
The NIST RS274/NGC Interpreter - Version 2

Thomas R. Kramer
Frederick Proctor

Intelligent Systems Division
National Institute of Standards and Technology

Technology Administration
U.S. Department of Commerce
Gaithersburg, Maryland 20899

NISTIR 5739
October 26, 1995

RS274/NGC Interpreter - Version 2

ii

Disclaimer
No approval or endorsement of any commercial product by the National Institute of
Standards and Technology is intended or implied.

Acknowledgements
Partial funding for the work described in this paper was provided to Catholic University
by the National Institute of Standards and Technology under cooperative agreement
Number 70NANB2H1213.

iii

RS274/NGC Interpreter - Version 2

CONTENTS

1.0 Introduction... 1

1.1 Background..1

1.1.1 Enhanced Machine Controller Project ...1
1.1.2 Numerical Control Programming Language RS274..............................1
1.1.3 The RS274/NGC Language ...1
1.1.4 Previous Work at NIST..1
1.1.5 Current Work at NIST ...2

1.2 Overview of the RS274/NGC Language ...2

1.2.1 Lines, Blocks, Commands, and Words..2
1.2.2 Commands and Machine Modes..2
1.2.3 Modal Groups ..2
1.2.4 Commands Missing and Language Extensions3
1.2.5 Other Problems with the RS274/NGC Language4

1.3 Canonical Machining Functions ..5

2.0 Overview of the Interpreter ... 7

2.1 Major Characteristics ...7

2.1.1 Modes of Use ...7
2.1.2 How it Runs ...8
2.1.3 Speed..8

2.2 Start-up...9

2.3 Error Handling ...11

2.4 Exiting..11

3.0 Building a Stand-Alone Executable... 11

4.0 Using the Stand-Alone Interpreter.. 12

4.1 Invoking the Interpreter ...12

4.1.1 Invocation with Keyboard Input ..12
4.1.2 Invocation with NC File Input ...12

4.2 Tool and Setup Files ..13

4.3 Keyboard User Interface..13

RS274/NGC Interpreter - Version 2

iv

5.0 INPUT .. 14

5.1 Overview..14

5.1.1 White Space ...14
5.1.2 Case Sensitivity..14

5.2 Input Lines ...14

5.2.1 Format of a Line...14
5.2.2 Word ..14
5.2.3 Number ..15
5.2.4 Line Number ..15
5.2.5 Parameter Value...15
5.2.6 Expressions and Binary Operations...16
5.2.7 Unary Operation...16

5.3 Word Repeats...16

5.4 Word order ...17

5.5 Measurement Units ..17

5.5.1 Linear units ..17
5.5.2 Angular units..17

5.6 Messages and Comments...17

5.6.1 Messages..17
5.6.2 Comments ..18

5.7 Programs ..18

5.8 Control Panel Switches..18

5.8.1 Block Delete Switch ..18
5.8.2 Other Switches...19

6.0 Capabilities of the RS274/NGC Interpreter 19

6.1 Words Recognized...19

6.2 Input G Codes and M Codes..20

6.2.1 G Codes Implemented..20
6.2.2 Input M Codes Implemented ...22

7.0 Limitations of the Interpreter.. 22

RS274/NGC Interpreter - Version 2

v

References .. 23

Appendix A Software and Functional Details .. 24

A.1 Software Modules and Function Call Hierarchies.. 24

A.2 Source Code Documentation .. 29

Appendix B Functional Details .. 31

B.1 Error Handling and Exiting... 31

B.2 Cyclic Operation ... 32

B.3 Tool Change.. 33

B.4 Milling Arcs.. 34

B.5 Coordinate Systems .. 35

B.6 Tool Length Offsets .. 36

B.7 Cutter Radius Compensation .. 36

B.8 Inverse Time Feed Rate .. 38

B.9 Canned Cycles .. 39

Appendix C Transcript of a Session .. 44

Appendix D Error Messages .. 45

D.1 Interpreter Kernel and Interface Input Error Messages 45

D.2 Interpreter Kernel Internal Error Messages .. 49

D.3 Interpreter Driver Input Error Messages... 51

Appendix E Production Rules for Line Grammar and Syntax 52

E.1 Production Language .. 52

E.2 Productions ... 52

E.3 Production Tokens in Terms of Characters .. 54

Appendix F Setup File Format .. 55

Appendix G Tool File Format .. 57

RS274/NGC Interpreter - Version 2

vi

 RS274/NGC Interpreter - Version 2

1

1 Introduction

The NIST “RS274/NGC interpreter” is a software system which reads numerical control code in
the “NGC” dialect of the RS274 numerical control language and produces calls to a set of
canonical machining functions. The output of the interpreter can be used to drive a 4-axis
machining center. This report describes the RS274/NGC interpreter.

1.1 Background

1.1.1 Enhanced Machine Controller Project

The Intelligent Systems Division (ISD) and the Automated Production Technology Division of
the National Institute of Standards and Technology (NIST) are carrying out an Enhanced Machine
Controller (EMC) project. The primary objective of the project is to build a testbed for evaluating
application programming interface standards for open-architecture machine controllers. A
secondary objective is to demonstrate implementations of the Next Generation Controller (NGC)
architecture.

1.1.2 Numerical Control Programming Language RS274

RS274 is a programming language for numerically controlled (NC) machine tools, which has
been used for many years. The most recent standard version of RS274 is RS274-D, which was
completed in 1979. It is described in the document “EIA Standard EIA-274-D” by the Electronic
Industries Association [EIA]. Most NC machine tools can be run using programs written in
RS274. Implementations of the language differ from machine to machine, however, and a
program that runs on one machine probably will not run on one from a different maker.

1.1.3 The RS274/NGC Language

The NGC architecture has many independent parts, one of which is a specification for the RS274/
NGC language, a numerical control code language for machining and turning centers. The
specification was originally given in an August 24, 1992 report “RS274/NGC for the LOW END
CONTROLLER - First Draft” [Allen Bradley] prepared by the Allen Bradley company. A second
draft of that document was released in August 1994 by the National Center for Manufacturing
Sciences under the name “The Next Generation Controller Part Programming Functional
Specification (RS-274/NGC)” [NCMS]. All references in this report are to the second draft. The
term “the manual” in this report always means [NCMS]. The RS274/NGC language has many
capabilities beyond those of RS274-D.

1.1.4 Previous Work at NIST

As part of ISD assistance to the program which developed the NGC architecture, ISD prepared a
report “NIST Support to the Next Generation Controller Program: 1991 Final Technical Report,”
[Albus] containing a variety of suggestions. Appendix C to that report proposed three sets of
commands for 3-axis machining, one set for each of three proposed hierarchical control levels.
The suite proposed for the lowest (primitive) control level was implemented in 1993 by the EMC
project as a set of functions in the C programming language. This suite, known in the EMC
project and in this report as the “canonical machining functions,” has now been revised to be
suitable for 4-axis machining.

Also in 1993, the authors developed a software system in the C language for reading machining
commands in the RS274/NGC language and outputting canonical machining functions. This was

 RS274/NGC Interpreter - Version 2

2

called “the RS274/NGC interpreter.” A report, “The NIST RS274/NGC Interpreter, Version 1”
[Kramer1] was published in April 1994 describing that interpreter.

1.1.5 Current Work at NIST

In 1994, the EMC project, in collaboration with the General Motors Company (GM), undertook to
retrofit a 4-axis Kearney and Trecker 800 machine with an EMC controller. This was the driving
force in the revision of the canonical machining functions, and also led NIST to build both
Version 2 of the RS274/NGC interpreter and an RS274KT interpreter, which interprets programs
written in the K&T dialect of RS274. A separate report [Kramer2] has been written describing the
RS274KT interpreter.

The retrofit was completed in 1995. The EMC controller used in the retrofit employs the
RS274KT interpreter, but may easily be reconfigured to use Version 2 of the RS274/NGC
interpreter.

The EMC project decided to have all software be written in a single language, C++, so the source
code for the interpreters is now in C++. Almost all of the interpreter source code could be
compiled by an ANSI C compiler, however. Little of the source code is in constructions used in
C++ but not in C, such as data members and member functions.

1.2 Overview of the RS274/NGC Language

This section gives an overview of RS274/NGC code. Further details of the meaning of RS274/
NGC code are given in later sections of this report.

1.2.1 Lines, Blocks, Commands, and Words

The RS274/NGC language is based on lines of code. Each line (also called a “block”) may
include commands to a machine tool to do several different things. A line is terminated by a
carriage return or line feed. Lines of code may be collected in a file to make a program.

A typical line of code consists of an optional line number at the beginning followed by one or
more “words,” possibly interspersed with comments. In this report, a word consists of a letter
followed by a number or an expression that can be evaluated to a number. A word may either give
a command or provide an argument to a command. For example, “G1 X3” is a valid line of code
with two words. “G1” is a command meaning “move in a straight line at the programmed feed
rate,” and “X3” provides an argument value (the value of X should be 3 at the end of the move) to
the command. Most RS274/NGC commands start with either G or M (for miscellaneous). The
words for these commands are called “G codes” and “M codes.” In addition to words, lines of
code may include other combinations of characters. The legal combinations of characters are
presented in Appendix E.

1.2.2 Commands and Machine Modes

In RS274/NGC, many G codes and M codes cause the machine to change from one mode to
another, and the mode stays active until some other command changes it implicitly or explicitly
[NCMS, pages 71 - 73]. Such commands are called “modal”. For example, the coolant commands
are modal. If coolant is turned on, it stays on until it is explicitly turned off. The G codes for
motion are also modal. If a G1 (straight move) command is given on one line, it will be executed
again on the next line unless a command is given specifying a different motion (or some other
command which implicitly cancels G1 is given).

 RS274/NGC Interpreter - Version 2

3

“Non-modal” codes have effect only on the lines on which they occur. For example, G4 (dwell) is
non-modal.

1.2.3 Modal Groups

Modal commands are arranged in sets called “modal groups”, and only one member of a modal
group may be in force at any given time. In general, a modal group contains commands for which
it is logically impossible for two members to be in effect at the same time — like measure in
inches vs. measure in millimeters. A machine tool may be in many modes at the same time, with
one mode from each modal group being in effect. The modal groups used in the interpreter are
shown in Table 1.

For several modal groups, it is usual to provide that when the machine is ready to accept
commands, one member of the group must be in effect. Controller manufacturers must set default
values for those modal groups. When a machine is turned on or otherwise re-initialized, the
default values are automatically in effect.

1.2.4 Commands Missing and Language Extensions

The RS274/NGC language is missing some commands that are required to use some common
functions of some machining centers. Four instances are described here. The interpreter has
extended the language in the first three cases: axis clamping, pallet shuttle, and operator
messages.

The modal groups for G codes are:

group 1 = {G0, G1, G2, G3, G80, G81, G82, G83, G84, G85, G86, G87, G88, G89} - motion
group 2 = {G17, G18, G19} - plane selection
group 3 = {G90, G91} - distance mode
group 5 = {G93, G94} - spindle speed mode
group 6 = {G20, G21} - units
group 7 = {G40, G41, G42} - cutter diameter compensation
group 8 = {G43, G49} - tool length offset
group 10 = {G98, G99} - return mode in canned cycles
group 12 = {G54, G55, G56, G57, G58, G59, G59.1, G59.2, G59.3} - coordinate system selection

The modal groups for M codes are:

group 2 = {M26, M27} - B-axis clamping
group 4 = {M0, M1, M2, M30, M60} - stopping
group 6 = {M6} - tool change
group 7 = {M3, M4, M5} - spindle turning
group 8 = {M7, M8, M9} - coolant
group 9 = {M48, M49} - feed and speed override switch bypass

Table 1. Modal Groups

 RS274/NGC Interpreter - Version 2

4

Axis Clamping

The RS274/NGC language does not have commands for axis clamps. Many machining centers
have axis clamps. Controllers for those machines generally have M codes for enabling or
disabling automatic axis clamping. They do not generally have commands for turning specific
axis clamps on or off.

The K&T 800 machine, for example, has a B axis clamp. The interpreter implements two M codes
for controlling this clamp. M26 enables automatic B axis clamping, and M27 disables it. These
are the same codes used by the K&T native dialect of RS274 for that machine.

The Monarch VMC 75 vertical machining center, as another example, has a Z-axis clamp
[Monarch, page 6-8]. It uses M71 and M72 for automatic clamping off and on, respectively. This
is not implemented in the interpreter.

Pallet Shuttle

The pallet shuttle function of the K&T 800 machine causes two pallets to change places. In the
native dialect of that machine, M30 causes a pallet shuttle and the end of a program [K&T, page
4.70]. The interpreter implements M30 [NCMS, page 7] that way. Also, the interpreter
implements the K&T M60 command, which causes a pallet shuttle and program stop [K&T, page
4.71]; this is an extension to the RS274/NGC language.

Messages for the Operator

Although the RS274/NGC language provides for comments [NCMS, page 3], the language does
not have a command which allows a program to send a message to the operator display. The
interpreter recognizes an extension to the language for messages. In the interpreter a comment is
anything enclosed in parentheses. If a comment begins with “MSG,” it is considered to be a
message and the MESSAGE canonical function is called rather than the COMMENT canonical
function. This is the same as provided in the K&T dialect [K&T, page 4.2].

Secondary Axes

Some machining centers have secondary axes. An example is the Monarch VMC-75, on which
the entire head of the machine moves parallel to the Z axis along a W axis [Monarch, page 3-11].
The RS274/NGC language provides U, V, and W as “incremental” axes for lathes only [NCMS,
page 6]. It would be useful to provide these axes for machining centers, as well. Having U, V, and
W be parallel to X, Y, and Z seems suitable and matches the Monarch usage.

1.2.5 Other Problems with the RS274/NGC Language

The specifications for the RS274/NGC language in [NCMS] are sometimes vague or inconsistent.
Where it is hard to tell what is intended in [NCMS], we have picked what we believe is a sensible
interpretation.

In almost all cases, it is not appropriate to execute commands on the same line simultaneously,
and the order in which they are executed is important for safe and effective machining. A
pervasive problem with RS274/NGC is that the order of execution of commands which may occur
on the same line is not specified.

The handling of modal groups in RS274/NGC is inconsistent. For example, G-group 13 includes
commands which are not logically mutually exclusive, and so does M-group 8. The motion

 RS274/NGC Interpreter - Version 2

5

commands in G-group 1 and G-group 9 combined are all logically mutually exclusive, but they
are in separate groups. Several non-modal motion commands exist (G88.1 through G88.6) which
could be modal and are logically mutually exclusive with the motion commands in G-group 1 and
G-group 9. Commands which implicitly cancel a modal command are not necessarily from the
same modal group as the cancelled command.

1.3 Canonical Machining Functions

The EMC canonical machining functions called by the interpreter are given in Table 2 and are
described in more detail in a separate report, “Canonical Functions for 4-Axis Machining”
[Proctor]. That report includes additional canonical machining functions which are not used by
the interpreter but may be in future versions. The names of the functions explain roughly what
they do. The canonical machining commands are atomic commands. Each command produces a
single action.

