interpreter. If one of these error messages ever appears, please contact kramer@cme
by email; include the message and describe the circumstances in which it appeared.

The number before each message is the index number of the message in the array o
messages in the nce_err_sun.c file. Each message has two other numbers of interest no
here: (1) the number given in the message definition file for MAKEMESS, nce_err.mdf an
the symbolic value for the error given in nce_code.h..

200. Bad G code in modal group 0 in check_g_codes
201. Code is not G0 or G1 in convert_straight
202. Code is not G0 or G1 in convert_straight_comp1
203. Code is not G0 or G1 in convert_straight_comp2
204. Code is not G0 to G3 or G80 to G89 in convert_motion
205. Code is not G10, G28, G30, G92, G92.2 in convert_modal_0
206. Code is not G17, G18, or G19 in convert_set_plane
207. Code is not G2 or G3 in arc_data_comp_ijk
208. Code is not G2 or G3 in arc_data_ijk
209. Code is not G20 or G21 in convert_length_units
210. Code is not G28 or G30 in convert_home
211. Code is not G40, G41, or G42 in convert_cutter_compensation
212. Code is not G43 or G49 in convert_tool_length_offset
213. Code is not G54 to G59.3 in convert_coordinate_system
214. Code is not G90 or G91 in convert_distance_mode
215. Code is not G92 or G92.2 in convert_axis_offsets
216. Code is not G93 or G94 in convert_feed_mode
217. Code is not G98 or G99 in convert_retract_mode
218. Code is not M0, M1, M2, M30 or M60 in convert_stop
219. Convert_cycle_xy should not have been called
220. Convert_cycle_yz should not have been called
221. Convert_cycle_zx should not have been called
222. Distance mode is not absolute or incremental in convert_cycle_xy
223. Distance mode is not absolute or incremental in convert_cycle_yz
224. Distance mode is not absolute or incremental in convert_cycle_zx
225. Plane is not XY, YZ, or XZ in convert_arc
226. Plane is not XY, YZ, or XZ in convert_cycle
227. Read_a should not have been called
228. Read_c should not have been called
229. Read_comment should not have been called
230. Read_d should not have been called
231. Read_f should not have been called
232. Read_g should not have been called
233. Read_h should not have been called
234. Read_i should not have been called
57

 RS274/VGER Interpreter
235. Read_j should not have been called
236. Read_k should not have been called
237. Read_l should not have been called
238. Read_line_number should not have been called
239. Read_m should not have been called
240. Read_p should not have been called
241. Read_parameter should not have been called
242. Read_parameter_setting should not have been called
243. Read_q should not have been called
244. Read_r should not have been called
245. Read_real_expression should not have been called
246. Read_s should not have been called
247. Read_t should not have been called
248. Read_x should not have been called
249. Read_y should not have been called
250. Read_z should not have been called
251. Side fails to be right or left in convert_straight_comp1
252. Side fails to be right or left in convert_straight_comp2
253. Sscanf failure in read_integer_unsigned
254. Sscanf failure in read_real_number
255. Unknown operation in execute_binary1
256. Unknown operation in execute_binary2
257. Unknown operation in execute_unary
58

 RS274/VGER Interpreter

grated
t is not
-alone
e

E.3 Interpreter Driver Input Error Messages

The following error messages may be printed by the stand-alone interpreter but not the inte
interpreter. Each message describes an error in the input to the stand-alone interpreter tha
an interpreter kernel error. The messages originate in the source code for the stand
interpreter driver. A word inbold italicsstands for a number or word that will differ according th
exact nature of the error. The error messages are not kept in an array.

1. Bad input line "text_line" in setup file .read_setup_file
2. Bad input line "text_line" in tool file. .read_tool_file
3. Bad setup file format. .read_setup_file
4. Bad tool file format .read_tool_file
5. Bad valuegiven_value for block_delete in setup fileread_setup_file
6. Bad valuegiven_value for coordinate system in setup file read_setup_file
7. Bad valuegiven_value for cutter_radius_comp in setup file.read_setup_file
8. Bad valuegiven_value for distance_mode in setup fileread_setup_file
9. Bad valuegiven_value for feed_mode in setup file. .read_setup_file
10. Bad valuegiven_value for flood in setup file. .read_setup_file
11. Bad valuegiven_value for length_units in setup file read_setup_file
12. Bad valuegiven_value for mist in setup file .read_setup_file
13. Bad valuegiven_value for plane in setup file .read_setup_file
14. Bad valuegiven_value for speed_feed_mode in setup fileread_setup_file
15. Bad valuegiven_value for spindle_turning in setup file read_setup_file
16. Cannot openfile_name. .read_setup_file, read_tool_file
17. Unknown attribute attribute_name in setup file .read_setup_file
18. Usage "rs274vger" or "rs274vger filename" or "rs274vger filename continue" . . . main
59

 RS274/VGER Interpreter

s as
this
asy to

an be
it is

t also

ment
r right

rs may

reter.
es of
violate
rror

nt on a

mbols

this
tion in
Appendix F Production Rules for Line Grammar and Syntax

The following is a production rule definition of what this RS274/VGER interpreter recognize
valid combinations of symbols which form a readable line (the term “line” is at the top of
production hierarchy). The productions are arranged alphabetically to make connections e
trace.

