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Abstract

We outline a multiple dimensional reference model architecture and a methodology for
representing and developing intelligent systems. The reference model architecture features
multiple dimensions enabling modeling the multiple aspects of complex systems.  The
canonical form within this framework facilitates an open and scalable system architecture.
The well-defined structures facilitate efficient knowledge engineering processes.  We
describe a submarine automation model performing real-time control to illustrate the
application of this reference model architecture.
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1. Introduction

Large scale intelligent control systems pose unique challenges in computer software and
hardware technologies for researchers.  These systems often conduct critical missions.
They commonly require the capability of real-time access to knowledge bases to meet the
millisecond level control cycle requirements.  Researchers have begun to address some
aspects of this complex problem domain.

There have been considerable contributions in the area of hierarchical control architectures.
Saridis introduced a three-level hierarchy in [1].  Albus, in [2], described a reference model
architecture called the Real-time Control System (RCS).  RCS includes six basic levels of
authority with the controller nodes all represented via an intelligent machine model.  RCS
forms the basis of this paper. Acar and Özgüner, in [3], provided an alternative architecture
that organizes the system into a multi-resolutional hierarchy by identifying its components
and examining the physical relationships among them.  Antsaklis and Passino, in a chapter
of [4], described a hierarchical control architecture within which a hybrid approach was
proposed to model systems with a high degree of autonomy.  Successive delegation of
duties from the higher to lower levels is among the important characteristics of the
hierarchy. Meystel, in another chapter of [4], described a nested hierarchical control theory
that included the concept of treating design and control as a design-control continuum.

In the direction of implementing intelligent control systems, a research focus has been the
areas of software technologies and computer-aided software engineering environments.
Sweet et al., in [5], identified the key software technologies for the Aerospace Industries
Association (AIA).  Simmons, in [6], described a Task Control Architecture (TCA).
Scalability might be a limitation of TCA as it is not intended to model multiple cooperating
agents.  Object oriented paradigms are becoming popular for handling the representation
problems of software systems.  However, they are not suitable for all problems.
Schneider, et al., in [7], developed a flexible object oriented real-time software
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implementation tool called ControlShell1.  However, this tool does not intend to address the
issue of architecture and it seems as if a reference model architecture can complement the
capability of ControlShell.

Intelligent system control has been the research focus of the Intelligent Systems Division
(ISD) of the National Institute of Standards and Technology (NIST).  NIST ISD proposes
that a comprehensive approach toward this intelligent control system problem should cover
all of the following critical issues:

* A scalable and open architecture.
* A rich and representative reference model.
* A distributed and efficient structure for organizing system knowledge.
* A rigorous knowledge engineering process and modeling paradigm.
* A comprehensive computer-aided rapid development and deployment environment.
* Real-time control and operator interaction capability.

The approach that the NIST ISD has been using is the Real-time Control System (RCS)
reference model architecture [2].  Researchers have been applying RCS to various large
scale intelligent control systems, including [8, 9, 10], since two decades ago.  The ultimate
goal for the NIST ISD is for RCS to evolve into a unified solution paradigm to the problem
domain of intelligent system control.

In particular, this paper attempts to describe RCS as a multiple dimensional reference model
architecture.  We attempt to integrate different notions of hierarchy into one unified
framework for use with large scale intelligent system control.

2. Multiple Dimensional
Reference Model
Architecture

The term hierarchy can mean different
things to different people.  In an
object oriented paradigm, a hierarchy
can mean a tree describing class
derivation.  In a functional
decomposition paradigm, a hierarchy
can mean layers of subfunctions
representing a system.  RCS contains,
and is not limited to, both of these two
aspects.  However, these two aspects
have not yet been explicitly described
in an integrated fashion in previous
RCS literature.  Task decomposition
and level of authority have been
among the important characteristics in
the RCS applications [8, 9, 10].
NIST ISD has also been developing
generic software templates and
libraries that future RCS applications can inherit.  Efforts are required to integrate all these
aspects together to form a unified paradigm.  This is a major issue that we intend to address
in this paper.  We propose to use an integrated coordinated system, comprising the three