RS274 commands, on the other hand, include two types: those for which a single RS274
command corresponds exactly to a canonical command, and those for which a single RS274
command will be decomposed into several canonical commands (possibly dozens). Things like
“move in a straight line” or “turn flood coolant on” are of the first type. Things like “turn all
coolant off” or “run a peck drilling cycle” are of the second type.

The canonical commands were devised with three objectives in mind. First, all the functionality of
the K&T 800 machine had to be covered by the commands; for any function the machine can
perform, there has to be a way tell it to do that function. Second, it was desired that it be possible
to use readily available commercial motion control boards from various vendors to carry out those
canonical commands which call for motion, with roughly a one-to-one correspondence between a
canonical motion command and a command a commercial board recognizes. Third, it must be
possible to interpret RS274/NGC commands into canonical commands.

Two sets of definitions for the canonical machining functions have been written, and either set can
be linked into the interpreter. The first set is used for direct control of the machining center.
Executing a function from this set causes a command message to be generated. When this
command message is executed, the machine’s actuators are activated. The second set is used for
testing or for writing a command file that can be used later. Executing a function from the second
set causes a line of text containing the command to be written to standard output or to a file.

 RS274/NGC Interpreter - Version 2

6

Representation SET_ORIGIN_OFFSETS (double x, double y, double z, double b)
USE_LENGTH_UNITS (CANON_UNITS units)

Free Space STRAIGHT_TRAVERSE (double x, double y, double z, int b_turn,
Motion double b_position)

Machining SELECT_PLANE (CANON_PLANE plane)
Attributes SET_FEED_RATE (double rate)

SET_FEED_REFERENCE (CANON_FEED_REFERENCE reference)
START_SPEED_FEED_SYNCH()
STOP_SPEED_FEED_SYNCH()

Machining ARC_FEED (double first_end, double second_end,
Functions double first_axis, double second_axis, int rotation,

double axis_end_point, int b_turn, double b_position)
STRAIGHT_FEED (double x, double y, double z, int b_turn,

double b_position)
DWELL (double seconds)

Spindle SET_SPINDLE_SPEED (double r)
Functions START_SPINDLE_CLOCKWISE ()

START_SPINDLE_COUNTERCLOCKWISE ()
STOP_SPINDLE_TURNING ()
ORIENT_SPINDLE (double orientation, CANON_DIRECTION direction)

Tool Functions CHANGE_TOOL (int slot)
SELECT_TOOL (int i)
USE_TOOL_LENGTH_OFFSET (double offset)

Miscellaneous CLAMP_AXIS(CANON_AXIS axis)
Functions COMMENT (char * s)

DISABLE_FEED_OVERRIDE()
DISABLE_SPEED_OVERRIDE()
ENABLE_FEED_OVERRIDE()
ENABLE_SPEED_OVERRIDE()
FLOOD_OFF ()
FLOOD_ON ()
MESSAGE (char * s)
MIST_OFF ()
MIST_ON ()
PALLET_SHUTTLE()
UNCLAMP_AXIS(CANON_AXIS axis)

Program OPTIONAL_PROGRAM_STOP ()
Functions PROGRAM_END ()

PROGRAM_STOP ()

Table 2. Canonical Machining Functions Called By Interpreter
Function arguments are written in ANSI C style. All functions return nothing.

 RS274/NGC Interpreter - Version 2

7

2 Overview of the Interpreter

2.1 Major Characteristics

2.1.1 Modes of Use

The interpreter runs integrated with the EMC control system or as a stand-alone system. Most of
the software is the same in the two cases. Software details are given in Appendix A. The reader
may find it helpful to look at Figure 1 in Appendix A at this point.

2.1.1.1 Integrated with EMC Control System

In the EMC control system, the interpreter is used both to interpret NC programs (from files) and
to interpret individual commands entered using the manual data input (MDI) capability of the
control system. When running an NC program, the control system tells the interpreter when to
read another line of code from the program and when to execute the last line that was read. When
using MDI input, the controller sends the interpreter a line of code it gets from the user interface
with a single command that tells the interpreter to read the line and execute the line.

The interpreter does not control machine action directly. Rather, the interpreter calls canonical
functions which generate messages which are passed back to the control system, and the control
system decides what to do with the messages. In normal operation the top level of the control
system decides whether each message should be sent to its motion control subordinate or to its
discrete I/O subordinate and sends the message at an appropriate time.

If an error occurs, the user is sent an error message. If an NC program is being translated,
execution of the program stops at the line where the error occurred, and it is not possible to restart
the program from that line. To use a program which causes an interpreter error, the program must
be edited to remove the error, and the program must be restarted at the beginning. The user must
determine if the partially cut workpiece can be saved or whether it must be scrapped, and must
consider the effect of re-running the portion of the program before the error occurred in making
this decision. Of course the user has the option of running a revised program which deletes the
code that ran successfully at the beginning of the original program.

2.1.1.2 Stand-alone

In stand-alone mode, the interpreter has two input modes: keyboard (interactive) mode and file
(batch) mode. In the interactive mode, the user types lines of RS274/NGC code at the keyboard.
In the batch mode, the interpreter reads lines of code from a file.

Only the set of canonical machining functions which prints text has been linked into the stand-
alone interpreter, so the output is always text. The output is printed to the computer terminal by
default, but may be redirected to a file. In general, an output file is useful only if input is taken
from a file and errors do not occur during interpretation.

Error handling differs between the interactive mode and the batch mode. In interactive mode, the
interpreter always continues after an error. In batch mode the user has an option when starting the
interpreter of telling the interpreter to try to keep going after an error or having the interpreter stop
interpreting if an error occurs (which is the default behavior).

The stand-alone mode is valuable because it allows a user to pre-test an NC program without
having to run it on the machine controller itself. Any computer for which the stand-alone

 RS274/NGC Interpreter - Version 2

8

interpreter can be compiled can be used to pre-test NC programs. Pre-tests are conclusive tests
because the interpreter runs exactly the same way in the stand-alone mode as it does integrated
with the control system.

Section 4.1 explains how to use the various options available in stand-alone mode.

2.1.2 How it Runs

Once initialized, the interpreter runs in various ways (depending on which of the modes of use
just described is being used) but in all of them, the basic operation that gets repeated is a two-step
process:

1. Get a line of RS274/NGC code and read it into memory, building an internal representation
of the meaning of the entire line.

2. Call one or more canonical machining functions which will do what the line says to do.

The interpreter maintains a model of the machine while it is interpreting and uses the model in
determining what canonical machining functions to call and what their arguments should be.
Initialization of the model is performed when the interpreter starts up.

2.1.3 Speed

2.1.3.1 Stand-alone Speed

Using an input test file for machining a semicircular arc back and forth 1000 times in a row (for a
total of 2000 lines), running on a SUN SPARCstation 2, the stand-alone interpreter wrote an
output file in 4 seconds. A second file with 3600 small arcs lying on a helix took 10 seconds. A
third file with 2000 straight line segments took 5 seconds. These three tests show a rate of 360 to
500 lines per second for the stand-alone interpreter on a Sun SPARCstation 2 computer. In recent
tests on a Sun SPARCstation 20, the stand-alone interpreter ran about five times as fast as on a
SPARC2. The program with 3600 arcs, for example, ran in 2 seconds.

Running on a 486 PC using the Lynx operating system, the stand-alone interpreter handled the
same three test files in 14 seconds, 26 seconds, and 13 seconds, about a third as fast as on the Sun
SPARC2. The output from the two computers was byte-by-byte identical for the first two input
programs. For the third program there were about 100 numbers which differed in the last decimal
place, apparently because of different conventions for rounding used by the two computers when
the digit after the last decimal place to be kept is a 5.

Tests with other types of programs show similar results. Thus, it is clear that using the stand-alone
system for pre-testing NC programs takes little time.

2.1.3.2 Interpreter Speed in the Integrated System

When the interpreter is being used integrated with the EMC control system, there are relatively
few situations in which a modern PC would be challenged, since the tool path prescribed by a line
found in a typical program will rarely take less than a tenth of a second to cut, while interpreting
that line will rarely take more than a hundredth of a second. Thus, for most NC programs, the
interpreter speed will not be a significant factor.

There is one known class of program for which interpreter speed may be a significant factor. This
class is those programs which include many consecutive short lines or arcs (say 0.1 millimeter
long each). This type of program is produced by many NC program post-processors for following

 RS274/NGC Interpreter - Version 2

9

complex contours approximately. At 1000 millimeters per minute feed rate (a realistic value), a
2000-line file should run in 12 seconds. Tests of this type of program on the integrated system
have not yet been conducted, but the results just mentioned for the stand-alone interpreter running
on a PC indicate that even without all the other tasks the integrated system must perform, this
speed challenges the interpreter. The interpreter has not been optimized for speed. If it is decided
more speed is required during execution, that may be accomplished by various types of pre-
processing which are not difficult to implement.

2.2 Start-up

When the interpreter starts up, before accepting any input, it sets up a model that includes data
about itself, data about the setup of the machine to be controlled, and data about the tools which
are in the tool carousel of the machine. The interpreter’s data about itself (such as whether tool
radius compensation is on) has default values. The data about the machine and the tools is
obtained in two different ways depending upon whether the interpreter is integrated or stand-
alone.

In the integrated mode, machine setup data for the model is obtained by the interpreter from the
(real) control system database. This data (such as axis positions) has been read from the sensors
on the machine and represents the actual state of the machine. Also in this mode, the data about
tools is obtained from the information that has been input by an operator.

In the stand-alone interpreter, machine setup data and tool data for the model is obtained (using
exactly the same queries) from a stub version of the database of the control system which has
default values for the data the interpreter needs. The default data does not necessarily represent
the actual state of the machine or the tools in the carousel.

In the stand-alone interpreter, all the machine setup data and the tool data may be replaced by data
from files designated by the user. In this way the stand-alone interpreter can be given data
representing different conditions of the machine and tools; the data in the files may be actual or
hypothetical. When the interpreter starts up in the stand-alone mode, the user is prompted to
provide the name of a setup file and the name of a tool file. In both cases, if a name is provided,
the data from the file is used and if a name is not provided, the data already loaded is used. The
formats for setup files and tool files are described in Appendix F and Appendix G, respectively,
with examples of both types of file.

Default setup data is shown in Table 3. Where G codes and M codes are involved, the settings are
as provided at start-up in [K&T, page 4.3], except that G0 (rapid traverse) is not active at start-up
in the interpreter.

Default tool data is shown in Table 4. The default tool table is not intended to be useful for
preparing or testing any real NC programs. Data has been placed in the default tool table so the
interpreter can be used without having to prepare a tool table. The default tool table has the tool
length offset and the tool diameter as zero for all slots except slots 1 and 2.

The values in the tool table are used as though they are in the units (inches or millimeters)
currently in use; the tool table values are not adjusted automatically if units are changed. This is
not explicit in the manual but corresponds to the way the Kearney and Trecker machine works
with its original controller.

 RS274/NGC Interpreter - Version 2

10

Item Setting RS274/NGC code Internal/External

axis_offset_b 0.0 G92 I
axis_offset_x 0.0 G92 I
axis_offset_y 0.0 G92 I
axis_offset_z 0.0 G92 I
block delete switch off console switch E
b-axis clamp on E
b-axis automatic clamping on M26 I
coordinate system number 1 G54 - G59.1 I
current_b 0.0 E
current_x 0.0 E
current_y 0.0 E
current_z 0.0 E
cutter radius compensation off G40 I
distance mode absolute G90 I
feed mode units per minute G94 I
feed override enabled M48 I
feed rate 15 I
flood coolant off M9 E
length units millimeters G21 I
mist coolant off G9 E
motion mode 80 G80 I
plane for arcs XY plane G17 E
origin_offset_x 0.0 G54 - G59.1 E
origin_offset_y 0.0 G54 - G59.1 E
origin_offset_z 0.0 G54 - G59.1 E
origin_offset_b 0.0 G54 - G59.1 E
slot in use 1 E
slot selected 1 I
slot for length offset 1 I
slot for radius comp 1 I
speed_feed_mode independent I
speed override enabled M48 I
spindle speed 0.0 E
spindle turning not turning M5 E
tool length offset 0.0 I
traverse rate 100 E

Table 3. Default Setup Data for the Interpreter

In addition to the data shown here, the values of many parameters in the
parameter table are set.

 RS274/NGC Interpreter - Version 2

11

2.3 Error Handling

The interpreter performs a great deal of checking as it runs. If an error is found during any check,
the interpreter prints a message describing the error. Behavior after printing an error message
depends upon the mode in which the interpreter is being used and was described in Section 2.1.1.
The error messages which may be printed by the interpreter are listed in Appendix D. They are
self-explanatory.

Further details of error handling are given in Appendix A.

2.4 Exiting

When using keyboard input, the interpreter exits only if it reads a line with the one word “quit”.
Most variations of “quit” are valid, e.g., “Q uI t”. In any other mode, the interpreter exits when it
reads a line with an M2 (program exit) or M30 (program exit with tape rewind and pallet shuttle)
command on it. The rest of the line is executed before the interpreter exits. If there are more lines
in the file following the line which causes a program exit, they are ignored.

As stated earlier, in some modes which use file input, the interpreter will also exit if a line is read
that causes an error. It is an error for the file to come to an end without an M2 or M30 command.

3 Building a Stand-Alone Executable

On a SUN SPARCstation 2, an executable file for the stand-alone interpreter may be built from
source code in about a minute, as described below. The same procedure should work on any
computer running a Unix operating system and having the standard C++ libraries. On computers
running other operating systems, compilation should be similarly easy, provided the standard C++
libraries are available.

To make an executable, six source code files must be placed in the same directory along with the
Makefile shown in Table 5 below. The source code files are:

canon.cc
canon.hh
rs274ngc.cc
rs274ngc.hh
driver.cc
nml_emc.hh

The first two files are the function definitions and header file for the canonical machining
functions. The version of canon.cc which prints function calls is used with the stand-alone

Slot ID Length Diameter

1 1 2.0 1.0
2 2 1.0 0.2

Table 4. Default Tool Data for the Interpreter
All other slots have the id, length, and diameter set to zero.

 RS274/NGC Interpreter - Version 2

12

interpreter. The second two are the function definitions and header file for the interpreter kernel
and interface functions. The last two are the function definitions and header file needed for the
stand-alone interpreter that are not needed in the integrated interpreter.

An executable file named “rs274ngc” is built in the same directory by giving the command:
make rs274ngc.

In the Makefile, we are using the Gnu C++ compiler, “g++.” Any other C++ compiler may be
substituted for g++.

4 Using the Stand-Alone Interpreter

4.1 Invoking the Interpreter

As mentioned earlier, the stand-alone interpreter may be used with either keyboard input or file
input. This section tells how to do that. The user must press the “return” key after each response;
the return key presses are not printed here.

This section describes several input files. If any input file named by the user cannot be opened, the
interpreter prints a message to that effect and quits.

This section refers to redirecting output. The methods described here work with both the SunOS
and LynxOS and may be expected to work on other Unix-like systems. Other forms of redirection
are possible.