The productions are intended to be unambiguous. That is, no permissible line of code c
interpreted more than one way. To make the productions below entirely unambiguous,
implicit that if a string of characters that can meet the requirements of an ordinary commen
can be interpreted as a message, that string is a message and not an ordinary comment.

The term comment_character is used in the productions but not defined there. A com
character is any printable character plus space and tab, except for a left parenthesis o
parenthesis. This implies comments cannot be nested.

It is implicit in the production rules that, except inside parentheses, space and tab characte
be ignored, or have been removed by pre-processing.

These production rules do not include constraints implied by the semantics of the interp
Most of the constraints are in terms of combinations of words (as defined below). Many lin
code that are readable under these production rules will not be executable because they
constraints. Any constraint violation will be detected by the interpreter and will result in an e
message. The error messages are included in Appendix E.

In the productions, a parameter_index is defined as a synonym for real_value. The constrai
parameter_index is that it must be an integer between 1 and 5399 (inclusive).

F.1 Production Language

The symbols in the productions are mostly standard syntax notation. Meanings of the sy
follow.

= The symbol on the left of the equal sign is equivalent to the expression on the right

+ followed by

| or

. end of production (a production may have several lines)

[] zero or one of the expression inside square brackets may occur

{ } zero to many of the expression inside curly braces may occur

() exactly one of the expression inside parentheses must occur

F.2 Productions

Any term in this subsection that is used on the right of an equal sign but is not defined in
subsection (i.e., does not appear on the left in any definition) is defined in the next subsec
terms of characters.

arc_tangent_combo = arc_tangent + expression + divided_by + expression .
binary_operation1 = divided_by | modulo | power | times .
60

 RS274/VGER Interpreter
binary_operation2 = and | exclusive_or | minus | non_exclusive_or | plus .
combo1 = real_value + { binary_operation1 + real_value } .
comment = message | ordinary_comment .
comment_character =see explanation above .
digit = zero | one | two | three | four | five | six | seven | eight | nine .
expression = left_bracket + (combo1 + { binary_operation2 combo1 }) + right_bracket .
letter_a = big_a | little_a .
letter_c = big_c | little_c .
letter_d = big_d | little_d .
letter_f = big_f | little_f .
letter_g = big_g | little_g .
letter_h = big_h | little_h .
letter_i = big_i | little_i .
letter_j = big_j | little_j .
letter_k = big_k | little_k .
letter_l = big_l | little_l .
letter_m = big_m | little_m .
letter_n = big_n | little_n .
letter_p = big_p | little_p .
letter_q = big_q | little_q .
letter_r = big_r | little_r .
letter_s = big_s | little_s .
letter_t = big_t | little_t .
letter_x = big_x | little_x .
letter_y = big_y | little_y .
letter_z = big_z | little_z .
line = [block_delete] + [line_number] + {segment} + end_of_line .
line_number = letter_n + digit + [digit] + [digit] + [digit] + [digit] .
message = left_parenthesis + {white_space} + letter_m + {white_space} + letter_s +

{white_space} + letter_g + {white_space} + comma + {comment_character} +
right_parenthesis .

mid_line_letter = letter_a | letter_c| letter_d | letter_f | letter_g | letter_h | letter_i | letter_j
| letter_k | letter_l | letter_m | letter_p | letter_q | letter_r | letter_s | letter_t
| letter_x | letter_y | letter_z .

mid_line_word = mid_line_letter + real_value .
ordinary_comment = left_parenthesis + {comment_character} + right_parenthesis .
ordinary_unary_combo = ordinary_unary_operation + expression .
ordinary_unary_operation =

absolute_value | arc_cosine | arc_sine | cosine | e_raised_to |
fix_down | fix_up | natural_log_of | round | sine | square_root | tangent .

parameter_index = real_value .
parameter_setting = parameter_sign + parameter_index + equal_sign + real_value .
parameter_value = parameter_sign + parameter_index .
real_number =

[plus | minus] +
((digit + { digit } + [decimal_point] + {digit}) | (decimal_point + digit + {digit})) .
61

 RS274/VGER Interpreter

ingle
as if
E, O,
real_value = real_number | expression | parameter_value | unary_combo .
segment = mid_line_word | comment | parameter_setting .
unary_combo = ordinary_unary_combo | arc_tangent_combo .
white_space = space | tab .

F.3 Production Tokens in Terms of Characters

We have omitted the letters and digits in the list below, since they are all the obvious s
characters. For example, one is ‘1’, big_a is ‘A’, and little_a is ‘a’. The list should be used
these obvious items were included. Note that not every letter of the alphabet is included (B,
U, V, and W are omitted).

absolute_value = ‘abs’
and = ‘and’
arc_cosine = ‘acos’
arc_sine = ‘asin’
arc_tangent = ‘atan’
block_delete = ‘/’
cosine = ‘cos’
decimal_point = ‘.’
divided_by = ‘/’
equal_sign = ‘=’
exclusive_or = ‘xor’
e_raised_to = ‘exp’
end_of_line = ‘ ‘ (non-printable newline character)
fix_down = ‘fix’
fix_up = ‘fup’
left_bracket = ‘[‘
left_parenthesis = ‘(‘
minus = ‘-’
modulo = ‘mod’
natural_log_of = ‘ln’
non_exclusive_or = ‘or’
parameter_sign = ‘#’
plus = ‘+’
power = ‘**’
right_bracket = ‘]’
right_parenthesis = ‘)’
round = ‘round’
sine = ‘sin’
space = ‘ ‘ (non-printable space character)
square_root = ‘sqrt’
tab = ‘ ‘ (non-printable tab character)
tangent = ‘tan’
times = ‘*’
62

 RS274/VGER Interpreter

hen

any
there
own in
ays be

sible

hich
ctly as

table,
er case
ck that.

ct on
ed on
last
Appendix G Setup File Format

The format of a setup file is shown in Table 10. A setup file is used by giving its name w
prompted to do so when the interpreter starts up, as described in Section 4.1.

