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Abstract. This article reviews the development of experimental visual tracking
algorithms which have been implemented using TRICLOPS (The Real-time, In-
telligently-ControLled Optical Positioning System), a high-performance active
vision system designed and built at the National Institute of Standards and Tech-
nology (NIST). These algorithms range from triangulation using simple targets
for very high-speed tracking, to model-based techniques which allow robust
tracking of polyhedral targets amidst cluttered backgrounds. In all cases, effective
prediction of the target motion to compensate for image processing delays is crit-
ical to achieving responsive tracking.

1    Introduction

The goal of visual tracking is to keep a moving target centered in the field of view of
one or more cameras. This capability is useful for such applications as robotic assem-
bly, surveillance, and autonomous driving/navigation. In order to support visual track-
ing and other active vision research at NIST, a trinocular robot head, called
TRICLOPS, was designed and built [1]. This head has been used for extensive experi-
mentation with a variety of tracking algorithms.

In this paper, we will first summarize the design and performance characteristics of
the TRICLOPS active vision system. This is followed by a discussion of tracking algo-
rithms which have been developed to perform high-speed tracking of simple visual tar-
gets. Finally, a brief synopsis of work performed using TRICLOPS for model-based
target tracking in a complex visual environment is presented.

2    TRICLOPS Active Vision System

One of the primary design goals for TRICLOPS was to build a system with very high
dynamic performance—on a par with the human oculomotor system. This emphasis on
dynamic performance, along with other requirements such as high accuracy and dura-
bility, lead to the development of TRICLOPS as the first direct-drive robot head (Fig-
ure 1). The frameless DC motors and resolvers mounted directly to each of the motion
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axes deliver large accelerations with low friction. Transmission backlash and compli-
ance, which cause errors and oscillations, are effectively eliminated.

TRICLOPS has four mechanical degrees of freedom, as shown in Figure 2. The
kinematic arrangement of the four axes is as follows: 1) pan (or base rotation) about a
vertical axis through the center of the base, 2) tilt about a horizontal line that intersects
the base rotation axis, and 3) left and right vergence axes which intersect and are per-
pendicular to the tilt axis.

Visual sensing for TRICLOPS is provided by three “micro-miniature” video cam-
eras; one in each of two independently-controlled vergence units, and a third center
camera which shares the base pan and tilt motions of the vergence cameras. Equipped
with a wide angle (3-4 mm focal length) lens, this color camera may be used to iden-
tify general areas of interest in the wide field of view. The longer focal length lenses
(15-24 mm) of the vergence cameras allow a more detailed look at specific objects or
features. The combination of the center and vergence cameras thus provides the capa-
bility to view a scene at multiple resolutions simultaneously, providing a (much simpli-
fied) version of the multiresolution foveal-peripheral vision found in many biological
visual systems. TRICLOPS is currently configured with a 4 mm center lens and
15 mm vergence lenses.

The performance specifications of TRICLOPS are summarized in Table 1. Further
details regarding the features, design, and construction of TRICLOPS may be found
in [1].

A multiprocessing controller based on the NASREM Architecture [2] has been
constructed to control TRICLOPS and to perform sensory processing and world mod-
eling operations on camera image data. The NASREM Architecture is a hierarchical

Fig. 1. TRICLOPS active vision system.
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Table 1: TRICLOPS Specifications.

Range of motion:
Pan
Tilt

Vergence

+/-1.68 rad (+/-96.3 deg)
0.48 rad down, 1.14 rad up
(+27.5 deg, -65.3 deg)
+/-0.77 rad (+/-44 deg)

Peak acceleration:
Pan
Tilt
Vergence

70 rad/s2 (4010 deg/s2)
320 rad/s2 (18,300 deg/s2)
1100 rad/s2 (63,000 deg/s2)

Peak velocity:
Pan
Tilt
Vergence

11.5 rad/s (660 deg/s)
17.5 rad/s (1000 deg/s)
32 rad/s (1830 deg/s)

Slew time:
Pan (3.14 rad move)
Tilt (1.55 rad move)
Vergence (1.5 rad move)

0.523 s
0.167 s
0.091 s

Fig. 2. TRICLOPS degrees of freedom.



control system architecture which divides the sensing and control problem into dis-
crete levels. At the lowest level are the servo control loops for the device actuators; at
higher levels, groups of sensors and actuators are coordinated as equipment sub-
systems. The NASREM hierarchical control system provides a modular, easily-modifi-
able infrastructure for implementing and testing active vision algorithms.