4.1.1 Invocation with Keyboard Input

The interpreter is invoked with keyboard input by giving the command:

rs274ngc

4.1.2 Invocation with NC File Input

4.1.2.1 Invocation to Stop After an Error

To use NC file input and stop if an error is encountered, invoke the interpreter with a command of
the form:

rs274ngcinput_filename

canon.o: canon.cc canon.hh nml_emc.hh rs274ngc.hh
g++ -c -v -g -O canon.cc

rs274ngc.o: rs274ngc.cc canon.hh nml_emc.hh rs274ngc.hh
g++ -c -v -g -O rs274ngc.cc

driver.o: driver.cc canon.hh nml_emc.hh rs274ngc.hh
g++ -c -v -g -O driver.cc

rs274ngc: rs274ngc.o canon.o driver.o
g++ -v -o rs274ngc rs274ngc.o canon.o driver.o -lm

Table 5. Makefile for Interpreter

 RS274/NGC Interpreter - Version 2

13

where input_filename is the name of the NC input file. With this invocation, normal printed output
from the interpreter (everything but error messages) appears on stdout, which is normally the
terminal on which the command was invoked. Printed output may be usefully redirected to an
output file by giving a command of the form:

rs274ngcinput_filename > output_filename

where output_filename is the name the output file should have. The interpreter will create this file
if it does not exist; if it does exist, it will be overwritten.

4.1.2.2 Invocation to Continue After an Error

To use file input and attempt to continue if an error is encountered, invoke the interpreter with a
command of the form:

rs274ngcinput_filename continue

As above, normal printed output from the interpreter (everything but error messages) appears on
stdout. Error messages are printed to stderr, which is also normally the terminal from which the
interpreter was invoked. Printed output (excluding error messages) may be redirected to an output
file by giving a command of the form:

rs274ngcinput_filename continue >output_filename

If there are errors during interpretation, any input line which causes an error will not be
interpreted, and the output file may be incorrect on any line after the last line which was output
before the first error occurred.

4.2 Tool and Setup Files

As soon as the interpreter is invoked by any of the methods just described, it prompts the user to
enter the name of a tool file. The user may enter a tool file name, as follows:

name of tool file => tool_file_name

or the user may press only the return key, and the interpreter will use the default tool data.

The interpreter next prompts the user for the name of a setup file. The user may enter a setup file
name as follows:

name of setup file => setup_file_name

or the user may press only the return key, and the interpreter will use the default setup data.

The format of setup files and tool files is described in Appendix F and Appendix G, respectively.

4.3 Keyboard User Interface

The interpreter has a simple line-based user interface for when it is used with keyboard input. The
normal pattern of use is a read-execute cycle with four steps:

1. The interpreter prints the promptREAD =>

2. The user enters a line of RS274/NGC code at the keyboard and hits the carriage return button.

3. The interpreter reads the line and prints the promptEXEC <-

4. The user enters a semicolon and hits the carriage return button, and the line is interpreted.

 RS274/NGC Interpreter - Version 2

14

Steps 3 and 4 have been included in the interface to give the user a chance to check the line just
typed. If anything but a semicolon is entered in step 4, the line is not interpreted. This will protect
the user who accidentally hits the return button during step 2.

The user interface provides no capability to edit ahead, undo, or anything else involving more than
the current line.

A transcript of a short session with the interpreter using keyboard input is shown in Appendix C.

5 INPUT

5.1 Overview

In general, allowable inputs are as described in the manual. [EIA], the standard for RS274-D is
used where the manual is silent, but [EIA] has something to say.

5.1.1 White Space

The manual says nothing about space characters or tab characters. [EIA, page 6, last line] allows
spaces and tabs anywhere and provides that they should be “ignored by control.” The interpreter
allows spaces and tabs anywhere on a line of code and behaves the same as it would if they were
not there. This makes some strange-looking input legal. The line “g0x +0. 12 34y 7” is equivalent
to “g0 x+0.1234 y7”, for example.

Blank lines are allowed in the input by the interpreter. They are ignored.

5.1.2 Case Sensitivity

The manual and [EIA] do not explicitly discuss character case. The interpreter assumes input is
case insensitive, i.e., any letter may be in upper or lower case without changing the meaning of a
line.

5.2 Input Lines

To make the specification of an allowable line of code precise, we have defined it in a production
language (Wirth Syntax Notation) in Appendix E. The description here is intended to be
consistent with the appendix. In order that the definition in the appendix not be unwieldy, many
constraints imposed by the interpreter are omitted from that appendix. The list of error messages
in Appendix D indicates all of the additional constraints.

5.2.1 Format of a Line

A permissible line of input consists of the following, in order, with the restriction that there is a
maximum (currently 256) to the number of characters allowed on a line.

1. an optional block delete character, which is a slash / .
2. an optional line number.
3. any number of segments, where a segment is a word or a comment.
4. an end of line character.

5.2.2 Word

A word is a letter followed by a real_value.

A real_value is some collection of characters that can be processed to come up with a number. A

 RS274/NGC Interpreter - Version 2

15

real_value may be an explicit number (such as 341 or -0.8807), a parameter value, an expression,
or a unary operation value.

5.2.3 Number

The manual is not clear regarding what a valid number is. On page 2 it says “The programming
resolution of the axis word formats word length will be 8.” The most likely interpretation of this is
that a word representing an axis motion can have at most eight characters (presumably including
one letter at the beginning and a decimal point in the middle), providing room for six digits. The
table on pages 5 and 6 provides for up to 14 digits, but a sentence on page 5 says the table may not
be valid, and “the control allows a maximum of 8 total digits.”

[NCMS, page 2] says “Decimal Point Programming of Axis motion will be the standard.” It does
not say what Decimal Point Programming is, however. [EIA, page 3] does describe decimal point
programming. It allows all unnecessary zeros to be included or suppressed and decimal points to
be omitted if whole numbers are used.

The interpreter uses the following rules regarding numbers. In these rules a digit is a single
character between 0 and 9.

• A number consists of (i) an optional plus or minus sign, followed by (ii) zero to many
digits, followed, possibly, by (iii) one decimal point, followed by (iv) zero to many
digits — provided that there is at least one digit somewhere in the number.

• There are two kinds of numbers: integers and decimals. An integer does not have a
decimal point in it; a decimal does.

• Numbers may have any number of digits, subject to the limitation on line length.

• A non-zero number with no sign as the first character is assumed to be positive.

Notice that initial (before the decimal point and the first non-zero digit) and trailing (after the
decimal point and the last non-zero digit) zeros are allowed but not required. A number written
with initial or trailing zeros will have the same value when it is read as if the extra zeros were not
there.

Numbers used for specific purposes in RS274/NGC are often restricted to some finite set of values
or to some range of values. In many uses, decimal numbers must be close to integers; this includes
the values of indexes (for parameters and changer slot numbers, for example), M codes, and G
codes multiplied by ten. In the interpreter, a decimal number which is supposed be close to an
integer is considered close enough if it is within 0.0001 of an integer.

5.2.4 Line Number

A line number is the letter N followed by an integer (with no sign) between 0 and 99999 [NCMS,
page 7].

5.2.5 Parameter Value

A parameter value is the pound character # followed by a real_value which must evaluate to an
integer between 1 and 5399. The integer is an index of a parameter table and the value of the
parameter value is whatever number is stored in the parameter table at that index.

The # character takes precedence over other operations, so that, for example, “#1+2” means the
number found by adding 2 to the value of parameter 1, not the value found in parameter 3. This is

 RS274/NGC Interpreter - Version 2

16

implied but not explicit in the manual. Of course, #[1+2] does mean the value found in parameter
3. The # character may be repeated; for example ##2 means the value of the parameter whose
index is the (integer) value of parameter 2.

5.2.6 Expressions and Binary Operations

An expression is a set of characters starting with a left bracket [and ending with a balancing right
bracket]. In between the brackets are numbers, parameter values, mathematical operations, and
other expressions. An expression may be evaluated to produce a number. The interpreter does
expression evaluation while it is reading, before executing anything in a block. An example of an
expression is [1 + acos[0] - [#3 ** [4.0/2]]].

[NCMS section 3.5.1.1] discusses expression evaluation.

The manual provides for eight binary operations, and a ninth has been added to the interpreter.
There are four basic mathematical operations: addition (+), subtraction (-), multiplication (*), and
division (/). There are three logical operations: non-exclusive or (OR), exclusive or (XOR), and
logical and (AND). The eighth operation is the modulus operation (MOD). The added ninth
operation is the “power” operation (**) of raising the number on the left of the operation to the
power on the right; this is needed for many basic machining calculations.

The binary operations are divided into two groups. The first group is: multiplication, division,
modulus, and power. The second group is: addition, subtraction, logical non-exclusive or, logical
exclusive or, and logical and. If operations are strung together (for example in the expression [2.0
/3 * 1.5 - 5.5 / 11.0]), operations in the first group are to be performed before operations in the
second group. If an expression contains more than one operation from the same group (such as the
first / and * in the example), the operation on the left is performed first. Thus, the example is
equivalent to: [((2.0 / 3) * 1.5) - (5.5 / 11.0)] , which simplifies to [1.0 - 0.5] , which is 0.5.

The logical operations and modulus are apparently to be performed on any real numbers, not just
on integers or on some other data type. In the interpreter, the number zero is equivalent to logical
false, and any non-zero number is equivalent to logical true.

5.2.7 Unary Operation

A unary operation value is either “ATAN” followed by one expression divided by another
expression (for example “ATAN[2]/[1+3]”) or any other unary operation name followed by an
expression (for example “SIN[90]”). The unary operations are: ABS (absolute value), ACOS (arc
cosine), ASIN (arc sine), ATAN (arc tangent), COS (cosine), EXP (e raised to the given power),
FIX (round down), FUP (round up), LN (natural logarithm), ROUND (round to the nearest whole
number), SIN (sine), SQRT (square root), and TAN (tangent). The arguments to unary operations
which take angle measures, such as sine, are in degrees.

The meaning of FIX for negative numbers is not clear in the manual. The interpreter rounds down
towards zero, so that FIX[-2.8] is -2, for example. A second possible meaning of “round down,”
which is not used in the interpreter, is “round towards the less positive or more negative”. A
similar ambiguity exists for FUP. The interpreter rounds up away from zero, so FUP[-2.8] is -3,
for example.

5.3 Word Repeats

The manual does not specify explicitly whether two words starting with the same letter can occur

 RS274/NGC Interpreter - Version 2

17

in the same line, but portions of the manual ([NCMS], page 73], for example) imply clearly that
this is legal. [EIA] has an explicit statement (item 3.12, page 5) that “words (apparently meaning
words with the same initial letter) shall not be repeated in a block.” The interpreter uses the
following rules:

• A line may have zero to four G words. Two G words from the same modal group may
not appear on the same line.

• A line may have zero to four M words. Two M words from the same modal group may
not appear on the same line.

• For all other legal letters, a line may have only one word beginning with that letter.

5.4 Word order

The manual does not specify word order explicitly or implicitly. The interpreter allows words
starting with any letter except N (which denotes a line number and must be first) to occur in any
order. Execution of the line will be the same regardless of the order.

5.5 Measurement Units

5.5.1 Linear units

The manual specifies that either “inch” or “metric” units may be used by programming G20 for
inch or G21 for metric [NCMS, page 15]. The default is up to the system builder. One or the other
is automatically to be chosen when the system starts up. The stand-alone interpreter starts up
using millimeters, as shown in Table 3.

The manual uses the term “metric” frequently ([NCMS, pages 2 and 15] for example). The use of
the term implies clearly that in many cases it is meant to denote a linear measurement. Where
“metric” is used as a linear measurement, [NCMS] does not say directly what metric unit is
intended, although “millimeters” is used in at least one table [NCMS, page 35]. The interpreter
uses millimeters.

5.5.2 Angular units

[NCMS, pages 18, 19, 34] specifies using degrees for measuring angles, so the interpreter
assumes angular dimensions in the input are given in degrees.

5.6 Messages and Comments

[NCMS, page 3] prescribes using parentheses to give comments. It does not specify whether
nested comments are allowed or whether a line can end in the middle of a comment without being
closed by a right parenthesis. The interpreter assumes comments can occur anywhere in a line but
may not contain left parentheses and must be terminated by a right parenthesis before the end of
the line, or the line is invalid and will not be executed.

In the interpreter, it is allowed to have more than one set of parentheses on a line (like) (this), but
if this is done, only the last one will be processed as described below. All the others will be read
and their format will be checked, but they will be ignored thereafter.

5.6.1 Messages

If “MSG,” appears after a left parenthesis before any other printing characters, the rest of the
characters before the right parenthesis are considered to be a message, and the “message”

 RS274/NGC Interpreter - Version 2

18

canonical function is called to deliver the message to the operator. Variants of “MSG,” which
include white space and lower case characters are allowed.

5.6.2 Comments

If the characters inside parentheses are not a message, as just described, then everything inside the
parentheses is treated as a comment, and the “comment” canonical function is called. Comments
do not cause the machine to do anything.

5.7 Programs

By “program” we mean a sequence of lines of RS274/NGC NC code (at least one and perhaps as
many as several thousand) that are intended to be executed one after another. The sequence of
lines is normally kept together in a file.

The stand-alone interpreter has no concept of a program when it is running with keyboard input; it
only understands lines. When it runs with input from a file, it expects the file to be an NC
program. The interpreter exits when a line with M2 or M30 is executed, since they mean end of
program.

In the integrated interpreter, programs are recognized and handled by the user interface of the
EMC control system.

[NCMS, pages 5, 6, 7] discusses “main programs” and “subprograms.” It is provided that the first
word on the first line of a file containing a main program or a subprogram should be an O word.
This word is to be considered to be the name of the file for calling it from another program. The
last line of a file for a main program should have M2, M30, or M99 on it. The use of subprograms
has not been implemented in the interpreter. It does not read O words, does not deal with
subprograms, and does not recognize M99.

[EIA] does not discuss programs, so it has nothing to add to the above.

5.8 Control Panel Switches

The EMC controller is sensitive to all switches on the control panel. The interpreter needs to
know the setting of only one switch, block delete. The other switches are handled by the EMC
controller without the interpreter knowing what the settings are.

5.8.1 Block Delete Switch

If the block delete switch is on, the interpreter skips lines which start with a slash (the block delete
character). Internally, the interpreter reads the line but does not try to figure out what it means. If
the switch is off, lines starting with a slash are processed as though the slash was not there.

When the interpreter is used as part of the EMC control system, information about the block
delete switch setting is passed to the interpreter during the initialization of executing a program.
The interpreter does not check again, so changing the setting of that switch during the execution
of a program will not change the way the program is executed.

When the interpreter is used stand-alone, a block delete switch setting may be included in the
setup file. The default setting of the block delete switch is off, as shown in Table 3. The default is
used when a setting is not specified in a setup file.

 RS274/NGC Interpreter - Version 2

19

5.8.2 Other Switches

The speed or feed override switches on the control panel let the operator specify that the actual
feed rate or spindle speed used in machining should be some percentage of the programmed rate.
The EMC control system reacts to the setting of the speed or feed override switches on the control
panel, when those switches are enabled. It does this, however, without the interpreter ever
knowing their settings. As mentioned elsewhere, the interpreter will interpret M48 and M49
commands which enable or disable the switches, but it does not need to know what their settings
are to do that. In Table 3 there is no representation of the settings of these switches.