The file consists of any number of header lines, followed by one blank line, followed by
number of lines of data. The interpreter just skips over the header lines. It is important that
be exactly one blank line (with no spaces or tabs, even) before the data. The header line sh
Table 10 describes the data columns, so it is suggested (but not required) that that line alw
included in the header.

The interpreter reads only the first two columns of the table. The third column, “Other Pos
Values,” is included here for information.

Each line of the file contains the name of an attribute in the first column and the value to w
that attribute should be set in the second column. Attribute names must be spelled exa
shown in Table 10 in lower case letters. Where the value is shown in upper case letters in the
upper case letters must be used, and the alternative values are also required to be in upp
letters. The same attribute name should not be used twice, but the interpreter does not che
If any attribute name not given in the table is used, an error will result.

The lines do not have to be in any particular order. Switching the order of lines has no effe
the interpreter or on how any NC program will be executed (unless the same attribute is us
two or more lines, which should not normally be done, in which case the data for only the
such line will persist).
63

 RS274/VGER Interpreter
Attribute Value Other Possible Values
axis_offset_a 0.0 any real number
axis_offset_c 0.0 any real number
axis_offset_x 0.0 any real number
axis_offset_y 0.0 any real number
axis_offset_z 0.0 any real number
block_delete ON OFF
coordinate_system 1 2,3,4,5,6,7,8,9
current_a 0.0 any real number
current_c 0.0 any real number
current_x 0.0 any real number
current_y 0.0 any real number
current_z 0.0 any real number
cutter_radius_comp OFF LEFT, RIGHT
cycle_i 0.1 any positive real number
cycle_j 0.1 any positive real number
cycle_k 0.1 any positive real number
cycle_l 3 any unsigned integer
cycle_p 0.1 any positive real number
cycle_q 0.1 any positive real number
cycle_r 0.0 any real number
cycle_z 0.0 any real number not less than cycle_r
distance_mode ABSOLUTE INCREMENTAL
feed_mode PER_MINUTE INVERSE_TIME
feed_rate 5.0 any positive real number
flood OFF ON
length_units MILLIMETERS INCHES
mist OFF ON
motion_mode 80 0,1,2,3,81,82,83,84,85,86,97,88,89
plane XY YZ, ZX
origin_offset_a 0.0 any real number
origin_offset_c 0.0 any real number
origin_offset_x 0.0 any real number
origin_offset_y 0.0 any real number
origin_offset_z 0.0 any real number
slot_for_length_offset 1 any unsigned integer less than 69
slot_for_radius_comp 1 any unsigned integer less than 69
slot_in_use 1 any unsigned integer less than 69
slot_selected 1 any unsigned integer less than 69
speed_feed_mode INDEPENDENT SYNCHED
spindle_speed 1000.0 any non-negative real number
spindle_turning STOPPED CLOCKWISE, COUNTERCLOCKWISE
tool_length_offset 0.0 any non-negative real number
traverse_rate 199.0 any positive real number

Table 10. Sample Setup File
64

 RS274/VGER Interpreter

en

any
there
own in
ays be

ur of
ntries

be at
lumns

r (slot
st all

tool.

ber
ally a

This
mally

of

of

read

but if
1) for

ct on
used
last
Appendix H Tool File Format

The format of a tool file is shown in Table 11. A tool file is used by giving its name wh
prompted to do so when the interpreter starts up, as described in Section 4.1.

The file consists of any number of header lines, followed by one blank line, followed by
number of lines of data. The interpreter just skips over the header lines. It is important that
be exactly one blank line (with no spaces or tabs, even) before the data. The header line sh
Table 11 describes the data columns, so it is suggested (but not required) that that line alw
included in the header.

Each data line of the file contains the data for one tool. Each line has six entries, the first fo
which are required, and the last two of which are optional. It makes reading easier if the e
are arranged in columns, as shown in the table, but the only format requirement is that there
least one space or tab after each of the first four entries on a line. The meanings of the co
and the type of data to be put in each are as follows.

The “POCKET” column contains an unsigned integer which represents the pocket numbe
number) of the tool changer pocket in which the tool is placed. The entries in this column mu
be different.

The “FMS” column contains an unsigned integer which represents a code number for the
The user may use any code for any tool, as long as the codes are unsigned integers.

The “TLO” column contains a real number which represents the tool length offset. This num
will be used if tool length offsets are being used and this pocket is selected. This is norm
positive real number, but it may be zero or any other number if it is never to be used.

The “DIAM” column contains a real number which represents the diameter of the tool.
number is used only if tool diameter compensation is turned on using this pocket. This is nor
a positive real number, but it may be zero or any other number if it is never to be used.