                                                
1 References to company or product names are for identification only and do not imply NIST endorsement.
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paradigms of: level of authority, functional decomposition, and inheritance, to form a
multiple dimensional reference model architecture.  The origin of the coordinate system
contains a generic controller node, which serves as the building block of RCS and is
described by an intelligent machine model [2].  The structure is shown in Figure 1.
Sections 2.1 through 2.3 describe the three axes.  Section 2.4 shows a resulting view and
describes how an implementation architecture is identified within the reference model
architecture.  This system characterizes RCS.  This multiple-disciplinary and integrated
paradigm facilitates rich and representative system models.  Applying simplistic modeling
paradigms may fail for large systems.  Booch, in [11], describes two perspectives of a
system:  algorithmic decomposition and object-oriented decomposition, with the latter being
the driving perspective.  These perspectives correspond to the functional decomposition
and the inheritance perspectives of the reference model architecture that this paper
describes.  The most significant difference in our concept is that the level of authority
perspective drives the system design while referencing the generic reference model.

2.1 The functional decomposition dimension--an intelligent
machine model

An intelligent system must be capable of making complex decisions, based on its
assessment of the current environment, and taking actions to accomplish its goals.  The
intelligent machine model proposed by Albus in [2] contains the required functions that
allow for such capabilities.  We attempt to briefly describe the intelligent machine model in
a functional decomposition notion and to describe how the model performs the intelligent
decision making and situation assessment activities.

In RCS, the term functional decomposition means that a node is decomposed into finer and
finer functions.  We use a coordinate axis, as shown in Figure 2, to describe this effect.  A
generic controller node resides at the origin of the axis. This node permits interaction from
an operator.  The node is functionally described by the behavior generation (BG), sensory
processing (SP), world modeling (WM), and value judgment (VJ) functions, as shown at
the second unit of the axis.  This is the basic model of the RCS intelligent machine model.
Extending farther along the axis means further decompositions of the node functions and
subfunctions.  The following describes this model in detail:

2 .1 .1  The behavior
generation (BG)
function
BG is responsible for
planning and executing
the tasks that a node
receives from its
superior node at the
higher hierarchical
level.  The resulting
output is sent to the
node’s subordinate
nodes at the lower level
as their input
commands.

The third unit along the
axis shows that BG
contains the following
subfunctions:

VJ
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The job assignor (JA).  JA spatially decomposes the node’s input commands based on
the subordinates that the node has.  The results will be used for the temporal planning
purposes.

The planner (PL).  Planning typically requires forming, evaluating among, and
selecting from alternative hypothetical sequences of subtasks ordered in the temporal
sense.

The executor (EX).  EX executes the selected plans.  The execution is done by
comparing the commanded values, provided through PL, and the observed values,
provided through WM, of the state variables and computing the output commands for
the next level nodes.

The fourth unit along the axis shows another layer of functional decomposition.  In Figure
2, we illustrate some algorithms possibly used in a PL.  For example, particular path
planners may be used as a part of the submarine navigation planner.  An adaptive control
algorithm may be used for the position control of a flexible manipulator.

2 .1 .2  The sensory processing (SP) function
SP contains the following major functions:

Data acquisition.  This function samples, filters, and validates sensory data.
Data integration.  This function integrates sensory information over space and time.

The data may be provided by multiple subordinates.
Data assimilation.  This function may recognize patterns and detect events.

The subfunctions typically contain individual algorithms in these categories.

2 .1 .3  The world modeling (WM) function
WM contains a set of functions both maintaining the associated knowledge base (KB) and
servicing the other RCS major functions.  The major WM functions include:

Knowledge base management. This function uses the data provided by SP to update
the KB in real-time.  This function also keeps the knowledge content consistent across
the system.

State estimation and prediction.  The results may be used by PL to plan the next
move or by SP to expect certain sensory input.

Query management.  PL may query WM as “what if I make this move” during the
planning stage.  EX may query WM as “what is the current value of X” during
execution.  This function is responsible for retrieving the information from the
knowledge base and generating the responses.

The subfunctions of WM, at the third unit along the functional decomposition axis, may
include particular algorithms such as a least-squares based estimator.