The optional program stop switch on the machine console works as follows. If this switch is on
and an input line contains an M1 code, program execution is supposed to stop until the cycle start
button is pushed. The interpreter interprets an M1 on an input line into an
OPTIONAL_PROGRAM_STOP canonical command in the output, as described elsewhere in this
report. The interpreter itself has no knowledge of the setting of the optional program stop switch.
In Table 3 there is no representation of the setting of this switch. It is up to the rest of the EMC
control system to check the optional stop switch when the optional_program_stop canonical
command is executed and either stop or not.

6 Capabilities of the RS274/NGC Interpreter

The interpreter implements only a portion of the RS274/NGC language. The current version
includes the following capabilities. Any capability not explicitly included is excluded. Trying to
use any excluded capability in an NC program will cause an error in the interpreter.

6.1 Words Recognized

The interpreter recognizes words beginning with the letters shown in Table 6. The meanings of the
letters are as given in [NCMS, pages 8 - 11 and elsewhere]:

 RS274/NGC Interpreter - Version 2

20

6.2 Input G Codes and M Codes

This section describes the specific G codes and M codes which have been implemented in the
interpreter.

6.2.1 G Codes Implemented

The G codes shown in Table 7 have been implemented. Unless noted otherwise in this document,
implementation is as described in [NCMS]:

Letter Meaning

B B-axis of machine
D tool radius compensation number
F feedrate
G general function (see below)
H tool length offset
I X-axis offset for arcs

X offset in G87 canned cycle
J Y-axis offset for arcs

Y offset in G87 canned cycle
K Z-axis offset for arcs

Z offset in G87 canned cycle
L number of repetitions in canned cycles

key used with G10
M miscellaneous function (see below)
N line number
P dwell time with G4 and in canned cycles

key used with G10
Q feed increment in G83 canned cycle
R arc radius

canned cycle plane
S spindle speed
T tool selection
X X-axis of machine
Y Y-axis of machine
Z Z-axis of machine

Table 6. Letters Recognized by the Interpreter

 RS274/NGC Interpreter - Version 2

21

G Code Meaning
G0 rapid positioning
G1 linear interpolation
G2 circular/helical interpolation (clockwise)
G3 circular/helical interpolation (counterclockwise)
G4 dwell
G10 coordinate system origin setting
G17 xy plane selection
G18 xz plane selection
G19 yz plane selection
G20 inch system selection
G21 millimeter system selection
G40 cancel cutter diameter compensation
G41 start cutter diameter compensation left
G42 start cutter diameter compensation right
G43 tool length offset (plus)
G49 cancel tool length offset
G53 motion in machine coordinate system
G54 use preset work coordinate system 1
G55 use preset work coordinate system 2
G56 use preset work coordinate system 3
G57 use preset work coordinate system 4
G58 use preset work coordinate system 5
G59 use preset work coordinate system 6
G59.1 use preset work coordinate system 7
G59.2 use preset work coordinate system 8
G59.3 use preset work coordinate system 9
G80 cancel motion mode (including any canned cycle)
G81 drilling canned cycle
G82 drilling with dwell canned cycle
G83 chip-breaking drilling canned cycle
G84 right hand tapping canned cycle
G85 boring, no dwell, feed out canned cycle
G86 boring, spindle stop, rapid out canned cycle
G87 back boring canned cycle
G88 boring, spindle stop, manual out canned cycle
G89 boring, dwell, feed out canned cycle
G90 absolute distance mode
G91 incremental distance mode
G92 offset coordinate systems
G92.2 cancel offset coordinate systems
G93 inverse time feed mode
G94 feed per minute mode
G98 initial level return in canned cycles
G99 R-point level return in canned cycles

Table 7. G Codes Implemented in the Interpreter

 RS274/NGC Interpreter - Version 2

22

6.2.2 Input M Codes Implemented

The following M codes are implemented as described in [NCMS], except that M30 also does a
pallet shuttle and M26, M27 and M60 are language extensions as described in Section 1.2.4.

7 Limitations of the Interpreter

The interpreter implements the parts of RS274/NGC which are expected to be most heavily used,
but this includes only about half the language. This section calls out the major limitations of the
interpreter.

Many G Codes and M Codes are not implemented. The interpreter handles 44 G codes; [NCMS]
defines just over 100 G codes. The interpreter handles 13 of the 20 M codes defined in [NCMS],
plus three not defined there. None of the canned cycles for milling are implemented, none of the
skip functions are implemented, paramacros are not implemented, most of the setup commands
are not implemented, and computational programming is not implemented. No commands for
transfer of control are implemented [NCMS, pages 74 - 76]. This includes: conditional operators
and GOTO, IF-GOTO, and WHILE-DO-END commands.

The interpreter does not save input. This means that RS274/NGC programs cannot be written
using the interpreter, which is of little importance. It also means that there is no record of what the
user did, which is more important. The manual makes no provisions regarding saving input.

The manual [NCMS, pages 47, 49, 53 - 58] specifies the meaning of many parameters. While
these parameters exist in the interpreter, only a modest fraction of them have the meaning
specified in the manual, and are initialized or maintained. The manual specifies that some
parameter values should be saved even when the power goes off [NCMS, page 54]. The
interpreter saves no parameter values.

M Code Meaning

M0 program stop
M1 optional program stop
M2 program end
M3 turn spindle clockwise
M4 turn spindle counterclockwise
M5 stop spindle turning
M6 tool change
M7 mist coolant on
M8 flood coolant on
M9 mist and flood coolant off
M26 enable automatic b-axis clamping
M27 disable automatic b-axis clamping
M30 program end, pallet shuttle, and reset
M48 enable speed and feed overrides
M49 disable speed and feed overrides
M60 pallet shuttle and program stop

Table 8. M Codes Implemented in the Interpreter

 RS274/NGC Interpreter - Version 2

23

References

[Albus] Albus, James S; et al;NIST Support to the Next Generation Controller
Program: 1991 Final Technical Report; NISTIR 4888; National Institute of
Standards and Technology, Gaithersburg, MD; July 1992

[Allen Bradley] Allen Bradley;RS274/NGC for the Low End Controller; First Draft; Allen
Bradley; August 1992

[EIA] Electronic Industries Association;EIA Standard EIA-274-D Interchangeable
Variable Block Data Format for Positioning, Contouring, and Contouring/
Positioning Numerically Controlled Machines; Electronic Industries
Association; Washington, DC; February 1979

[Kramer1] Kramer, Thomas R.; Proctor, Frederick M.; Michaloski, John L.;The NIST
RS274/NGC Interpreter, Version 1; NISTIR 5416; National Institute of
Standards and Technology, Gaithersburg, MD; April 1994

[Kramer2] Kramer, Thomas R.; Proctor, Frederick M.;The NIST RS274KT Interpreter;
NISTIR 5738; National Institute of Standards and Technology, Gaithersburg,
MD; October 1995

[Proctor] Proctor, Frederick M.; Kramer, Thomas R.; Michaloski, John L.;Canonical
Functions for 4-Axis Machining; NISTIR in draft; National Institute of
Standards and Technology, Gaithersburg, MD; May 1995

[K&T] Kearney and Trecker Co.;Part Programming and Operating Manual, KT/CNC
Control, Type C; Pub 687D; Kearney and Trecker Corp.; 1980

[Martin] Martin Marietta;Controls Standardized Application (CSA); Draft Volume V of
Next Generation Workstation/Machine Controller (NGC) Specification for an
Open System Architecture Standard (SOSAS); Martin Marietta Document No.
NGC-0001-14-000-CSA; March 1992

[Monarch] Monarch Cortland;Programming Manual for Monarch VMC-75 with General
Electric 2000MC Controls; Monarch Cortland Publication Number PRG
GE2000MC-4

[NCMS] National Center for Manufacturing Sciences;The Next Generation Controller
Part Programming Functional Specification (RS-274/NGC); Draft; NCMS;
August 1994

 RS274/NGC Interpreter - Version 2

24

Appendix A Software and Functional Details

This appendix describes the software for the interpreter. The appendix is intended for users and
programmers who might want to modify the software or simply understand it.

A.1 Software Modules and Function Call Hierarchies

The interpreter is written in C++. The program files are:

1. rs274ngc.cc and its header file, rs274ngc.hh — 9361 lines
2. canon.cc and its header file, canon.hh — 788 lines
3. driver.cc and its header file, nml_emc.hh — 1066 lines

Two methods of using the interpreter, stand-alone and integrated with the rest of EMC, are
provided. The use of programs files differs between the two methods. Some code is common to
both, and some code differs.

The organization of the software by module and file is shown in Figure 1. In the figure, arrows
show the direction of function calls. The stand-alone interpreter uses the files shown in the left
and middle columns. The integrated interpreter uses the files shown in the right and middle
columns. The stand-alone files are arranged so that they mimic the arrangement of the integrated
interpreter. The mimicry is so that running the stand-alone provides as good a test as possible of
running integrated. If there were no integrated interpreter, the EMC emulation functions and data
shown in the left column would not be needed.

In terms of lines of code, excluding the EMC files shown in the right column, about three quarters
of the code is in the kernel functions.

The rs274ngc.cc file has two parts, kernel functions and interface functions. In the file itself the
interface functions are given after the kernel functions. As shown in Figure 1, kernel functions are
called only by interface functions, while interface functions are called by and call back to either
EMC functions (if integrated) or driver functions (in the stand-alone). Both kernel functions and
interface functions call canonical functions.

The driver.cc file also has two parts. In the file itself, the driver functions are given after the EMC
emulation functions. The driver functions provide the user interface, and the EMC emulation
functions provide an EMC-like environment for modeling data about the machine tool and
controller settings.

Different versions of the canonical functions are used in the stand-alone and integrated
interpreters. The canonical functions used with the stand-alone simply print themselves, while
those used integrated send messages describing themselves. The same header file is used with
both versions of the functions.

The source code is assembled automatically from pre-source code. The pre-source code is used
for both the RS274KT interpreter and the RS274/NGC interpreter. In the pre-source code, each
function is kept in a separate file, and there are three separate directories.

1. software common to both interpreters, which includes three subdirectories with all of the
driver, all of the interface functions, and about a third of the kernel. There are many#if
defined sections within individual functions in this directory for differences between the
two interpreters.

 RS274/NGC Interpreter - Version 2

25

2. header files, utilities and functions for the RS274KT interpreter only.
3. header files, utilities and functions for the RS274/NGC interpreter only.

When the pre-source code is assembled into source code, the#if defined sections are preprocessed
so that only the appropriate sections appear in the source code. Figure 1 shows the source code
setup, not the pre-source.

Function call hierarchies are shown in the following four figures. Figure 2 and Figure 3 show
kernel function calls. All kernel functions appear on one or both of the two figures. Figure 4
shows the function calls from the interface functions. Figure 5 shows the hierarchy of function
calls from the driver.

STAND-ALONE
ONLY

STAND-ALONE
AND INTEGRATED

INTEGRATED
ONLY

canon.hh canon.cc
(send message)

canon.cc
(print self)

driver.cc EMC files

nml_emc.hh stub nml_emc.hh

rs274ngc.hh

rs274ngc.cc

interface
functions

kernel
functions

EMC emulation
functions & data

driver
functions

Figure 1. Interpreter Software

 RS274/NGC Interpreter - Version 2

26

read_text close_and_downcase

read_line
check_items check_g_codes

check_m_codes
check_other_codes

init_block
read_items read_line_number

read_integer_unsigned
read_one_item

read_b read_real_value
read_comment
read_d read_integer_value read_real_value
read_f read_real_value
read_g read_real_value
read_i read_real_value
read_j read_real_value
read_k read_real_value
read_l read_integer_value read_real_value
read_m read_integer_value read_real_value
read_p read_real_value
read_parameter_setting

read_integer_value read_real_value
read_real_value

read_q read_real_value
read_r read_real_value
read_spindle_speed

read_real_value
read_tool read_integer_value read_real_value
read_tool_length_offset

read_integer_value read_real_value
read_x read_real_value
read_y read_real_value
read_z read_real_value

utility_enhance_block utility_in_range

read_real_value
read_real_expression

execute_binary1
execute_binary2
read_operation

read_parameter
read_integer_value

read_real_number
read_unary execute_unary

read_atan
read_operation_unary

Figure 2. Interpreter Kernel Function Call Hierarchy
(all but execute_block)

This shows the hierarchy of function calls from interpreter kernel functions read_text and
read_line defined in rs274ngc.cc to other kernel functions (excluding utility_error_number
and nml_log_error - see text). Canonical functions calls are not shown. The hierarchy of calls
from execute_block is shown in Figure 3.

 RS274/NGC Interpreter - Version 2

27

execute_block
convert_comment
convert_feed_mode
convert_feed_rate
convert_g convert_coordinate_system

utility_in_range
convert_cutter_compensation

convert_cutter_compensation_off
convert_cutter_compensation_on

convert_distance_mode
convert_dwell
convert_length_units
convert_modal_0

convert_axis_offsets
utility_in_range

convert_setup utility_in_range
convert_motion

convert_arc convert_arc_comp1 arc_data_comp_ijk
arc_data_comp_r

convert_arc_comp2 arc_data_ijk
arc_data_r

convert_arc_xy arc_data_ijk
arc_data_r
utility_find_arc_length

utility_find_turn
convert_arc_yz arc_data_ijk

arc_data_r
utility_find_arc_length

utility_find_turn
convert_arc_zx arc_data_ijk

arc_data_r
utility_find_arc_length

utility_find_turn
utility_find_ends

convert_cycle convert_cycle_g81
convert_cycle_g82
convert_cycle_g83
convert_cycle_g84
convert_cycle_g85
convert_cycle_g86
convert_cycle_g87
convert_cycle_g88
convert_cycle_g89

convert_straight convert_straight_comp1
convert_straight_comp2
utility_find_ends
utility_find_straight_length

convert_retract_mode
convert_set_plane
convert_tool_length_offset

convert_m convert_tool_change
convert_speed
convert_stop
convert_tool_select

Figure 3. Interpreter Kernel Function Call Hierarchy
(execute_block only)

This shows function calls from execute_block, defined in rs274ngc.cc, to other kernel functions
(excluding utility_error_number and nml_log_error - see text). Canonical function calls are
not shown. The hierarchy of calls from other top-level kernel functions is shown in Figure 2.