The “HOLDER” column may optionally be used to describe the tool holder. Any type
description is OK. This column is for the benefit of human readers only.

The “TOOL DESCRIPTION” column may optionally be used to describe the tool. Any type
description is OK. This column is for the benefit of human readers only.

The interpreter only reads data from the first four columns of each line. The rest of the line is
but ignored.

The units used for the length and diameter of the tool may be in either millimeters or inches,
the data is used by an NC program, the program must call out the correct G code (G20 or G2
those units before the data is used. The table shows a mixture of types of units.

The lines do not have to be in any particular order. Switching the order of lines has no effe
the interpreter or on how any NC program will be executed (unless the same slot number is
on two or more lines, which should not normally be done, in which case the data for only the
such line will persist).
65

 RS274/VGER Interpreter
POCKET FMS TLO DIAM HOLDER TOOL DESCRIPTION

1 1 1.0 0.25 14141 0.25 inch end mill

20 1419 4.299 1.0 0 1 inch carbide end mill

21 1025 8.34 0.5 drill chuck 1/2 inch spot drill short

32 1764 296.515 8.5 0 8.5 mm drill

41 1237 228.360 10.0 0 10 mm x 1.25 tap

60 71117 0 0 0 large chuck

Table 11. Sample Tool File
66

	The NIST RS274/VGER Interpreter
	1.0 Introduction 1
	1.1 Background 1
	1.1.1 Enhanced Machine Controller Project 1
	1.1.2 Numerical Control Programming Language RS274 1
	1.1.3 The RS274/NGC Language 1
	1.1.4 Previous Work at NIST 1
	1.1.5 Current Work at NIST 2

	1.2 Overview of the RS274/VGER Language 2
	1.2.1 Lines, Blocks, Commands, and Words 2
	1.2.2 Commands and Machine Modes 3
	1.2.3 Modal Groups 3
	1.2.4 Language Extensions 4

	1.3 Canonical Machining Functions 4

	2.0 Overview of the Interpreter 6
	2.1 Major Characteristics 6
	2.1.1 Modes of Use 6
	2.1.2 How it Runs 7
	2.1.3 Speed 7

	2.2 Start-up 8
	2.3 Exiting 10

	3.0 Building a Stand-Alone Executable 10
	4.0 Using the Stand-Alone Interpreter 11
	4.1 Invoking the Interpreter 11
	4.1.1 Invocation with Keyboard Input 11
	4.1.2 Invocation with NC File Input 11

	4.2 Tool and Setup Files 12
	4.3 Keyboard User Interface 12

	5.0 INPUT 13
	5.1 Overview 13
	5.1.1 White Space 13
	5.1.2 Case Sensitivity 13

	5.2 Input Lines 13
	5.2.1 Format of a Line 13
	5.2.2 Word 13
	5.2.3 Number 13
	5.2.4 Line Number 14
	5.2.5 Parameter_value 14
	5.2.6 Expressions and Binary Operations 15
	5.2.7 Unary Operation 15

	5.3 Word Repeats 15
	5.4 Word order 16
	5.5 Measurement Units 16
	5.5.1 Linear units 16
	5.5.2 Angular units 16

	5.6 Rotary Axes 16
	5.6.1 Coordinate Values for Rotary Axes 16
	5.6.2 Feed Rate for Rotary Axes 17

	5.7 Messages and Comments 17
	5.7.1 Messages 17
	5.7.2 Comments 17

	5.8 Programs 17
	5.9 Control Panel Switches 18
	5.9.1 Block Delete Switch 18
	5.9.2 Other Switches 18

	6.0 Capabilities of the RS274/VGER Interpreter 19
	6.1 Words Recognized 19
	6.2 Input G Codes and M Codes 19
	6.2.1 G Codes Implemented 19
	6.2.2 Input M Codes Implemented 21

	7.0 Limitations of the Interpreter 21
	References 22

	Appendix A Software Details 23
	A.1 Software Modules and Function Call Hierarchies 23
	A.2 Source Code Documentation 29

	Appendix B Functional Details 30
	B.1 Error Handling and Exiting 30
	B.1.1 Basic Approach 30
	B.1.2 Error Messages 30
	B.1.3 If an Error Occurs 30
	B.1.4 Handling Calculated Values 31
	B.1.5 Compiler Macros 31
	B.1.6 Use of MAKEMESS 31

	B.2 Cyclic Operation 32
	B.2.1 Read, Store, and Check 32
	B.2.2 Execute 32

	B.3 Tool Change 33
	B.4 Milling Arcs 34
	B.4.1 Radius Format Arc 34
	B.4.2 Center Format Arc 34

	B.5 Coordinate Systems 35
	B.6 Tool Length Offsets 36
	B.7 Inverse Time Feed Rate 36
	B.8 Canned Cycles 37
	B.8.1 Preliminary Motion 38
	B.8.2 G81 Cycle 38
	B.8.3 G82 Cycle 39
	B.8.4 G83 Cycle 39
	B.8.5 G84 Cycle 39
	B.8.6 G85 Cycle 40
	B.8.7 G86 Cycle 40
	B.8.8 G87 Cycle 40
	B.8.9 G88 Cycle 41
	B.8.10 G89 Cycle 41