The KB supports the BG decision making functions.  The KB is distributed within all the
controller nodes of a system.  The information stored in the KB consists of two parts,
models and data. The models include the static and dynamic models of the system and of
the environmental objects of concern, such as a hydrodynamic model of a submarine or a
geometric representation of a mechanical component.  The following information is a
typical set of the data knowledge maintained by each node and used to support real-time
task execution:
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• The plan information.  RCS typically uses state transition diagrams to model plans.
The state transition based decision making process requires the information including
the set of plans that a node is capable of performing, the name of the plan that is being
executed, and the current state of execution.  Quintero described this, in detail, in [12].

• The node status.  Typical status values are: Reset, Executing, Done, Waiting, Error,
and Emergency stop.  This information allows the control system to respond properly.
The system developer may specify an execution paradigm such that, unless in
emergency situations, a node must be at the Done state before the node can accept the
next input command.

• The error code.  Typical execution errors include: a mismatch of a command or status
between a sender and a receiver, correspondent nodes not responding, time out, etc.
The occurrence of certain error might point to certain recovery procedures.

• The performance indices:  Timing performance is typically the most critical index.  A
node can maintain the following timing information: maximal and minimal cyclic
execution time and execution time trends in various forms. During the real-time
decision making processes, the performance indices might indicate that a controller
node is being overloaded and proper attention is needed.

• The data to be shared by other nodes, such as  object position, fuel level, etc.  This data
must be maintained to allow consistent execution throughout the entire system.

This set of information also provides a snapshot of the system under execution for the
operator.

The integration of individual node knowledge bases and the information common to the
system constitutes the control system knowledge base.  In this sense, the system
knowledge base is organized by referencing the structure of the control hierarchy.

2 .1 .4  The value judgment (VJ) module
VJ determines the costs, risks, and benefits of the hypothesized plans and actions that a
planner may generate.  VJ includes the following major functions, although we feel that
further investigation is required to fully elaborate VJ:

Criteria computation and update. Value criteria must be computed from the given
tasks.  Safety, time, or precision may be of the highest value in different situations.
Albus also described the emotional aspect of the values in [2].  This function may need
to update or recompute the criteria as situations change.

Value judgment.  This function computes the costs and benefits of the hypothesized
plans based on the established criteria.  The results are sent to PL for the plan selection
purposes.

2 .1 .5  Interactions among the node functions and operator interface (OI)
The four functions, BG, SP, WM, and VJ form a closed control loop for a node.  In
addition, a node is subject to operator interaction (OI).  The following is a summary of the
specific interactions among these functions:
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• The PL in BG may query WM for predicted results of the hypothesized plans that the
PL generates.  The predictions may be sent to VJ for cost, benefit, or risk analysis.
The PL uses the results to select a plan.

• The EX in BG may query WM for the current values of certain state variables and
compare them against the desired values that the PL has planned for.  EX then
generates output commands for the subordinates to correct the errors.

• The SP may require predictions and estimations of certain state variables or any a priori
knowledge, from the WM, in order to validate sensory data or to detect events or
features. The SP then provides the WM with the current results for the WM to update
the knowledge base.

• An operator may send commands to the BG, request WM data for display, change the
gains in the control or filtering algorithms, respond to a BG request for recovering
errors, or override the automatic control during emergency conditions.

In [2], Albus provides further details of the node functions and their interactions.

2.2 The level of authority dimension--hierarchical levels

RCS is a hierarchical architecture.  Controller nodes are distributed across all the predefined
levels.  The nodes are also authoritatively connected .  We establish a coordinate axis in the
multiple dimensional reference model architecture to describe these RCS levels. We also
characterize this dimension by a set of tenets.

2 .2 .1  Levels of authority
In RCS, the following levels are predefined as the guidelines for partitioning a hierarchical
system:

Level 6 -- Problem Domain Level, also called Facility or Mission level.  This is the highest
level.  The controller receives overall commands, from an operator, for the entire control
system. The BG function of this node decomposes these commands and outputs the results
to the responsible next level controllers.

Level 5 -- Group Level.  Multiple physical entities may exist in a hierarchical system and
they must be coordinated at this level.  In a manufacturing environment, a workstation may
coordinate multiple pieces of equipment.  These workstation controllers, then, belong to the
group level.  In a Defense environment, a group level controller may coordinate a fleet of
naval vessels and/or a squadron of air planes.