 RS274/NGC Interpreter - Version 2

28

nml_interp_block_delete
nml_interp_close reset_interp_wm

nml_interp_execute execute_block
read_line
read_text
write_g_codes
write_m_codes

nml_interp_exit reset_interp_wm
nml_interp_halt

nml_interp_init CANON_VECTOR::CANON_VECTOR
GET_B_ORIGIN
GET_LENGTH_UNITS
GET_ORIGIN
GET_PLANE
GET_PROGRAM_ORIGIN
INIT_CANON
io_wm_flood
io_wm_mist
io_wm_pocket
io_wm_speed
io_wm_spindle
io_wm_tool
io_wm_tool_table
NML_ROTPOSE::NML_ROTPOSE
reset_interp_wm
traj_wm_feed
traj_wm_pos
traj_wm_traverse
write_g_codes
write_m_codes

nml_interp_open
nml_interp_optional_stop
nml_interp_pause
nml_interp_read read_line

read_text
reset_interp_wm

nml_interp_resume
nml_interp_run
nml_interp_single_block
nml_interp_step
read_keyboard_line close_and_downcase

Figure 4. Interpreter Interface Function Call Hierarchy

This shows the hierarchy of function calls from interface functions in rs274ngc.cc, to:

1. kernel functions defined in rs274ngc.cc (shown in ordinary typeface).

2. world modeling functions which are externally defined when the interpreter is integrated
with the rest of EMC, but are defined in driver.cc in the stand-alone (shown initalic)

3. other interface functions defined in rs274ngc.cc (shown inboldface)

4. special functions (not canonical functions) defined in canon.cc (or, for
CANON_VECTOR::CANON_VECTOR, in canon.hh) (shown inbold italic).

Eight interface functions defined in rs274ngc.cc but not used in the stand-alone are not shown.

 RS274/NGC Interpreter - Version 2

29

A.2 Source Code Documentation

The source code is heavily documented. In general, for each function, four fields are given:

1. Returned Value - a description of possible returned values and the circumstances in which
particular values may be returned. In most kernel functions and many other functions, either OK
or ERROR may be returned.

2. Side Effects - a description of the important side effects (things other than the returned value) of
executing a function. Since the returned value of most functions is used to indicate error status,
the side effects of most functions are important.

3. Called By - a list of functions which call the function being documented.

4. Argument Values - a one-line description of the meaning of each argument to a function, placed
immediately after the declaration of the argument. This field is omitted if there are no arguments.

In addition to these four fields, most functions have a paragraph or two (up to several pages) of

main interpret_from_file active_g_codes
active_m_codes
io_wm_init
nml_interp_execute
nml_interp_init
nml_interp_open
nml_interp_read
read_setup_file
read_tool_file
traj_wm_init NML_ROTPOSE::NML_ROTPOSE

interpret_from_keyboard active_g_codes
active_m_codes
io_wm_init
nml_interp_execute
nml_interp_init
read_keyboard_line
read_setup_file
read_tool_file
traj_wm_init NML_ROTPOSE::NML_ROTPOSE

Figure 5. Interpreter Driver Function Call Hierarchy
(for stand-alone interpreter)

This shows the hierarchy of function calls from main in the stand-alone driver file, driver.cc,
to:

1. world modeling functions which are externally defined when the interpreter is integrated
with the rest of EMC but are defined in driver.cc in the stand-alone (shown initalic)

2. other functions defined in driver.cc (shown inboldface)

3. interface functions defined in rs274ngc.cc (shown in ordinary typeface).

 RS274/NGC Interpreter - Version 2

30

discussion. Where a function implements an algorithm for geometric or numerical calculation (as
do many of the functions having to do with cutter radius compensation, for example), the
algorithm is described. Many citations to specific pages of the NCMS manual are included in
these discussions.

 RS274/NGC Interpreter - Version 2

31

Appendix B Functional Details

B.1 Error Handling and Exiting

The interpreter detects and flags most kinds of illegal input. Unreadable input, missing words,
extra words, out-of-bounds numbers, and illegal combinations of words, for example, are all
detected. The interpreter does not check for axis overtravel or excessively high feeds or speeds,
however. The interpreter also does not detect situations where a legal command does something
unfortunate, such as machining a fixture.

Error handling and exiting are handled together by returning a status value of OK, EXIT, or
ERROR from each function where a reason for exiting may be detected or where there is
likelihood of error. One error message is generated for each error. There are three sets of error
messages:

1. input errors detected in the kernel or interface functions.
2. input errors detected in the stand-alone driver.
3. interpreter bugs detected in the kernel or interface functions (which should never occur).

The three sets of error messages are listed in the three subsections of Appendix D. Each message
is intended to explain the error that triggered it clearly enough that a machine operator or NC
programmer will be able to understand it and locate the error in the input. In the stand-alone
interpreter, the line of NC code that caused the error will be printed, if the code is coming from a
file. If the code is coming from the keyboard, it is already printed when the error is detected.

If an error occurs, or if it is time to exit, control is passed back up through the function call
hierarchy to some driver function (for the stand-alone) or to an EMC function (for the integrated
interpreter). Section 2.1.1 describes interpreter behavior in case of an error.

Since returned values are usually used as just described to handle the possibility of errors, an
alternative method of passing calculated values is required. In general, if function A needs a value
for variable V calculated by function B, this is handled by passing a pointer to V from A to B, and
B calculates and sets V.

Reporting errors detected in the kernel or interface functions (set 1 above) is handled entirely by a
compiler macro called ERROR_MACRO. The version of this macro currently in use must be a
macro, not a function, because it contains a “return” statement. All it does is find the error number
of the error, call the nml_log_error function, and return ERROR. The macro has a “name”
argument, which is not currently being used. That argument is for the name of the function
returning the error and was used in earlier versions of the interpreter. Different versions of
nml_log_error are used the stand-alone and integrated interpreters. In the stand-alone,
nml_log_error prints the error to stderr.

Where one function calls a second function that may detect and report an error, the first function
uses a compiler macro called ERROR_MACRO_PASS. All it does is return ERROR. It does not
need to report anything since the second function has already done the reporting.

Reporting errors which are interpreter bugs (set 3 above) is handled by the compiler macro
BUG_MACRO. This behaves the same as ERROR_MACRO. However, all the messages which
can be sent via the BUG_MACRO include the name of the function in which the bug occurred.

Reporting input errors in the driver is handled by the macro DRIVER_ERROR, which takes both

 RS274/NGC Interpreter - Version 2

32

a message string and a value as arguments, so that it can identify the error more precisely. It also
prints messages to stderr and returns ERROR.

In the interpreter source code, error messages from the first and third sets appear both in the text
of functions and in an array of error messages. Error messages in the first set have indexes from 1
to 199, while those in the second set have indexes from 200 to 299. The array is used so that error
messages can be exported by number (the index number of the message in the array) to other parts
of the EMC system. The receiver must have a copy of the array, of course. The text of the
messages could be deleted from the source code, and only the array index used, but that would
delete important self-documentation from the source code. Keeping the array and the source code
consistent requires attention by the system programmer(s) if changes are made but has been
largely automated. The interpreter will detect report “unspecified error” if an error occurs for
which the message in the function does not match any message in the array. If “unspecified error”
is ever received, that exposes the internal inconsistency.

B.2 Cyclic Operation

In the integrated interpreter, input may be taken from a file or via manual data input (MDI) from
the controller console. In the stand-alone, input may be taken from a file or from the keyboard of
the computer running the interpreter. In all cases, two major phases of interpretation take place.
The first phase consists of reading a line of code, checking it somewhat, and storing the
information from the line in a structure called a “block”. The second phase, which is always
started by a call to nml_interp_execute, consists of examining the block, checking it further, and
making calls to canonical functions. With MDI input the nml_interp_execute function triggers
both phases. With file input, in both the stand-alone and the integrated version, the first phase is
started by a call to nml_interp_read. In the stand-alone with keyboard input, the first phase is
started by a call to read_keyboard_line.

B.2.1 Read, Store, and Check

The software reads lines of RS274/NGC code one at a time. First the line is read into a buffer.
Next, any spaces not in comments are removed, and any upper case letters not in comments are
changed to lower case letters.

Then the buffer and a counter holding the index of the next character to be read are handed around
among a lot of functions named read_XXXX. All such functions read characters from the buffer
using the counter. They all reset the counter to point at the character in the buffer following the
last one used by the function. The first character read by most of these functions is expected to be
a member of some set of characters (often a specific single character), and each function checks
the first character.

Each line of code is stored until it has been executed in a reusable “block” structure, which has a
slot for every potential piece of information on the line. Each time a useful piece of information
has been extracted from the line, the information is put into the block.

The read_XXXX functions do a lot of error detection, but they only look for errors which would
cause reading or storing to fail. After reading and storing is complete, more checking functions
(check_g_codes, check_m_codes, and check_other_codes) are run. These functions look for
logical errors, such as all axis words missing with a G code for motion in effect.

 RS274/NGC Interpreter - Version 2

33

B.2.2 Execute

Once a block is built and checked, the block is executed by the execute_block function, which
calls one or more functions named convert_XXXX. In RS274/NGC, as in all dialects of RS274, a
line of code may specify several different things to do, such as moving from one place to another
along a straight line or arc, changing the feed rate, starting the spindle turning, etc. The order of
execution of items in a block is critical to safe and effective machine operation (it is a good idea to
start the spindle before cutting, for example), but is not specified clearly in the manual.

In the interpreter, items are executed in the order shown in Table 9 if they occur in the same block.
Many of the kernel functions rely implicitly on this order being used. The source code
documentation does not generally call out the fact that some other operation must have occurred
before the one being documented.

B.3 Tool Change

[NCMS, pages 73, 74] provides four methods for changing a tool, but there are errors in the text
that make it hard to tell what is intended. In the interpreter a CHANGE_TOOL canonical
command call is made when an M6 code occurs on a line. Since this is a canonical command, it is
not specialized to a particular machine. When the tool change is complete, the following
conditions should prevail.

• The spindle should be stopped.

1. comment (includes message).
2. set feed mode (G93, G94 — inverse time or per minute).
3. set feed rate (F).
4. set spindle speed (S).
5. select tool (T).
6. change tool (M6).
7. spindle on or off (M3, M4, M5).
8. coolant on or off (M7, M8, M9).
9. B-axis clamping on or off (M26, M27).
10. enable or disable overrides (M48, M49).
11. dwell (G4).
12. set active plane (G17, G18, G19).
13. set length units (G20, G21).
14. cutter radius compensation on or off (G40, G41, G42)
15. cutter length compensation on or off (G43, G49)
16. coordinate system selection (G54, G55, G56, G57, G58, G59, G59.1, G59.2, G59.3).
17. set distance mode (G90, G91).
18. set retract mode (G98, G99).
19. change coordinate system data (G10) or axis offsets (G92).
20. perform motion (G0 to G3, G80 to G89).
21. stop (M0, M1, M2, M30, M60).

Table 9. Order of Execution

 RS274/NGC Interpreter - Version 2

34

• The tool that was selected (by a T word on the same line or on any line after the
previous tool change) should be in the spindle. The T number is an integer giving the
slot number of the tool, not a tool id number.

• If the selected tool was not in the spindle before the tool change, the tool that was in the
spindle (if there was one) should be in its changer slot.

• The coordinate axes should be stopped in the same absolute position they were in
before the tool change (but the spindle may be re-oriented).

• No other changes should be made.

The tool change may include axis motion while it is in progress. For any machine, this motion
must be predictable. It is up to the system programmers and operators to ensure that any such
motion will not damage the machine or the workpiece.

If the tooling data is incorrect, so that the tool that was supposed to be selected is not actually in
the expected slot, the tool change operation is not expected to be able to detect this, and no error
will necessarily result. If the machine is able to detect this error, however, it should be detected
and program execution should stop.

B.4 Milling Arcs

In RS274/NGC code [NCMS, pages 20, 21] a circular or helical arc is specified using either G2
(clockwise arc) or G3 (counterclockwise arc). The axis of the circle or helix must be parallel to
the X, Y, or Z-axis of the machine coordinate system. The axis (or, equivalently, the plane
perpendicular to the axis) is selected with G17 (Z-axis, XY-plane), G18 (Y-axis, XZ-plane), or
G19 (X-axis, YZ-plane). If the arc is circular, it lies in a plane parallel to the selected plane.

In the RS274/NGC language, two formats are allowed for specifying an arc. We will call these the
center format and the radius format. The interpreter converts an arc in either format to a canonical
ARC_FEED command, as described in Table 2.

If a line of RS274/NGC code makes an arc and includes a B-axis move, the B-axis turns at a
constant rate so that it starts and finishes when the XYZ motion starts and finishes.

B.4.1 Radius Format Arc

In the radius format, the coordinates of the end point of the arc in the selected plane are specified
along with the radius of the arc. A positive radius indicates that the arc turns through 180 degrees
or less, while a negative radius indicates a turn of 180 degrees to 359.999 degrees. If the arc is
helical, the value of the end point of the arc on the coordinate axis parallel to the axis of the helix
is also specified.

Here is an example of a radius format RS274/NGC command to mill an arc:
G17 G2 x 10 y 15 r 20 z 5

That means to make a clockwise (as viewed from the positive Z-axis) circular or helical arc whose
axis is parallel to the Z-axis, ending where X=10, Y=15, and Z=5, with a radius of 20. If the
starting value of Z is 5, this is a circular arc; otherwise it is a helical arc.

 RS274/NGC Interpreter - Version 2

35

B.4.2 Center Format Arc

In the center format, the coordinates of the end point of the arc in the selected plane are specified
along with the offsets of the center of the arc from the current location.

Here is an example of a center format RS274/NGC command to mill an arc:
G17 G2 x 10 y 15 i 7 j 8 z 5

That means to make a clockwise (as viewed from the positive z-axis) circular or helical arc whose
axis is parallel to the Z-axis, ending where X=10, Y=15, and Z=5, with its center offset in the X
direction by 7 units from the current X location and offset in the Y direction by 8 units from the
current Y location. If the starting value of Z is 5, this is a circular arc; otherwise it is a helical arc.
The radius of the arc is not specified, but it may be found easily as the distance from the center of
the circle to either the current point or the end point of the arc. The interpreter calculates both
these distances and signals an error if they differ by more than 0.0002 inch (if inches are being
used) or 0.002 millimeter (if millimeters are being used).

B.5 Coordinate Systems

The handling of coordinate systems by the interpreter involves the RS274/NGC commands for
setting coordinate systems (G10 L2), selecting coordinate systems (G54, G55, G56, G57, G58,
G59, G59.1, G59.2, and G59.3), offsetting all coordinate systems (G92 and G92.2), and operating
in the absolute machine coordinate system temporarily (G53).

The canonical machining functions view of coordinate systems is:

1. There are two coordinate systems: absolute and program.
2. All coordinate values are given in terms of the program coordinate system.
3. The offsets of the program coordinate system may be reset.

The RS274/NGC view of coordinate systems, as given in section 3.2 of the manual [NCMS] is:

1. There are ten coordinate systems: absolute and 9 program. The program coordinate
systems are numbered 1 to 9.

2. You can switch among the 9 but not to the absolute one. G54 selects coordinate system 1,
G55 selects 2, and so on through G56, G57, G58, G59, G59.1, G59.2, and G59.3.

3. You can set the offsets of the 9 program coordinate systems using G10 L2 Pn (n is the
number of the coordinate system) with values for the axes in terms of the absolute
coordinate system.

4. The first one of the 9 program coordinate systems is the default.
5. Data for coordinate systems is stored in parameters [NCMS, pages 59 - 60].
6. G53 means to interpret coordinate values in terms of the absolute coordinate system for the

one block in which G53 appears.
7. You can offset the current coordinate system using G92. This offset will then apply to all

nine program coordinate systems. This offset may be cancelled with G92.2.