	B.9 Probing 41

	Appendix C Cutter Radius Compensation 42
	C.1 Introduction 42
	C.2 Programming Instructions 43
	C.2.1 Turning Cutter Radius Compensation On 43
	C.2.2 Turning Cutter Radius Compensation Off 43
	C.2.3 Sequencing 43
	C.2.4 Use of D Number 43
	C.2.5 Tool Table 43

	C.3 Two Kinds of Contour 43
	C.3.1 Material Edge Contour 44
	C.3.2 Tool Path Contour 44

	C.4 Programming Errors and Limitations 45
	C.4.1 Concave Corner and Tool Radius Not Less than Arc Radius 45
	C.4.2 Cannot Turn Compensation on When Already On 46
	C.4.3 Cutter Gouging 46
	C.4.4 Tool Radius Index Too Big 46
	C.4.5 Two G Codes Used from Same Modal Group 46

	C.5 First Move into Cutter Compensation 47
	C.5.1 Algorithm for First Move 47
	C.5.2 Programming Entry Moves 48

	C.6 Other Items 50
	C.6.1 Where Cutter Radius Compensation is Performed 50
	C.6.2 Algorithms for Cutter Radius Compensation 51
	C.6.3 Data for Cutter Radius Compensation 51

	Appendix D Transcript of a Session 52
	Appendix E Error Messages 53
	E.1 Interpreter Kernel and Interface Input Error Messages 53
	E.2 Interpreter Kernel Internal Error Messages 57
	E.3 Interpreter Driver Input Error Messages 59

	Appendix F Production Rules for Line Grammar and Syntax 60
	F.1 Production Language 60
	F.2 Productions 60
	F.3 Production Tokens in Terms of Characters 62

	Appendix G Setup File Format 63
	Appendix H Tool File Format 65

	1 Introduction
	1.1 Background
	1.1.1 Enhanced Machine Controller Project
	1.1.2 Numerical Control Programming Language RS274
	1.1.3 The RS274/NGC Language
	1.1.4 Previous Work at NIST
	1.1.5 Current Work at NIST

	1.2 Overview of the RS274/VGER Language
	1.2.1 Lines, Blocks, Commands, and Words
	1.2.2 Commands and Machine Modes
	1.2.3 Modal Groups
	Table 1. Modal Groups

	1.2.4 Language Extensions
	Pallet Shuttle
	Messages for the Operator

	1.3 Canonical Machining Functions
	Table 2. Canonical Machining Functions Called By Interpreter

	2 Overview of the Interpreter
	2.1 Major Characteristics
	2.1.1 Modes of Use
	2.1.1.1 Integrated with EMC Control System
	2.1.1.2 Stand-alone

	2.1.2 How it Runs
	2.1.3 Speed
	2.1.3.1 Stand-alone Speed
	2.1.3.2 Interpreter Speed in the Integrated System

	2.2 Start-up
	Table 3. Default Setup Data for the Interpreter
	Table 4. Default Tool Data for the Interpreter

	2.3 Exiting

	3 Building a Stand-Alone Executable
	Table 5. Makefile for Interpreter

	4 Using the Stand-Alone Interpreter
	4.1 Invoking the Interpreter
	4.1.1 Invocation with Keyboard Input
	4.1.2 Invocation with NC File Input
	4.1.2.1 Invocation to Stop After an Error
	4.1.2.2 Invocation to Continue After an Error

	4.2 Tool and Setup Files
	4.3 Keyboard User Interface

	5 INPUT
	5.1 Overview
	5.1.1 White Space
	5.1.2 Case Sensitivity

	5.2 Input Lines
	5.2.1 Format of a Line
	5.2.2 Word
	5.2.3 Number
	5.2.4 Line Number
	5.2.5 Parameter_value
	5.2.6 Expressions and Binary Operations
	5.2.7 Unary Operation

	5.3 Word Repeats
	5.4 Word order
	5.5 Measurement Units
	5.5.1 Linear units
	5.5.2 Angular units

	5.6 Rotary Axes
	5.6.1 Coordinate Values for Rotary Axes
	5.6.2 Feed Rate for Rotary Axes

	5.7 Messages and Comments
	5.7.1 Messages
	5.7.2 Comments

	5.8 Programs
	5.9 Control Panel Switches
	5.9.1 Block Delete Switch
	5.9.2 Other Switches

	6 Capabilities of the RS274/VGER Interpreter
	6.1 Words Recognized
	Table 6. Letters Recognized by the Interpreter

	6.2 Input G Codes and M Codes
	6.2.1 G Codes Implemented
	Table 7. G Codes Implemented in the Interpreter

	6.2.2 Input M Codes Implemented
	Table 8. M Codes Implemented in the Interpreter

	7 Limitations of the Interpreter
	References
	Appendix A Software Details
	A.1 Software Modules and Function Call Hierarchies
	Figure 1. Interpreter Software
	Figure 2. Interpreter Kernel Function Call Hierarchy (all but execute_block)
	Figure 3. Interpreter Kernel Function Call Hierarchy (execute_block only)
	Figure 4. Interpreter Kernel Function Call Hierarchy (convert_motion only)
	Figure 5. Interpreter Interface Function Call Hierarchy
	Figure 6. Interpreter Driver Function Call Hierarchy (for stand-alone interpreter)