Level 4 -- Equipment, or Task Level.  A node at this level typically models a major physical
entity, for example, a submarine.  Tasks received by the controllers at this level concern
how each piece of equipment is expected to perform to accomplish a system goal.

Level 3 -- Elementary Move (E-move) Level.  The e-move level is the kinematic control
level. Any task is decomposed into a series of subtasks that are free of kinematic limits,
singularities, and obstacles. Sensor data submitted from the primitive level (see the next
paragraph) may be combined to produce surface features, feature distance and relative
orientation, etc.

Level 2 -- Primitive (Prim) Level.  The primitive level is the dynamic control level.  The
kinematically sound tasks are computed for subtasks that are dynamically smooth.  The SP
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function integrates and fuses data gathered from individual sensors and produces linear
features for objects.

Level 1 -- Actuator Level.  The controller nodes at this level interact with the environment.
The BG generates electrical, hydraulic, or mechanical commands to activate the actuators.
The SP function for this level is to receive signals from each individual sensor and to
process them.

2 .2 .2  Tenets of this dimension
Flexibility of the number of nodes at the levels:  Each level can have none or
multiple nodes except for the highest level where there is one node.  Some problems may
require only on-off types of control and may not require a dynamic (prim) level.  On the
other hand, some problems may need multiple sublevels within a predefined level.  This
may happen when the tasks are complex enough to warrant another level of decomposition
between a pair of predefined parent and child levels.  It may also happen when the physical
environment contains multiple layers of natural boundaries between a pair of predefined
parent and child levels.  For example, a manufacturing facility may have multiple
production lines.  A production line may have multiple workstations.  A workstation may
have multiple pieces of equipment.  The group level may contain two sub levels:
production and workstation.

Canonical form:  The generic controller node structure and inter-node interface repeats
and extends in the context of the intelligent machine model to a level sufficiently high to
describe a system.  This facilitates the scalability of a hierarchical control system.  A unified
execution behavior exhibits across all the controller nodes at all the levels.  In
implementation, RCS utilizes commonly available computer platforms, including
components such as the C or C++ languages, the PC or VME busses, and the UNIX or
DOS operating systems.  These features, together, facilitate the openness of an RCS
control system.

Execution of system goals via task decomposition:  The behavior generation
(BG) function of the node(s) at each level receives the commands from the level above,
decomposes them, and outputs the results to the responsible next level controllers.  In other
words, controllers at a particular level coordinate the execution of the next lower level
controllers.
Resolution, temporal span, and spatial span:  High levels deal with tasks and data
that have less detail but longer time and wider spatial span.  Lower levels deal with tasks
and data that have more detail but shorter time and narrower spatial span.
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2.3 The inheritance dimension--reference model to application

The concept depicted by Figure 3 is that the desired functionality of the models to the left of
the axis is inherited by the models to the right.  The fact that RCS has been developed as a
reference model architecture implies that the properties of the generic node, shown at the

origin of the axis in the figure, may be inherited by any class of problems adopting the
architecture.  The dynamic control systems and the manufacturing control systems are two
examples of the problem classes.  Any vehicle control RCS may inherit the properties
developed for the dynamic control system RCS.  This inheritance relationship can extend to
many layers.  Each layer may contribute commonly useful software library sets.  The
concept described here is consistent with that in the object oriented paradigms.  This feature
makes the architectural implementation process efficient and makes the RCS development
environment rich.

In the case of developing a software template for a controller node, the base structure,
which resides at the origin of the inheritance dimension, may include the following generic
functions:

• Reading input data.  BG, WM, SP, and VJ may all require this function.

• Evaluating the command status.  This is a part of JA.

• Writing the output data to the proper subordinates.  This is a part of EX.

This base structure may be common for all the nodes at all the RCS authoritative levels.  At
the task level, a derived structure for the vehicle control problem class may inherit all these
functions (called methods in some object oriented paradigms) and may add vehicle position
explicitly as a part of the WM data to be read in and written out.  A subsequently derived
controller node for a submarine may yet add another piece of data, water pressure, as a part
of the SP data to be read in, written out, and processed.  The essence is that the common
properties, data or functions, can easily be identified using the RCS construct described
along the other two axes of the multiple dimensional framework.  The identified properties
are then inherited along the inheritance dimension.  This makes the RCS architecture
efficient.