The processes and operation of the TRICLOPS motion control and image process-
ing systems are described in [1]; a brief summary is presented here. The full potential
of an active vision system cannot be realized without real-time image processing capa-
bility. In our lab, this capability is provided by a Pipelined Image Processing Engine
(PIPE)1 for low-level image processing, along with a multiple-cpu VME system for
higher-level sensory processing and world modeling (Figure 3). The motion control
portion of the TRICLOPS control system architecture consists of a Primitive Level for
producing coordinated motions of all axes, and a Servo Level for servoing the axes to
commanded joint positions. The Primitive and Servo processes are implemented on
five processor boards in a separate motion control VME system, also shown in
Figure 3. Taking advantage of the most recent advances in high-speed microprocessors

1. Commercial equipment and materials are identified in this paper in order to adequately spec-
ify the experimental procedure. Such Identification does not imply recommendation or
endorsement by NIST, nor does it imply that the materials or equipment identified are neces-
sarily the best for the purpose.

Fig. 3. TRICLOPS control and image processing hardware.
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and digital signal processing (DSP) hardware would result in a substantial reduction in
the number of processor boards required for the system.

3    Fast Tracking of Simple Targets

One of the most basic behaviors desired of an active vision system is to track an object,
using visual information to direct the gaze and keep the object in the field of view of
the cameras. In this section, we discuss tracking algorithms which emphasize maxi-
mizing the tracking performance in terms of speed (bandwidth). Further details regard-
ing the algorithms and experimental results presented in this section may be found
in [1], [3], and [4].

To perform high-speed tracking, image processing delays must be minimized as
much as possible. Consequently, the image processing used for these tracking experi-
ments consists of computing the centroid of a thresholded intensity image of a single
object which presents a high-contrast image to both the left and right vergence cam-
eras. For these experiments, only the two vergence cameras are used. To create a sim-
ple visual scene, cellophane film is used to block out visible light, along with an
incandescently-illuminated spherical target. The infrared emission of the incandescent
source passes through the filter, while the ambient fluorescent lighting is filtered out,
resulting in a nearly ideal image.

For this high-speed tracking, 3-D world position-based modeling and prediction of
the target motion is used to generate goal fixation points. A block diagram of the track-
ing control system is presented in Figure 4. New centroid data are obtained from the
world model every 1/30 s. Delayed joint positions which correspond in time to the cen-
troid data are also read in at this time. The amount of delay is equivalent to the image
acquisition and processing latency (about 0.084 s in this case), plus the effective delay
resulting from interpolation between target position updates (0.033 s). The centroid
information is corrected for lens distortion, and the corrected centroids are used along
with the delayed joint positions to compute the position of the object with respect to
the TRICLOPS world reference frame using a triangulation algorithm.

Fig. 4. Block diagram of tracking algorithm.
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A number of different types of predictive filters have been used for motion model-
ing and prediction, including constant coefficient Kalman (α−β−γ) filters and polyno-
mial least-mean-square-fit (LMSF) filters. The equivalent transfer function forms of
these filters are derived, and their frequency response characteristics are discussed,
in [3].

The tracking performance of TRICLOPS using the system of Figure 4 with a 12-
sample cubic LMSF predictive filter is shown in Figure 5. To obtain these tracking
results, the redundancy of TRICLOPS (4 degrees of freedom for a 3 degree-of-free-
dom pointing task) was used to create apparent motion from a stationary target. A fixed
target was visually tracked using the tilt and vergence axes while a sinusoidal motion
of the TRICLOPS base rotation axis was performed. The frequency of the base motion
was increased linearly with time, and the magnitude of the commanded base motion
was +/-0.175 rad (+/-10 deg). Figure 5 shows the actual horizontal position of the tar-
get and the corresponding tracked position (with respect to the moving base coordinate
system).

The tracking performance exhibited in Figure 5 is determined almost entirely by
the frequency response of the predictive filter. This filter allows tracking without over-
shoot up to about 1 Hz. Beyond this frequency, the rise in the magnitude response of
the predictive filter results in tracking errors. The 40% overshoot in the tracking
response at 1.5 Hz is attributable to the fact that the magnitude ratio of the filter is 1.4
at that frequency. The system is clearly having difficulty tracking at 1.5 Hz, and the tar-
get is lost from the field of view of the cameras at higher frequencies.

A method of tracking higher frequency predictable motions without overshoot or

Fig. 5. Tracking performance with cubic LMSF filter.
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latency based on autocorrelation of the target signal is discussed in [3]. This method
has been used to track sinusoidal target motions of 2.5 Hz and more. When the fre-
quency of the target motion is held constant, the tracking errors with this approach are
very small, even at high frequencies. An example of the tracking performance using
this approach is shown in Figure 6. The correlation prediction technique makes no
assumptions of the structure of the target motion signal—it should be effective for
arbitrary periodic motions. However, the frequency content and amplitude of the target
motion must change relatively slowly over time.