	A.2 Source Code Documentation

	Appendix B Functional Details
	B.1 Error Handling and Exiting
	B.1.1 Basic Approach
	B.1.2 Error Messages
	B.1.3 If an Error Occurs
	B.1.4 Handling Calculated Values
	B.1.5 Compiler Macros
	B.1.6 Use of MAKEMESS

	B.2 Cyclic Operation
	B.2.1 Read, Store, and Check
	B.2.2 Execute
	Table 9. Order of Execution

	B.3 Tool Change
	B.4 Milling Arcs
	B.4.1 Radius Format Arc
	B.4.2 Center Format Arc

	B.5 Coordinate Systems
	B.6 Tool Length Offsets
	B.7 Inverse Time Feed Rate
	B.8 Canned Cycles
	B.8.1 Preliminary Motion
	B.8.2 G81 Cycle
	B.8.3 G82 Cycle
	B.8.4 G83 Cycle
	B.8.5 G84 Cycle
	B.8.6 G85 Cycle
	B.8.7 G86 Cycle
	B.8.8 G87 Cycle
	B.8.9 G88 Cycle
	B.8.10 G89 Cycle

	B.9 Probing

	Appendix C Cutter Radius Compensation
	C.1 Introduction
	Figure 7. Two Cutter Radius Compensation Methods

	C.2 Programming Instructions
	C.2.1 Turning Cutter Radius Compensation On
	C.2.2 Turning Cutter Radius Compensation Off
	C.2.3 Sequencing
	C.2.4 Use of D Number
	C.2.5 Tool Table

	C.3 Two Kinds of Contour
	C.3.1 Material Edge Contour
	C.3.2 Tool Path Contour

	C.4 Programming Errors and Limitations
	C.4.1 Concave Corner and Tool Radius Not Less than Arc Radius (9 and 13)
	Figure 8. Two Cutter Radius Compensation Errors

	C.4.2 Cannot Turn Compensation on When Already On (4)
	C.4.3 Cutter Gouging (10)
	C.4.4 Tool Radius Index Too Big (12)
	C.4.5 Two G Codes Used from Same Modal Group (14)

	C.5 First Move into Cutter Compensation
	C.5.1 Algorithm for First Move
	Figure 9. First Cutter Radius Compensation Move - Straight
	Figure 10. First Cutter Radius Compensation Move - Arc

	C.5.2 Programming Entry Moves
	Figure 11. Cutter Radius Compensation Entry Moves
	Figure 12. Simpler Cutter Radius Compensation Entry Move

	C.6 Other Items
	C.6.1 Where Cutter Radius Compensation is Performed
	C.6.2 Algorithms for Cutter Radius Compensation
	C.6.3 Data for Cutter Radius Compensation