The approach used in the interpreter mates the canonical and NGC views of coordinate systems as
follows:

During initialization, the first NGC coordinate system is selected (origin_ngc in the machine
model is set to 1) with the offsets for that system all set to 0.0.

 RS274/NGC Interpreter - Version 2

36

If a G code in the range G54 - G59.3 is encountered in an NC program, the data from the
appropriate NGC coordinate system is copied into the origin offsets used by the interpreter, a
SET_ORIGIN_OFFSETS function call is made, and the current position is reset.

If a G10 L2 Pn is encountered, the convert_setup function is called to reset the offsets of program
coordinate systemn. If coordinate systemn is the one in use, a SET_ORIGIN_OFFSETS function
call is made, and the current position is reset.

If a G53 is encountered, the axis values given in that block are used to calculate what the
coordinates are of that point in the current coordinate system, and a STRAIGHT_TRAVERSE or
STRAIGHT_FEED function call to that point using the calculated values is made. No offset
values are changed.

If a G92 or G92.2 is encountered, that is handled by the convert_axis_offsets function. A G92
results in an axis offset for each axis being calculated and stored in the machine model, a
SET_ORIGIN_OFFSETS function call is made, and the current position is reset. The axis offsets
are applied with all nine coordinate systems. Axis offsets are initialized to zero. A G92.2 results in
the axis offsets for all axes being reset to zero, a SET_ORIGIN_OFFSETS function call is made,
and the current position is reset.

B.6 Tool Length Offsets

Tool length offsets are given as positive numbers in the tool table. Using a tool length offset is
programmed using G43 Hn, wheren is the desired table index. It is expected that all entries in this
table will be positive. Using no tool length offset is programmed using G49 [NCMS, page 74].
The H number is checked for being a non-negative integer when it is read. The interpreter behaves
as follows.

1. If G43 Hn is programmed, A USE_TOOL_LENGTH_OFFSET(length) function call is made
(where length is the value of the tool length offset entry in the tool table whose index isn),
tool_length_offset is reset in the machine settings model, and the value of current_z in the model
is adjusted. Note thatn does not have to be the same as the slot number of the tool currently in the
spindle. The RS274/NGC interpreter differs from the RS274KT interpreter in this regard.

2. If G49 is programmed, USE_TOOL_LENGTH_OFFSET(0.0) is called, tool_length_offset is
reset to 0.0 in the machine settings model, and the value of current_z in the model is adjusted.

B.7 Cutter Radius Compensation

The complete set of canonical functions includes functions which turn cutter radius
compensation1 on and off, so that cutter radius compensation can be performed in the controller
executing the canonical functions. In the RS274NGC interpreter, however, these commands are
not used. Compensation is done by the interpreter and reflected in the output commands, which
continue to direct the motion of the center of the cutter tip. This simplifies the job of the motion
controller while making the job of the interpreter a little harder.

The algorithms for the linear first and last moves of cutter radius compensation used in the
interpreter may differ from those in the manual [NCMS, pages 78 to 81], but these paths are not
clearly described in the manual. The interpreter allows the entry and exit moves to be arcs, but the

1. The term “cutter diameter compensation” is often used to mean the same thing.

 RS274/NGC Interpreter - Version 2

37

manual does not. The behavior for the intermediate moves is the same, except that some situations
treated as errors in the interpreter are not treated as errors in the manual. In particular, the
interpreter treats concave corners and concave arcs into which the tool will not fit as errors, while
the manual does not. See Figure 6.

The interpreter machine model keeps three data items for cutter radius compensation: the setting
itself (right, left, or off), program_x, and program_y. The last two represent the X and Y positions
which are given in the NC code while compensation is on. When compensation is off, these both
are set to a very small number (10-20) whose symbolic value (in a #define) is “unknown”. The
interpreter machine model uses the data items current_x and current_y to represent the position of
the center of the tool tip (in the currently active coordinate system) at all times.

The algorithm used for the first move when the first move is a straight line is to draw a straight
line from the destination point which is tangent to a circle whose center is at the current point and
whose radius is the radius of the tool. The destination point of the tool tip is then found as the
center of a circle of the same radius tangent to the tangent line at the destination point. This is
shown in Figure 7, which shows the construction in the XY plane. If the programmed point is
inside the initial cross section of the tool (the circle on the left), an error is signalled.

If the first move after cutter radius compensation has been turned on is an arc, the arc which is

Figure 6. Two Cutter Radius Compensation Errors

In both examples, the line represents a tool path, and the circle represents the cross section of a
tool following the path using cutter radius compensation (tangent to one side of the path.)

concave corner - tool does not fit concave arc too small - tool does not fit

Figure 7. First Cutter Radius Compensation Move - Straight

Second, construct this line to
determine the destination point

programmed point

current point

First, construct this line.

destination point of tool tippath of tool tip

 RS274/NGC Interpreter - Version 2

38

generated is derived from an auxiliary arc which has its center at the programmed center point,
passes through the programmed end point, and is tangent to the cutter at its current location. If the
auxiliary arc cannot be constructed, an error is signalled. The generated arc moves the tool so that
it stays tangent to the auxiliary arc throughout the move. This is shown in Figure 8.

If the first move is either a straight line or an arc with the XY plane selected, the Z axis may also
move at the same time. It will move linearly, as it does when cutter radius compensation is not
being used.

After the first move of cutter radius compensation, the interpreter keeps the tool tangent to the
programmed path on the appropriate side. If a convex corner is on the path, an arc is inserted to go
around the corner. The radius of the arc is the tool radius.

When cutter radius compensation is turned off, no special exit move takes place. The next move is
what it would have been if cutter radius compensation had never been turned on and the previous
move had placed the tool at its current position.

If the interpreter has been compiled with the “DEBUG” option on, the interpreter signals when
cutter radius compensation is turned on or off by calling the COMMENT canonical function with
a message to that effect.

B.8 Inverse Time Feed Rate

In the RS274/NGC language, three feed modes are recognized [NCMS, pages 35 - 37]. The
RS274NGC Interpreter implements two of these: units per minute and inverse time. Programming
G94 starts the units per minute mode. Programming G93 starts the inverse time mode. The feed
per revolution mode (G95) is not implemented.

In units per minute feed mode, an F word (no, notthat F word; we meanfeedrate) is interpreted to
mean the tool tip should move at a certain number of inches per minute, millimeters per minute,
or degrees per minute, depending upon what length units are being used and which axis or axes
are moving.

In inverse time feed mode, an F word is interpreted to mean the move should be completed in [one

Figure 8. First Cutter Radius Compensation Move - Arc

programmed center point

current point

First, construct this auxiliary arc.

programmed end point

destination point of tool tip

Second, construct this arc,
which is the path taken.

 RS274/NGC Interpreter - Version 2

39

divided by the F word] minutes. For example, if the F word is 2.0, the move should be completed
in half a minute.

The interpreter handles the inverse time feed rate mode internally. The canonical functions have
no command for putting a machine into this mode. If the interpreter is compiled with DEBUG
#defined, when the interpreter converts a G93 or G94 command, it prints a comment saying it is
going into inverse time feed mode (if G93) or into units per minute feed mode (if G94).

As specified in the manual, when the interpreter is in inverse time feed mode, an F word must
appear on every line which has a motion. For each programmed motion (G1, G2, or G3), the
interpreter calculates what the feed rate must be in units per minute to accomplish the move in the
specified time. A SET_FEED_RATE canonical command (which always means units per minute)
is output by the interpreter with this calculated rate. The calculation is: multiply the input F word
by the path length of tool tip motion appropriate to the given kind of motion.

Cutter radius compensation cannot be used in inverse time feed mode. An error will occur in the
interpreter if this is attempted in the input code.

Being in inverse time feed mode does not affect G0 (rapid traverse) motions.

B.9 Canned Cycles

The canned cycles G81 through G89 have been implemented [NCMS, pages 98 - 100]. The
manual is very sketchy regarding what these cycles are supposed to do. This section describes
how each cycle has been implemented. Two examples are given with the description of G81
below.

All canned cycles are performed with respect to the XY plane. No B-axis motion is allowed
during canned cycles, inverse time feed rate is not allowed, and cutter radius compensation is not
allowed.

All canned cycles use X, Y, R, and Z values in the NC code. These values are used to determine X,
Y, R, and Z positions. The R (usually meaning retract) position is along the Z-axis. Some canned
cycles use additional arguments.

In incremental distance mode, X, Y, and R values are treated as increments to the current position
and Z as an increment from the Z-axis position before the move involving Z takes place. In
absolute distance mode, the X, Y, R, and Z values are absolute positions in the current coordinate
system.

The repeat feature has been implemented, wherein the L word represents the number of repeats
[NCMS, page 99]. We are not allowing L=0, contrary to the manual. If the repeat feature is used,
it is normally used in incremental distance mode, so that the same sequence of motions is repeated
in several equally spaced places along a straight line. We are allowing L > 1 in absolute distance
mode to mean “do the same cycle in the same place several times”, as provided in the manual,
although this seems abnormal. Omitting the L value is equivalent to specifying L=1.

When L>1 in incremental mode, the X and Y positions are determined by adding the given X and
Y values either to the current X and Y positions (on the first go-around) or to the X and Y
positions at the end of the previous go-around (on the second and successive go-arounds). The R
and Z positions do not change during the repeats.

 RS274/NGC Interpreter - Version 2

40

The height of the retract move at the end of each repeat (called “clear Z” in the descriptions
below) is determined by the setting of the retract_mode: either to the original Z position (if that is
above the R position and the retract_mode is G98, OLD_Z), or otherwise to the R position. This is
a slight departure from [NCMS, page 98], which does not require checking that the original Z
position is above the R position.

B.9.1 Preliminary Motion

At the very beginning of the execution of any of the canned cycles, if the current Z position is
below the R position, the Z axis is traversed to the R position. This happens only once, regardless
of the value of L.

In addition, for each repeat as specified by L, one or two moves are made before the rest of the
cycle:

1. a straight traverse parallel to the XY-plane to the given XY-position
2. a straight traverse of the Z-axis only to the R position, if it is not already at the R position.

B.9.2 G81 Cycle

The G81 cycle is intended for drilling.

0. Preliminary motion, as described above.
1. Move the Z-axis only at the current feed rate to the Z position.
2. Retract the Z-axis at traverse rate to clear Z.

Example 1. Suppose the current position is (1, 2, 3) and the following line of NC code is
interpreted.

G90 G81 G98 X4 Y5 Z1.5 R2.8

This calls for absolute distance mode (G90) and OLD_Z retract mode (G98) and calls for the G81
drilling cycle to be performed once. The X value and X position are 4. The Y value and Y position
are 5. The Z value and Z position are 1.5. The R value and clear Z are 2.8. Old Z is 3. The
following moves take place.

1. a traverse parallel to the XY plane to (4,5,3).
2. a traverse parallel to the Z-axis to (4,5,2.8)
3. a feed parallel to the Z-axis to (4,5,1.5)
4. a traverse parallel to the Z-axis to (4,5,3)

Example 2. Suppose the current position is (1, 2, 3) and the following line of NC code is
interpreted.

G91 G81 G98 X4 Y5 Z-0.6 R1.8 L3

This calls for incremental distance mode (G91) and OLD_Z retract mode (G98) and calls for the
G81 drilling cycle to be repeated three times. The X value is 4, the Y value is 5, the Z value is -0.6
and the R value is 1.8. The initial X position is 5 (=1+4), the initial Y position is 7 (=2+5), the
clear Z position is 4.8 (=1.8+3), and the Z position is 4.2 (=4.8-0.6). Old Z is 3.

The first move is a traverse along the Z axis to (1,2,4.8), since old Z < clear Z.

The first repeat consists of 3 moves.

 RS274/NGC Interpreter - Version 2

41

1. a traverse parallel to the XY-plane to (5,7,4.8)
2. a feed parallel to the Z-axis to (5,7, 4.2)
3. a traverse parallel to the Z-axis to (5,7,4.8)

The second repeat consists of 3 moves. The X position is reset to 9 (=5+4) and the Y position to
12 (=7+5).

1. a traverse parallel to the XY-plane to (9,12,4.8)
2. a feed parallel to the Z-axis to (9,12, 4.2)
3. a traverse parallel to the Z-axis to (9,12,4.8)

The third repeat consists of 3 moves. The X position is reset to 13 (=9+4) and the Y position to 17
(=12+5).

1. a traverse parallel to the XY-plane to (13,17,4.8)
2. a feed parallel to the Z-axis to (13,17, 4.2)
3. a traverse parallel to the Z-axis to (13,17,4.8)

B.9.3 G82 Cycle

The G82 cycle is intended for drilling.

0. Preliminary motion, as described above.
1. Move the Z-axis only at the current feed rate to the Z position.
2. Dwell for the given number of seconds.
3. Retract the Z-axis at traverse rate to clear Z.

B.9.4 G83 Cycle

The G83 cycle is intended for deep drilling or milling with chipbreaking. The dwell in this cycle
causes any long stringers (which are common when drilling in aluminum) to be cut off. This cycle
takes a Q value which represents a “delta” increment along the Z-axis.

0. Preliminary motion, as described above.
1. Move the Z-axis only at the current feed rate downward by delta or to the Z position,

whichever is less deep.
2. Dwell for 0.25 second.
3. Repeat steps 1 and 2 until the Z position is reached.
4. Retract the Z-axis at traverse rate to clear Z.

B.9.5 G84 Cycle

The G84 cycle is intended for right-hand tapping.

0. Preliminary motion, as described above.
1. Start speed-feed synchronization.
2. Move the Z-axis only at the current feed rate to the Z position.
3. Stop the spindle.
4. Start the spindle counterclockwise.
5. Retract the Z-axis at the current feed rate to clear Z.
6. If speed-feed synch was not on before the cycle started, stop it.
7. Stop the spindle.
8. Start the spindle clockwise.

 RS274/NGC Interpreter - Version 2

42

B.9.6 G85 Cycle

The G85 cycle is intended for boring or reaming.

0. Preliminary motion, as described above.
1. Move the Z-axis only at the current feed rate to the Z position.
2. Retract the Z-axis at the current feed rate to clear Z.

B.9.7 G86 Cycle

The G86 cycle is intended for boring. This cycle uses a P value, where P specifies the number of
seconds to dwell.

0. Preliminary motion, as described above.
1. Move the Z-axis only at the current feed rate to the Z position.
2. Dwell for the given number of seconds.
3. Stop the spindle turning.
4. Retract the Z-axis at traverse rate to clear Z.
5. Restart the spindle in the direction it was going.

B.9.8 G87 Cycle

The G87 cycle is intended for back boring. The cycle which has been implemented is a modified
version of [Monarch, page 5-24] since [NCMS, pages 98 - 100] gives no clue as to what the cycle
is supposed to do. [K&T] does not have a back boring cycle.