We have also combined a conventional predictive filter with the periodic motion
prediction, such that both random motions with low frequency content and higher-fre-
quency predictable motions can be tracked successfully with automatic switching
between the two techniques. This has worked reasonably well, although transitioning
between the two techniques successfully requires gradual changes in the target motion
trajectory.

Numerous other algorithms for visual tracking have also been implemented using
TRICLOPS, and are discussed in [4]. A quantitative measure of tracking performance,
the tracking error bandwidth, is defined in [4] as the frequency of sinusoidal object
motion at which the tracking error exceeds 20% of the object motion amplitude:

(1)

where f = focal length, i(jω) = image coordinates of target, = target position
angle.

i jω( )
f ψ jω( )
----------------------- 0.20.=

ψ jω( )
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Using the above definition, an experimental tracking error bandwidth of approxi-
mately 1.1 Hz was obtained with a predictive filter. Without prediction, the tracking
error bandwidth is about 0.34 Hz.

4    Model-Based Tracking

Of course, the tracking of simple targets in simple scenes, while useful to demonstrate
the maximum performance (in terms of speed) which can be achieved, has limited
application potential. A more useful capability is to be able to track an object of inter-
est in a natural visual environment. At NIST, work toward developing such robust
tracking has focused on model-based tracking of known target objects. Here, estab-
lished geometric relationships between object features are used to improve the robust-
ness of tracking. The basic elements of this approach are outlined below; additional
information may be found in [5]. The approach described below assumes a rigid 3-D
object with known geometry and appearance is being used as a target, and that it
moves with 3 translational degrees of freedom.

The successive stages of computation for this tracking approach are:
1. Edge extraction - Extract the position and orientation for all edge points.
2. Data association - Determine likely groupings of edge points to each model fea-

ture.
3. Feature measurement - Use the grouped edge points to determine location of

each feature.
4. Feature aggregation - Determine the overall location of the target by fitting the

target model to the conglomerate of computed feature locations. The variance in each
feature measurement is taken into account in this step to obtain the best linear unbiased
estimate (BLUE) of target location.

5. Motion model update - Use the computed object location to update parameters
(e.g. velocity, acceleration) that describe how the target moves as a function of time.
This combination of the target location estimates over time weights each observation
by the inverse of its covariance.

6a. Prediction of target location in next image - Extrapolate the motion model to
predict target location in next image. Use predicted target location to determine corre-
sponding predicted feature locations.

6b. Prediction of target location at next servo cycle - Predict the target location such
that the motions of the head will keep the image of object centered in the field of view.

This strategy has been used to demonstrate 3-D target tracking using
TRICLOPS 5., and also for vehicle following 6.. In the tests using TRICLOPS, the
system was able to track and servo on the target as it moved at velocities of up to 1 m/s
at a distance of 0.85 m. The equivalent angular velocity for this tracking speed is about
1.2 rad/s (69 deg/s).

The algorithm has demonstrated promising results in tracking the target in the pres-
ence of partial occlusion. The algorithm also was not confused by any of the back-
ground scenery it encountered. An example of a challenging scene during tracking is
shown in Figure 7, with the corresponding edge image shown in Figure 8. The algo-
rithm is also fairly robust to deviations from the assumed fixed orientation of the tar-



Fig. 8. Edge image of target with bookshelf in background

Fig. 7. Target with bookshelf in background.



get. The algorithm begins to fail when there are errors greater than 15 degrees in
orientation. The algorithm will also fail if the target is moved with very sudden
motions.

Progress has been made to extend this algorithm to tracking objects moving with a
full 6 degrees of freedom of motion. Currently, however, the 6 degree of freedom ver-
sion is not as fast, or as robust, as the 3-D version.

5    Conclusion

There are many aspects to defining the performance of visual tracking devices and
algorithms. The performance is perhaps best defined by the restrictions which must be
placed on the target object(s) and visual environment in order to achieve successful
tracking. Examples of such restrictions include the maximum speed and frequency
content of target motion, the maximum number of targets which may be tracked, light-
ing and background constraints required, the amount of a priori knowledge of the tar-
get object required, and allowable variability in the types of objects which may be
tracked.

We have implemented a class of visual tracking algorithms using TRICLOPS
which have concentrated on optimizing the performance criteria of speed and target
maneuverability (at the expense of reduced target and image complexity). Using this
approach, very high tracking speeds have been obtained. We have also implemented
model-based tracking algorithms which lift the constraints on image complexity and
work for an entire class of prismatic objects with known geometry (with some reduc-
tion in the allowable target speed). In both cases, the primary factor affecting the speed
at which targets may move and be tracked successfully is the amount of image pro-
cessing delay, and the effectiveness of the prediction used to compensate for it.
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