	Appendix D Transcript of a Session
	Appendix E Error Messages
	E.1 Interpreter Kernel and Interface Input Error Messages
	0. All axis values missing with G28 check_g_codes
	1. All axis values missing with G30 check_g_codes
	2. All axis values missing with G92 check_g_codes
	3. Arc radius too small to reach end point arc_data_r
	4. Argument to acos out of range execute_unary
	5. Argument to asin out of range execute_unary
	6. Attempt to divide by zero execute_binary1
	7. Bad character used read_one_item
	8. Bad format unsigned integer read_integer_unsigned
	9. Bad number format read_real_number
	10. Cannot change axis offsets with cutter radius comp convert_axis_offsets
	11. Cannot change units with cutter radius comp convert_length_units
	12. Cannot do G1 with zero feed rate convert_straight
	13. Cannot do zero repeats of cycle convert_cycle
	14. Cannot make arc with zero feed rate convert_arc
	15. Cannot put a C-axis command in a canned cycle check_other_codes
	16. Cannot put an A-axis command in a canned cycle check_other_codes
	17. Cannot raise negative number to non-integer power execute_binary1
	18. Cannot turn cutter radius comp on out of XY-plane convert_cutter_compensation_on
	19. Cannot turn cutter radius comp on when already on convert_cutter_compensation_on
	20. Cannot use G28 or G30 with cutter radius comp convert_home
	21. Cannot use G53 in incremental distance mode check_g_codes
	22. Cannot use G53 with cutter radius comp convert_straight
	23. Cannot use XZ plane with cutter radius comp convert_set_plane
	24. Cannot use YZ plane with cutter radius comp convert_set_plane
	25. Cannot use a G code for motion with G10 check_g_codes
	26. Cannot use a G code for motion with G28 check_g_codes
	27. Cannot use a G code for motion with G30 check_g_codes
	28. Cannot use a G code for motion with G92 check_g_codes
	29. Cannot use axis commands with G4 check_g_codes
	30. Cannot use axis commands with G80 check_g_codes
	31. Cannot use two G codes from group 0 on same line check_g_codes
	32. Command too long close_and_downcase, nml_interp_execute
	33. Concave corner with cutter radius comp convert_arc_comp2, convert_straight_comp2
	34. Current point same as end point of arc arc_data_comp_r, arc_data_r
	35. Cutter gouging with cutter radius comp convert_straight_comp1
	36. D word on line with no cutter comp on (G41 or G42) command check_other_codes
	37. Dwell time missing with G4 check_g_codes
	38. Equal sign missing in parameter setting read_parameter_setting
	39. F word missing with inverse time G1 move convert_straight
	40. F word missing with inverse time arc move convert_arc
	41. File ended with no stopping command given read_text
	42. G code out of range read_g
	43. Gets failed read_keyboard_line
	44. H word on line with no tool length comp (G43) command check_other_codes
	45. I word given for arc in YZ-plane convert_arc
	46. I word missing with G87 convert_cycle
	47. I word on line with no G code (G2, G3, G87) that uses it check_other_codes
	48. J word given for arc in XZ-plane convert_arc
	49. J word missing with G87 convert_cycle
	50. J word on line with no G code (G2, G3, G87) that uses it check_other_codes
	51. K word given for arc in XY-plane convert_arc
	52. K word missing with G87 convert_cycle
	53. K word on line with no G code (G2, G3, G87) that uses it check_other_codes
	54. L word on line with no canned cycle or G10 to use it check_other_codes
	55. Left bracket missing after slash with atan operator read_atan
	56. Left bracket missing after unary operation name read_unary
	57. Line number greater than 99999 read_line_number
	58. Line with G10 does not have L2 check_g_codes
	59. M code greater than 99 read_m
	60. Mixed radius-ijk format for arc convert_arc
	61. Multiple A words on one line read_a
	62. Multiple C words on one line read_c
	63. Multiple D words on one line read_d
	64. Multiple F words on one line read_f
	65. Multiple H words on one line read_h
	66. Multiple I words on one line read_i
	67. Multiple J words on one line read_j
	68. Multiple K words on one line read_k
	69. Multiple L words on one line read_l
	70. Multiple P words on one line read_p
	71. Multiple Q words on one line read_q
	72. Multiple R words on one line read_r
	73. Multiple S word spindle speed settings on one line read_s
	74. Multiple T words (tool ids) on one line read_t
	75. Multiple X words on one line read_x
	76. Multiple Y words on one line read_y
	77. Multiple Z words on one line read_z
	78. Must use G0 or G1 with G53 check_g_codes
	79. Negative F word used read_f
	80. Negative G code used read_g
	81. Negative L word used read_l
	82. Negative M code used read_m
	83. Negative P word used read_p
	84. Negative Q value used read_q
	85. Negative argument to sqrt execute_unary
	86. Negative spindle speed used read_s
	87. Negative tool id used read_t
	88. Negative tool length offset index (h word) used read_h
	89. Negative tool radius index (d word) used read_d
	90. Nested comment found close_and_downcase
	91. No characters found in reading real value read_real_value
	92. No digits found where real number should be read_real_number
	93. Non-integer value for integer read_integer_value
	94. Null missing after newline close_and_downcase
	95. Offset index missing convert_tool_length_offset
	96. P value not an integer with G10 L2 check_g_codes
	97. P value out of range with G10 L2 check_g_codes
	98. P word (dwell time) missing with G82 convert_cycle
	99. P word (dwell time) missing with G86 convert_cycle
	100. P word (dwell time) missing with G88 convert_cycle
	101. P word (dwell time) missing with G89 convert_cycle
	102. P word on line with no G code (G4 G10 G82 G86 G88 G89) that uses it check_other_codes
	103. Parameter number out of range read_parameter, read_parameter_setting
	104. Q word (depth increment) missing with G83 convert_cycle
	105. Q word on line with no G83 cycle that uses it check_other_codes
	106. R clearance plane unspecified in canned cycle convert_cycle
	107. R value less than X value in canned cycle in YZ plane convert_cycle_yz
	108. R value less than Y value in canned cycle in XZ plane convert_cycle_zx
	109. R value less than Z value in canned cycle in XY plane convert_cycle_xy
	110. R word on line with no G code (arc or cycle) that uses it check_other_codes
	111. R, I, J, and K words all missing for arc convert_arc
	112. Radius to end of arc differs from radius to start of arc arc_data_comp_ijk, arc_data_ijk
	113. Radius too small to reach end point arc_data_comp_r
	114. Slash missing after first atan argument read_atan
	115. Spindle not turning clockwise in G84 canned cycle convert_cycle_g84
	116. Spindle not turning in G86 canned cycle convert_cycle_g86
	117. Spindle not turning in G87 canned cycle convert_cycle_g87
	118. Spindle not turning in G88 canned cycle convert_cycle_g88
	119. Too many M codes on line check_m_codes
	120. Tool length offset index too big read_h
	121. Tool radius index too big read_d
	122. Tool radius not less than arc radius with cutter radius comp arc_data_comp_r, convert_arc_comp2
	123. Two G codes used from same modal group read_g
	124. Two M codes used from same modal group read_m
	125. Unable to open file nml_interp_open
	126. Unclosed comment found close_and_downcase
	127. Unclosed expression read_operation
	128. Unknown G code used read_g
	129. Unknown M code used read_m
	130. Unknown operation name starting with A read_operation
	131. Unknown operation name starting with M read_operation
	132. Unknown operation name starting with O read_operation
	133. Unknown operation name starting with X read_operation
	134. Unknown operation read_operation
	135. Unknown tool_id used convert_tool_select
	136. Unknown word starting with A read_operation_unary
	137. Unknown word starting with C read_operation_unary
	138. Unknown word starting with E read_operation_unary
	139. Unknown word starting with F read_operation_unary
	140. Unknown word starting with L read_operation_unary
	141. Unknown word starting with R read_operation_unary
	142. Unknown word starting with S read_operation_unary
	143. Unknown word starting with T read_operation_unary
	144. Unknown word where unary operation could be read_operation_unary
	145. X and Y words missing for arc in XY-plane convert_arc
	146. X and Z words missing for arc in XZ-plane convert_arc
	147. X value unspecified in YZ-plane canned cycle convert_cycle_yz
	148. X, Y, Z, A, and C words all missing with G0 or G1 convert_straight
	149. Y and Z words missing for arc in YZ-plane convert_arc
	150. Y value unspecified in XZ-plane canned cycle convert_cycle_zx
	151. Z value unspecified in XY-plane canned cycle convert_cycle_xy
	152. Zero or negative argument to ln execute_unary
	153. Zero radius arc arc_data_ijk