The situation is that you have a through hole and you want to counterbore the bottom of hole. To
do this you put an L-shaped tool in the spindle with a cutting surface on the UPPER side of its
base. You stick it carefully through the hole when it is not spinning and is oriented so it fits
through the hole, then you move it so the stem of the L is on the axis of the hole, start the spindle,
and feed the tool upward to make the counterbore. Then you stop the tool, get it out of the hole,
and restart it.

This cycle uses I and J values to indicate the position for inserting and removing the tool. I and J
will always be increments from the X position and the Y position, regardless of the distance mode
setting, as implied in [NCMS, page 98]. This cycle also uses a K value to specify the position
along the Z-axis of the top of counterbore. The K value is an absolute Z-value in absolute distance
mode, and an increment (from the Z position) in incremental distance mode.

0. Preliminary motion, as described above.
1. Move at traverse rate parallel to the XY-plane to the point indicated by I and J.
2. Stop the spindle in a specific orientation.
3. Move the Z-axis only at traverse rate downward to the Z position.
4. Move at traverse rate parallel to the XY-plane to the X,Y location.
5. Start the spindle in the direction it was going before.
6. Move the Z-axis only at the given feed rate upward to the position indicated by K.
7. Move the Z-axis only at the given feed rate back down to the Z position.
8. Stop the spindle in the same orientation as before.
9. Move at traverse rate parallel to the XY-plane to the point indicated by I and J.
10. Move the Z-axis only at traverse rate to the clear Z.
11. Move at traverse rate parallel to the XY-plane to the specified X,Y location.

 RS274/NGC Interpreter - Version 2

43

12. Restart the spindle in the direction it was going before.

B.9.9 G88 Cycle

The G88 cycle is intended for boring. This cycle uses a P value, where P specifies the number of
seconds to dwell.

0. Preliminary motion, as described above.
1. Move the Z-axis only at the current feed rate to the Z position.
2. Dwell for the given number of seconds.
3. Stop the spindle turning.
4. Stop the program so the operator can retract the spindle manually.
5. Restart the spindle in the direction it was going.

B.9.10 G89 Cycle

The G89 cycle is intended for boring. This cycle uses a P value, where P specifies the number of
seconds to dwell.

0. Preliminary motion, as described above.
1. Move the Z-axis only at the current feed rate to the Z position.
2. Dwell for the given number of seconds.
3. Retract the Z-axis at the current feed rate to clear Z.

 RS274/NGC Interpreter - Version 2

44

Appendix C Transcript of a Session

This is a transcript of a session using the stand-alone interpreter with keyboard input. Characters
entered by the user are shown inboldface . All user input is followed by a carriage return not
shown here.

1} rs274ngc
1 N0 SET_FEED_REFERENCE(CANON_XYZ)

name of tool file => ../tool/cds
name of setup file =>
using default machine setup
READ => g1 x3 y1 f20.0
EXEC <- ;
2 N ... SET_FEED_RATE(20.0000)
3 N ... STRAIGHT_FEED(3.0000, 1.0000, 0.0000, 0, 0.0000)

READ => g2 x[6-[4*3/2]] r 7.01 z0.5
EXEC <- ;
4 N ... ARC_FEED(0.0000, 1.0000, 1.5000, 7.8476, -1, 0.5000, 0, 0.0000)

READ => (that was a helical arc)
EXEC <- ;
5 N ... COMMENT(“that was a helical arc”)

READ => t2
EXEC <- ;
6 N ... SELECT_TOOL(2)

READ => m6 g43 h2
EXEC <- ;
7 N ... CHANGE_TOOL(2)
8 N ... USE_TOOL_LENGTH_OFFSET(1.0000)

READ => m2
EXEC <- ;
9 N ... PROGRAM_END()

READ => g1 x asim[0.5]
EXEC <- ;
interpreter error 134: Unknown word starting with A
READ => g1 x asin[0.5]
EXEC <- ;
10 N ... STRAIGHT_FEED(30.0000, 1.0000, -0.5000, 0, 0.0000)

READ => g91 g81 x3 y2 z-0.8 r1.5 l2
EXEC <- ;
11 N ... COMMENT(“interpreter: distance mode changed to incremental”)
12 N ... STRAIGHT_TRAVERSE(30.0000, 1.0000, 1.0000, 0, 0.0000)
13 N ... STRAIGHT_TRAVERSE(33.0000, 3.0000, 1.0000, 0, 0.0000)
14 N ... STRAIGHT_FEED(33.0000, 3.0000, 0.2000, 0, 0.0000)
15 N ... STRAIGHT_TRAVERSE(33.0000, 3.0000, 1.0000, 0, 0.0000)
16 N ... STRAIGHT_TRAVERSE(36.0000, 5.0000, 1.0000, 0, 0.0000)
17 N ... STRAIGHT_FEED(36.0000, 5.0000, 0.2000, 0, 0.0000)
18 N ... STRAIGHT_TRAVERSE(36.0000, 5.0000, 1.0000, 0, 0.0000)

READ => quit

 RS274/NGC Interpreter - Version 2

45

Appendix D Error Messages

The error messages used throughout the interpreter are intended to be self-explanatory. There are
three categories of error message: interpreter kernel and interface input error messages, interpreter
kernel internal error messages, and interpreter driver input error messages. These are described in
Appendix D.1, Appendix D.2, and Appendix D.3, respectively. Each list is arranged
alphabetically (except the “unspecified error” message is first in Appendix D.1). Messages are in
boldface type. Following each message in Appendix D.1 and Appendix D.3 is the name of the
function or functions in which it is found, printed initalics.

D.1 Interpreter Kernel and Interface Input Error Messages

This is a list of all input error messages in the interpreter kernel and interface. Each message
describes some kind of error in the input to the interpreter. Each message has a number, which is
the index number of the message in the array of error messages in the source code; this number is
printed at the beginning of each line.

The “Unspecified error” error message should never appear. If it does, this means there is an error
message in the source code which has been left out of the error message array. If this happens,
please contact kramer@cme.nist.gov by email; include the message and describe the
circumstances in which it appeared.

0. Unspecified error. .see note above
1. All axes missing with G92 . check_g_codes
2. Arc radius too small to reach end point . arc_data_r
3. Argument to acos out of range. execute_unary
4. Argument to asin out of range. execute_unary
5. Attempt to divide by zero. execute_binary1
6. B-axis value greater than 359.999 used. utility_enhance_block
7. Bad character used. read_one_item
8. Bad format unsigned integer .read_integer_unsigned
9. Bad number format . read_real_number
10. Bad tool radius value with cutter radius comp . . convert_arc_comp1, convert_arc_comp2,
. convert_straight_comp1, convert_straight_comp2
11. Cannot change axis offsets with cutter radius comp. convert_axis_offsets
12. Cannot change units with cutter radius comp. convert_length_units
13. Cannot do G1 with zero feed rate . convert_straight
14. Cannot do zero repeats of cycle. convert_cycle
15. Cannot have concave corner with cutter radius compconvert_straight_comp2
16. Cannot make arc with zero feed rate . convert_arc
17. Cannot put a B-axis command in a canned cycle check_other_codes
18. Cannot raise negative number to non-integer power execute_binary1
19. Cannot turn cutter radius comp on out of XY-plane. . . . convert_cutter_compensation_on
20. Cannot turn cutter radius comp on when already on . . . convert_cutter_compensation_on
21. Cannot use G0 with cutter radius comp. convert_straight
22. Cannot use G53 in incremental distance mode . check_g_codes
23. Cannot use G53 with cutter radius comp. convert_straight
24. Cannot use XZ plane with cutter radius comp . convert_set_plane

 RS274/NGC Interpreter - Version 2

46

25. Cannot use YZ plane with cutter radius comp . convert_set_plane
26. Cannot use a G code for motion with G10 . check_g_codes
27. Cannot use a G motion with G92 . check_g_codes
28. Cannot use axis commands with G4. check_g_codes
29. Cannot use axis commands with G80. check_g_codes
30. Cannot use inverse time feed with cutter radius comp convert_straight
31. Cannot use two G codes from group 0 . check_g_codes
32. Command too long . close_and_downcase, nml_interp_execute
33. Concave corner with cutter radius comp . convert_arc_comp2
34. Coordinate setting given with G80 .convert_motion
35. Current point same as end point of arc. arc_data_comp_r, arc_data_r
36. Cutter gouging with cutter radius comp. .convert_straight_comp1
37. D word missing with cutter radius comp on. convert_cutter_compensation_on
38. D word on line with no cutter comp on (G41 or G42) command. check_other_codes
39. Dwell time missing with G4 . check_g_codes
40. Equal sign missing in parameter setting. read_parameter_setting
41. F word missing with inverse time G1 move . convert_straight
42. F word missing with inverse time arc move .convert_motion
43. File ended with no stopping command given. .read_text
44. G code out of range. read_g
45. H word on line with no tool length comp (G43) command. check_other_codes
46. I word given for arc in YZ-plane. convert_arc
47. I word missing with G87. convert_cycle
48. I word on line with no G code (G2, G3, G87) that uses it check_other_codes
49. J word given for arc in XZ-plane. convert_arc
50. J word missing with G87 . convert_cycle
51. J word on line with no G code (G2, G3, G87) that uses it. check_other_codes
52. K word given for arc in XY-plane . convert_arc
53. K word missing with G87. convert_cycle
54. K word on line with no G code (G2, G3, G87) that uses it check_other_codes
55. L word on line with no canned cycle or G10 to use it check_other_codes
56. Left bracket missing after slash with atan operator . read_atan
57. Left bracket missing after unary operation name. read_unary
58. Line number greater than 99999. read_line_number
59. Line with G10 does not have L2 . check_g_codes
60. M code greater than 99. read_m
61. Mixed radius-ijk format for arc . convert_arc
62. Multiple B words on one line. read_b
63. Multiple D words on one line. read_d
64. Multiple F words on one line . read_f
65. Multiple I words on one line . read_i
66. Multiple J words on one line . read_j
67. Multiple K words on one line. .read_k
68. Multiple L words on one line. read_l
69. Multiple P words on one line . read_p
70. Multiple Q words on one line. read_q

 RS274/NGC Interpreter - Version 2

47

71. Multiple R words on one line. .read_r
72. Multiple S word spindle speed settings on one line read_spindle_speed
73. Multiple T words (tool ids) on one line. read_tool
74. Multiple X words on one line. .read_x
75. Multiple Y words on one line. .read_y
76. Multiple Z words on one line. .read_z
77. Multiple tool length offsets on one line. read_tool_length_offset
78. Must use G0 or G1 with G53. check_g_codes
79. Negative D code used . read_d
80. Negative F word found . read_f
81. Negative G code used . read_g
82. Negative L word used. read_l
83. Negative M code used. read_m
84. Negative P value used. read_p
85. Negative Q value used. read_q
86. Negative argument to sqrt . execute_unary
87. Negative spindle speed found. read_spindle_speed
88. Negative tool id used. read_tool
89. Negative tool length offset used. read_tool_length_offset
90. Nested comment found. close_and_downcase
91. No characters found in reading real value . read_real_value
92. No digits found where real number should be . read_real_number
93. Non-integer value for integer. .read_integer_value
94. Null missing after newline . close_and_downcase
95. Offset index missing .convert_tool_length_offset
96. P value not an integer with G10 L2. check_g_codes
97. P value out of range with G10 L2 . check_g_codes
98. P word (dwell time) missing with G82 . convert_cycle
99. P word (dwell time) missing with G86 . convert_cycle
100. P word (dwell time) missing with G88 . convert_cycle
101. P word (dwell time) missing with G89 . convert_cycle
102. P word on line with no G code (G4 G10 G82 G86 G88 G89) that uses it
. check_other_codes
103. Parameter number out of range read_parameter, read_parameter_setting
104. Q word (depth increment) missing with G83. convert_cycle
105. Q word on line with no G83 cycle that uses it . check_other_codes
106. R clearance plane unspecified in canned cycle. convert_cycle
107. R value less than Z value in canned cycle. convert_cycle
108. R word on line with no G code (arc or cycle) that uses it check_other_codes
109. R, I, J, and K words all missing for arc . convert_arc
110. Radius to end of arc differs from radius to start of arc. .
. arc_data_comp_ijk, arc_data_ijk
111. Radius too small to reach end point .arc_data_comp_r
112. Selected tool slot number too large . convert_tool_select
113. Slash missing. read_atan
114. Spindle not turning clockwise in G84 canned cycle. convert_cycle_g84

 RS274/NGC Interpreter - Version 2

48

115. Spindle not turning in G86 canned cycle . convert_cycle_g86
116. Spindle not turning in G87 canned cycle . convert_cycle_g87
117. Spindle not turning in G88 canned cycle . convert_cycle_g88
118. Too many G codes on line. check_g_codes
119. Too many M codes on line .check_m_codes
120. Tool index out of bounds .convert_tool_length_offset
121. Tool radius not less than arc radius with cutter radius comp arc_data_comp_r,
. convert_arc_comp2
122. Two G codes used from same modal group . read_g
123. Two M codes used from same modal group . read_m
124. Unable to open file. nml_interp_open
125. Unclosed comment found. close_and_downcase
126. Unclosed expression .read_operation
127. Unknown G code used . read_g
128. Unknown M code used . read_m
129. Unknown operation name starting with A. .read_operation
130. Unknown operation name starting with M .read_operation
131. Unknown operation name starting with O. .read_operation
132. Unknown operation name starting with X. .read_operation
133. Unknown operation .read_operation
134. Unknown word starting with A . read_operation_unary
135. Unknown word starting with C. read_operation_unary
136. Unknown word starting with E . read_operation_unary
137. Unknown word starting with F . read_operation_unary
138. Unknown word starting with L . read_operation_unary
139. Unknown word starting with R. read_operation_unary
140. Unknown word starting with S . read_operation_unary
141. Unknown word starting with T . read_operation_unary
142. Unknown word where unary operation could be. read_operation_unary
143. X and Y words missing for arc in XY-plane. convert_arc
144. X and Z words missing for arc in XZ-plane. convert_arc
145. X, Y, Z, and B words all missing with G0 or G1 . convert_straight
146. Y and Z words missing for arc in YZ-plane. convert_arc
147. Z value unspecified in canned cycle. convert_cycle
148. Zero or negative argument to ln . execute_unary

 RS274/NGC Interpreter - Version 2

49

D.2 Interpreter Kernel Internal Error Messages

The following error messages should never appear but are provided as a check on the internal
workings of the interpreter kernel. Each message has a number, which is the index number of the
message in the array of error messages in the source code; this number is printed here at the
beginning of each line. The name of the function in which the error has occurred is part of each
message. The appearance of one of these means there is a bug in the source code for the
interpreter. If one of these error messages ever appears, please contact kramer@cme.nist.gov by
email; include the message and describe the circumstances in which it appeared.