Unlike the other two dimensions, NIST ISD had not systematically investigated this
inheritance dimension until recent years when the object oriented paradigms became
popular.  NIST ISD, just as many other research organizations, is exploring the feasibility
and efficiency of migrating from traditional paradigms to the object oriented paradigm.

generic 
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nodes for 
dynamic control 
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vehicle control 

nodes for 
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control systems

nodes for 
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systems
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generic model specific model

Figure 3: The Inheritance Dimension
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Therefore, our current accomplishment along this inheritance dimension of RCS is limited
and this subject would be a major focus of the NIST ISD’s future research.

2.4 The resulting framework

We obtain the resulting multiple dimensional reference model architecture after integrating
the three dimensions, namely, level of authority, node subfunctions, and inheritance,
together, as illustrated in Figure 4.  The traditional RCS levels are identified along the level
of authority axis.  The generic major and subfunctions of a node, including BG, WM, SP,
and VJ, are identified along the node subfunction dimension.  A generic prim level planner
may include a control algorithm.  A vehicle control problem class may have common
features, such as path planning, in the planner.  These common features may further be
inherited by subsequent problem classes or individual applications along the inheritance
axis, such as the submarine application illustrated in Figure 4.

We further illustrate the submarine automation control architecture in Figure 5.  This
architecture has multiple levels.  The nodes, shown as boxes on the figure, are distributed
along the levels (horizontal dotted lines) and are authoritatively connected (solid lines).  The
highest level node of this hierarchy coordinates two subordinates.  An RCS architectural
implementation can be viewed as a hierarchy tree rooted on a notch on the inheritance axis
and growing in parallel with the authority axis.

In the three-level
hierarchical model that
Saridis proposed, in [1],
the execution level is
responsible for executing
control functions.  The
coordination level is
responsible for short range
decision making and
learning.  The organization
level is responsible for long
range planning, decision
making, and the
management and handling
of the information.  The
hierarchical model that
Antsaklis and Passino

described in [4] referred to a similar
structure. These levels are consistent
with the levels along the authority axis
in this multiple dimensional framework.
In general, the organization level
corresponds to the group level and up in
RCS.  The coordination level
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corresponds to the task level through the prim or emove levels in RCS.  The execution level
corresponds to the servo level or up to the prim level in RCS.

3. RCS Methodology:  A Task Oriented Knowledge Engineering
Process

3.1 knowledge evolution process

Architectural implementation involves understanding, sorting, assimilating, and integrating
the domain knowledge and the systems, computing, and control knowledge using a
systematic approach.  RCS prescribes a task oriented knowledge engineering process,
which is highlighted in Figure 6 as a knowledge refinement process.  Note that, the RCS
multiple dimensional reference model architecture does not become involved until the
middle stages of the process.  Knowledge for a problem domain and knowledge in the

problem domain knowledge

computing, 
systems and 
control knowledge

*  entire domain, in the forms of
   -  literature
   -  experts' knowledge
   -  physical systems
*  loose and unorganized

*  subset domain knowledge
   -  scope defined per system 
      goals
   -  any format (unstructured)

*  system operational scenario
   -  organized and concise 
   -  specific for problem solving
   -  typically text format

*  formal description of scenario
   -  typically computerized and 
       compilable
   -  preferably graphic

*  software and hardware system
   - control system
   - integrated knowledge base

* general technologies

*  MIL specified
*   submarine specific
computing technologies

*  embedded system  
technologies
   -  representations/grammar
   -  operating systems
   -  communication 
   -  database
   -  control/sensory theories 

applying the 
multiple 
dimensional 
reference model 
architecture

Figure 6: A Knowledge Evolution Process
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computing, systems, and control fields are, to a large extent, conceptually independent in
their raw forms, shown as the two separate branches at the upper half of the drawing.  In
the second box of the left branch, the RCS methodology calls for interactions with domain
experts to identify a subset of the knowledge that is within the scope of project
requirements. These domain expert interactions may result in clarifications or modifications
to the pre-established project requirements.  Another step of knowledge refinement process
further deduces the domain knowledge to a set of inclusive written operational scenarios.
The developers perform a task analysis based on the scenario descriptions.  Quintero [12]
also describes these aspects in detail.