	E.2 Interpreter Kernel Internal Error Messages
	200. Bad G code in modal group 0 in check_g_codes
	201. Code is not G0 or G1 in convert_straight
	202. Code is not G0 or G1 in convert_straight_comp1
	203. Code is not G0 or G1 in convert_straight_comp2
	204. Code is not G0 to G3 or G80 to G89 in convert_motion
	205. Code is not G10, G28, G30, G92, G92.2 in convert_modal_0
	206. Code is not G17, G18, or G19 in convert_set_plane
	207. Code is not G2 or G3 in arc_data_comp_ijk
	208. Code is not G2 or G3 in arc_data_ijk
	209. Code is not G20 or G21 in convert_length_units
	210. Code is not G28 or G30 in convert_home
	211. Code is not G40, G41, or G42 in convert_cutter_compensation
	212. Code is not G43 or G49 in convert_tool_length_offset
	213. Code is not G54 to G59.3 in convert_coordinate_system
	214. Code is not G90 or G91 in convert_distance_mode
	215. Code is not G92 or G92.2 in convert_axis_offsets
	216. Code is not G93 or G94 in convert_feed_mode
	217. Code is not G98 or G99 in convert_retract_mode
	218. Code is not M0, M1, M2, M30 or M60 in convert_stop
	219. Convert_cycle_xy should not have been called
	220. Convert_cycle_yz should not have been called
	221. Convert_cycle_zx should not have been called
	222. Distance mode is not absolute or incremental in convert_cycle_xy
	223. Distance mode is not absolute or incremental in convert_cycle_yz
	224. Distance mode is not absolute or incremental in convert_cycle_zx
	225. Plane is not XY, YZ, or XZ in convert_arc
	226. Plane is not XY, YZ, or XZ in convert_cycle
	227. Read_a should not have been called
	228. Read_c should not have been called
	229. Read_comment should not have been called
	230. Read_d should not have been called
	231. Read_f should not have been called
	232. Read_g should not have been called
	233. Read_h should not have been called
	234. Read_i should not have been called
	235. Read_j should not have been called
	236. Read_k should not have been called
	237. Read_l should not have been called
	238. Read_line_number should not have been called
	239. Read_m should not have been called
	240. Read_p should not have been called
	241. Read_parameter should not have been called
	242. Read_parameter_setting should not have been called
	243. Read_q should not have been called
	244. Read_r should not have been called
	245. Read_real_expression should not have been called
	246. Read_s should not have been called
	247. Read_t should not have been called
	248. Read_x should not have been called
	249. Read_y should not have been called
	250. Read_z should not have been called
	251. Side fails to be right or left in convert_straight_comp1
	252. Side fails to be right or left in convert_straight_comp2
	253. Sscanf failure in read_integer_unsigned
	254. Sscanf failure in read_real_number
	255. Unknown operation in execute_binary1
	256. Unknown operation in execute_binary2
	257. Unknown operation in execute_unary

	E.3 Interpreter Driver Input Error Messages
	1. Bad input line "text_line" in setup file read_setup_file
	2. Bad input line "text_line" in tool file read_tool_file
	3. Bad setup file format read_setup_file
	4. Bad tool file format read_tool_file
	5. Bad value given_value for block_delete in setup file read_setup_file
	6. Bad value given_value for coordinate system in setup file read_setup_file
	7. Bad value given_value for cutter_radius_comp in setup file read_setup_file
	8. Bad value given_value for distance_mode in setup file read_setup_file
	9. Bad value given_value for feed_mode in setup file read_setup_file
	10. Bad value given_value for flood in setup file read_setup_file
	11. Bad value given_value for length_units in setup file read_setup_file
	12. Bad value given_value for mist in setup file read_setup_file
	13. Bad value given_value for plane in setup file read_setup_file
	14. Bad value given_value for speed_feed_mode in setup file read_setup_file
	15. Bad value given_value for spindle_turning in setup file read_setup_file
	16. Cannot open file_name read_setup_file, read_tool_file
	17. Unknown attribute attribute_name in setup file read_setup_file
	18. Usage "rs274vger" or "rs274vger filename" or "rs274vger filename continue" main

	Appendix F Production Rules for Line Grammar and Syntax
	F.1 Production Language
	F.2 Productions
	F.3 Production Tokens in Terms of Characters

	Appendix G Setup File Format
	Table 10. Sample Setup File

	Appendix H Tool File Format
	Table 11. Sample Tool File