200. Bad setting of g_mode in check_g_codes
201. Code is not G0 or G1 in convert_straight
202. Code is not G0 to G3 or G80 to G89 in convert_motion
203. Code is not G10, G92, or G92.2 in convert_modal_0
204. Code is not G17, G18, or G19 in convert_set_plane
205. Code is not G2 or G3 in arc_data_comp
206. Code is not G2 or G3 in arc_data_ijk
207. Code is not G20 or G21 in convert_length_units
208. Code is not G40, G41, or G42 in convert_cutter_compensation
209. Code is not G43 or G49 in convert_tool_length_offset
210. Code is not G54 to G59.3 in convert_coordinate_system
211. Code is not G90 or G91 in convert_distance_mode
212. Code is not G92 or G92.2 in convert_axis_offsets
213. Code is not G93 or G94 in convert_feed_mode
214. Code is not G98 or G99 in convert_retract_mode
215. Code is not M0, M1, M2, M30 or M60 in convert_stop
216. Convert_cycle should not have been called
217. Distance mode is neither absolute nor incremental in convert_cycle
218. Plane is not XY, YZ, or XZ in convert_arc
219. Read_b should not have been called
220. Read_comment should not have been called
221. Read_d should not have been called
222. Read_f should not have been called
223. Read_g should not have been called
224. Read_i should not have been called
225. Read_j should not have been called
226. Read_k should not have been called
227. Read_l should not have been called
228. Read_line_number should not have been called
229. Read_m should not have been called
230. Read_p should not have been called
231. Read_parameter should not have been called
232. Read_parameter_setting should not have been called
233. Read_q should not have been called
234. Read_r should not have been called
235. Read_real_expression should not have been called
236. Read_spindle_speed should not have been called

 RS274/NGC Interpreter - Version 2

50

237. Read_tool should not have been called
238. Read_tool_length_offset should not have been called
239. Read_x should not have been called
240. Read_y should not have been called
241. Read_z should not have been called
242. Side fails to be right or left in convert_straight_comp1
243. Side fails to be right or left in convert_straight_comp2
244. Sscanf failure in read_integer_unsigned
245. Sscanf failure in read_real_number
246. Unknown operation in execute_binary1
247. Unknown operation in execute_binary2
248. Unknown operation in execute_unary

 RS274/NGC Interpreter - Version 2

51

D.3 Interpreter Driver Input Error Messages

The following error messages may be printed by the stand-alone interpreter but not the integrated
interpreter. Each message describes an error in the input to the stand-alone interpreter that is not
an interpreter kernel error. The messages originate in the source code for the stand-alone
interpreter driver. A word inbold italics stands for a number or word that will differ according the
exact nature of the error. The error messages are not kept in an array.

1. Bad input line "text_line" in setup file .read_setup_file
2. Bad input line "text_line" in tool file. .read_tool_file
3. Bad setup file format. .read_setup_file
4. Bad tool file format .read_tool_file
5. Bad valuegiven_value for block_delete in setup fileread_setup_file
6. Bad valuegiven_value for cutter_radius_comp in setup file.read_setup_file
7. Bad valuegiven_value for distance_mode in setup fileread_setup_file
8. Bad valuegiven_value for feed_mode in setup file. .read_setup_file
9. Bad valuegiven_value for flood in setup file. .read_setup_file
10. Bad valuegiven_value for length_units in setup file read_setup_file
11. Bad valuegiven_value for mist in setup file .read_setup_file
12. Bad valuegiven_value for plane in setup file .read_setup_file
13. Bad valuegiven_value for speed_feed_mode in setup fileread_setup_file
14. Bad valuegiven_value for spindle_turning in setup file read_setup_file
15. Cannot openfile_name. .read_setup_file, read_tool_file
16. Unknown attribute attribute_name in setup file .read_setup_file
17. Usage "rs274ngc" or "rs274ngc filename" or "rs274ngc filename continue". main

 RS274/NGC Interpreter - Version 2

52

Appendix E Production Rules for Line Grammar and Syntax

The following is a production rule definition of what this RS274/NGC interpreter recognizes as
valid combinations of symbols which form a readable line (the term “line” is at the top of this
production hierarchy). The productions are arranged alphabetically to make connections easy to
trace.

The productions are intended to be unambiguous. That is, no permissible line of code can be
interpreted more than one way. To make the productions below entirely unambiguous, it is
implicit that if a string of characters that can meet the requirements of an ordinary comment also
can be interpreted as a message, that string is a message and not an ordinary comment.

The term comment_character is used in the productions but not defined there. A comment
character is any printable character plus space and tab, except for a left parenthesis or right
parenthesis. This implies comments cannot be nested.

It is implicit in the production rules that, except inside parentheses, space and tab characters may
be ignored, or have been removed by pre-processing.

These production rules do not include constraints implied by the semantics of the interpreter.
Most of the constraints are in terms of combinations of words (as defined below). Many lines of
code that are readable under these production rules will not be executable because they violate
constraints. Any constraint violation will be detected by the interpreter and will result in an error
message. The error messages are included in Appendix D.

In the productions, a parameter_index is defined as a synonym for real_value. The constraint on a
parameter_index is that it must be an integer between 1 and 5399 (inclusive).

E.1 Production Language

The symbols in the productions are mostly standard syntax notation. Meanings of the symbols
follow.

= The symbol on the left of the equal sign is equivalent to the expression on the right

+ followed by

| or

. end of production (a production may have several lines)

[] zero or one of the expression inside square brackets may occur

{ } zero to many of the expression inside curly braces may occur

() exactly one of the expression inside parentheses must occur

E.2 Productions

Any term in this subsection that is used on the right of an equal sign but is not defined in this
subsection (i.e., does not appear on the left in any definition) is defined in the next subsection in
terms of characters.

arc_tangent_combo = arc_tangent + expression + divided_by + expression .
binary_operation1 = divided_by | modulo | power | times .

 RS274/NGC Interpreter - Version 2

53

binary_operation2 = and | exclusive_or | minus | non_exclusive_or | plus .
combo1 = real_value + { binary_operation1 + real_value } .
comment = message | ordinary_comment .
comment_character =see explanation above .
digit = zero | one | two | three | four | five | six | seven | eight | nine .
expression = left_bracket + (combo1 + { binary_operation2 combo1 }) + right_bracket .
letter_b = big_b | little_b .
letter_d = big_d | little_d .
letter_f = big_f | little_f .
letter_g = big_g | little_g .
letter_h = big_h | little_h .
letter_i = big_i | little_i .
letter_j = big_j | little_j .
letter_k = big_k | little_k .
letter_l = big_l | little_l .
letter_m = big_m | little_m .
letter_n = big_n | little_n .
letter_p = big_p | little_p .
letter_q = big_q | little_q .
letter_r = big_r | little_r .
letter_s = big_s | little_s .
letter_t = big_t | little_t .
letter_u = big_u | little_u .
letter_x = big_x | little_x .
letter_y = big_y | little_y .
letter_z = big_z | little_z .
line = [block_delete] + [line_number] + {segment} + end_of_line .
line_number = letter_n + digit + [digit] + [digit] + [digit] + [digit] .
message = left_parenthesis + {white_space} + letter_m + {white_space} + letter_s +

{white_space} + letter_g + {white_space} + comma + {comment_character} +
right_parenthesis .

mid_line_letter = letter_b | letter_d | letter_f | letter_g |letter_h | letter_i | letter_j
| letter_k | letter_l | letter_m | letter_p | letter_q | letter_r | letter_s | letter_t
| letter_u | letter_x | letter_y | letter_z .

mid_line_word = mid_line_letter + real_value .
ordinary_comment = left_parenthesis + {comment_character} + right_parenthesis .
ordinary_unary_combo = ordinary_unary_operation + expression .
ordinary_unary_operation =

absolute_value | arc_cosine | arc_sine | cosine | e_raised_to |
fix_down | fix_up | natural_log_of | round | sine | square_root | tangent .

parameter_index = real_value .
parameter_setting = parameter_sign + parameter_index + equal_sign + real_value .
parameter_value = parameter_sign + parameter_index .

real_number =
[plus | minus] +

 RS274/NGC Interpreter - Version 2

54

((digit + { digit } + [decimal_point] + {digit}) | (decimal_point + digit + {digit})) .
real_value =

real_number | expression | parameter_value | unary_combo .
segment = mid_line_word | comment | parameter_setting .
unary_combo = ordinary_unary_combo | arc_tangent_combo .
white_space = space | tab .

E.3 Production Tokens in Terms of Characters

We have omitted the letters and digits in the list below, since they are all the obvious single
characters. For example, one is ‘1’, big_b is ‘B’, and little_b is ‘b’. The list should be used as if
these obvious items were included. Note that not every letter of the alphabet is included (A, C, E,
O, V, and W are omitted).

absolute_value = ‘abs’
and = ‘and’
arc_cosine = ‘acos’
arc_sine = ‘asin’
arc_tangent = ‘atan’
block_delete = ‘/’
cosine = ‘cos’
decimal_point = ‘.’
divided_by = ‘/’
equal_sign = ‘=’
exclusive_or = ‘xor’
e_raised_to = ‘exp’
end_of_line = ‘ ‘ (non-printable newline character)
fix_down = ‘fix’
fix_up = ‘fup’
left_bracket = ‘[‘
left_parenthesis = ‘(‘
minus = ‘-’
modulo = ‘mod’
natural_log_of = ‘ln’
non_exclusive_or = ‘or’
parameter_sign = ‘#’
plus = ‘+’
power = ‘**’
right_bracket = ‘]’
right_parenthesis = ‘)’
round = ‘round’
sine = ‘sin’
space= ‘ ‘ (non-printable space character)
square_root = ‘sqrt’
tab = ‘ ‘ (non-printable tab character)
tangent = ‘tan’
times = ‘*’

 RS274/NGC Interpreter - Version 2

55

Appendix F Setup File Format

The format of a setup file is shown in Table 10. A setup file is used by giving its name when
prompted to do so when the interpreter starts up, as described in Section 4.1.

The file consists of any number of header lines, followed by one blank line, followed by any
number of lines of data. The interpreter just skips over the header lines. It is important that there
be exactly one blank line (with no spaces or tabs, even) before the data. The header line shown in
Table 10 describes the data columns, so it is suggested (but not required) that that line always be
included in the header.

The interpreter reads only the first two columns of the table. The third column, “Other Possible
Values,” is included here for information.

Each line of the file contains the name of an attribute in the first column and the value to which
that attribute should be set in the second column. Attribute names must be spelled exactly as
shown in Table 10 in lower case letters. Where the value is shown in upper case letters in the table,
upper case letters must be used, and the alternative values are also required to be in upper case
letters. The same attribute name should not be used twice, but the interpreter does not check that.
If any attribute name not given in the table is used, an error will result.

The lines do not have to be in any particular order. Switching the order of lines has no effect on
the interpreter or on how any NC program will be executed (unless the same attribute is used on
two or more lines, which should not normally be done, in which case the data for only the last
such line will persist).

 RS274/NGC Interpreter - Version 2

56

Attribute Value Other Possible Values

axis_offset_b 0.0 any real number
axis_offset_x 0.0 any real number
axis_offset_y 0.0 any real number
axis_offset_z 0.0 any real number
block_delete ON OFF
current_b 0.0 any real number
current_x 0.0 any real number
current_y 0.0 any real number
current_z 0.0 any real number
cutter_radius_comp OFF LEFT, RIGHT
cycle_i 0.1 any positive real number
cycle_j 0.1 any positive real number
cycle_k 0.1 any positive real number
cycle_l 3 any unsigned integer
cycle_p 0.1 any positive real number
cycle_q 0.1 any positive real number
cycle_r 0.0 any real number
cycle_z 0.0 any real number not less than cycle_r
distance_mode ABSOLUTE INCREMENTAL
feed_mode PER_MINUTE INVERSE_TIME
feed_rate 5.0 any positive real number
flood OFF ON
length_units MILLIMETERS INCHES
mist OFF ON
motion_mode 80 0,1,2,3,81,82,83,84,85,86,97,88,89
plane XY YZ, ZX
origin_offset_b 0.0 any real number
origin_offset_x 0.0 any real number
origin_offset_y 0.0 any real number
origin_offset_z 0.0 any real number
slot_for_length_offset 1 any unsigned integer less than 69
slot_for_radius_comp 1 any unsigned integer less than 69
slot_in_use 1 any unsigned integer less than 69
slot_selected 1 any unsigned integer less than 69
speed_feed_mode INDEPENDENT SYNCHED
spindle_speed 1000.0 any non-negative real number
spindle_turning STOPPED CLOCKWISE, COUNTERCLOCKWISE
tool_length_offset 0.0 any non-negative real number
traverse_rate 199.0 any positive real number

Table 10. Sample Setup File

 RS274/NGC Interpreter - Version 2

57

Appendix G Tool File Format

The format of a tool file is shown in Table 11. A tool file is used by giving its name when
prompted to do so when the interpreter starts up, as described in Section 4.1.

The file consists of any number of header lines, followed by one blank line, followed by any
number of lines of data. The interpreter just skips over the header lines. It is important that there
be exactly one blank line (with no spaces or tabs, even) before the data. The header line shown in
Table 11 describes the data columns, so it is suggested (but not required) that that line always be
included in the header.

Each data line of the file contains the data for one tool. Each line has six entries, the first four of
which are required, and the last two of which are optional. It makes reading easier if the entries
are arranged in columns, as shown in the table, but the only format requirement is that there be at
least one space or tab after each of the first four entries on a line. The meanings of the columns
and the type of data to be put in each are as follows.

The “POCKET” column contains an unsigned integer which represents the pocket number (slot
number) of the tool changer pocket in which the tool is placed. The entries in this column must all
be different.

The “FMS” column contains an unsigned integer which represents a code number for the tool.
The user may use any code for any tool, as long as the codes are unsigned integers. The interpreter
reads and stores the value of the code but does not make any use of it.

The “TLO” column contains a real number which represents the tool length offset. This number
will be used if tool length offsets are being used and this pocket is selected. This is normally a
positive real number, but it may be zero or any other number if it is never to be used.

The “DIAM” column contains a real number which represents the diameter of the tool. This
number is used only if tool diameter compensation is turned on using this pocket. This is normally
a positive real number, but it may be zero or any other number if it is never to be used.

The “HOLDER” column may optionally be used to describe the tool holder. Any type of
description is OK. This column is for the benefit of human readers only.

The “TOOL DESCRIPTION” column may optionally be used to describe the tool. Any type of
description is OK. This column is for the benefit of human readers only.

The interpreter only reads data from the first four columns of each line. The rest of the line is read
but ignored.

The units used for the length and diameter of the tool may be in either millimeters or inches, but if
the data is used by an NC program, the program must call out the correct G code (G20 or G21) for
those units before the data is used. The table shows a mixture of types of units.

The lines do not have to be in any particular order. Switching the order of lines has no effect on
the interpreter or on how any NC program will be executed (unless the same slot number is used
on two or more lines, which should not normally be done, in which case the data for only the last
such line will persist).

 RS274/NGC Interpreter - Version 2

58

POCKET FMS TLO DIAM HOLDER TOOL DESCRIPTION

1 1 1.0 0.25 14141 0.25 inch end mill

20 1419 4.299 1.0 0 1 inch carbide end mill

21 1025 8.34 0.5 drill chuck 1/2 inch spot drill short

32 1764 296.515 8.5 0 8.5 mm drill

41 1237 228.360 10.0 0 10 mm x 1.25 tap

60 71117 0 0 0 large chuck

Table 11. Sample Tool File