Meanwhile, at the right-hand side branch of Figure 6, a separate knowledge refinement
process occurs.  Note, we have not yet fully explored how the task oriented method is
applied to this particular area.  Appropriate computer platforms (for both development and
operations), modeling and implementation languages, operating systems, CASE tools,
military (MIL) and other standards or specifications, etc., must be investigated and
appropriately incorporated in the RCS architectural implementation environment.

The two knowledge areas merge after the operational scenarios are obtained, as shown in
Figure 6. The developers perform task analysis to further formalize the system knowledge
as described in the scenarios.  We have developed a logical software structure, described in
the next section, facilitating the task analysis and system design of RCS applications.

3.2 A proposed analysis and implementation structure

This RCS methodology proposes a generic and comprehensive logical structure to facilitate
the analysis and implementation of the multiple dimensional reference model architecture.
This structure identifies and integrates the following five hierarchies (Figure 7): control,
simulation, animation, operator interface (OI) for control, and OI for simulation.  The
reasons for requiring these hierarchies are:

• The control hierarchy performs real-time system control to accomplish missions.  This
is the hierarchy described in Figure 5.  The lowest level nodes send electrical,
hydraulic, or mechanical control signals to physical actuators.  However, in the
laboratory development or simulation situations, a simulator is required.
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• A hierarchically
structured simulator
provides an
advantage that the
simulated physical
system behavior
also presents
multiple levels of
abstraction.  The
lowest level
simulator nodes,
the actuator
simulators, receive
control signals and
compute for the
mechanical
movements of each
actuator.  The
higher level nodes
integrate the
simulated actuator

movements and compute the ship level dynamics.  The resulting ship state variable
values are fed back to the higher levels of the control hierarchy via the simulated
sensors.  The dynamics of the relevant environmental objects is also simulated.

• The RCS methodology proposes a conceptual distinction between simulation and
animation.  Simulation involves the kinematics and dynamics of the objects.  Animation
performs graphic rendering of the simulation results, at, or close to, real-time.  The
animator may also be hierarchically structured to form a close correspondence to the
simulator.

• The RCS architecture specifies that, conceptually, all the nodes permit operator
interaction.  This is why, in Figure 7, the OI is described as one-to-one correspondent
to the control and simulation hierarchies.  In implementation, however, it is likely that
the one-to-one relationship is not followed.  There may be a keyboard input device
responsible for the interaction with multiple control nodes.

• We also propose a logical distinction between the control and the simulation OI.
Control OI may allow switching among multiple control modes: manual, autonomous,
or semi-autonomous.  It may allow a control override from an operator in emergency
situations.  Simulation OI involves setting up parameters or triggering external events
for the simulator software to generate desired simulation behavior.  This Simulation OI
capability allows us to test the performance of the control systems.

3.3 Task analysis and implementation
In performing task analysis, the researchers essentially identify and order the control
system tasks, simulation events, and control nodes on the appropriate parts of the logical
structure described in Figure 7.  The tasks and events correspond to the verbs of the
scenario descriptions.  The control nodes correspond to, but are not equal to, the agents
performing the operations as stated in the scenario descriptions.  The RCS methodology
then uses a formal modeling representation, namely, finite state machines, to model the
control system behaviors.  What need to be modeled, graphically, are the sentences that the
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verbs are associated with, in the scenario descriptions.  These state diagrams are also called
RCS plans.  The control system operates by selecting and executing proper plans based on
the system goals and the environmental situations.

The state diagram development process also reveals the data and the data processors that are
required to support the state transition based decision making process.  Finally, a C or C++
language based controller node software template [13] is used to code the software.  These
activities are shown in the bottom two boxes in Figure 6.  The templates are a part of the
NIST ISD effort to explore the inheritance dimension of the multiple dimensional reference
model architecture.

4. The Submarine Automation Application

We illustrate the RCS methodology using an automation model of a submarine
maneuvering system.  In this project, the NIST ISD researchers collaborated with a retired
submarine commander.  Based on the pre-established goals of the simulated submarine, he
described to us, in detail and in every aspect, how a submarine would operate to achieve
the specified goals.  The following are some of the methods used to maximize the relevant
knowledge output from the domain expert.  ISD researchers did not impose any structural
constraints during his description.  The commander was encouraged to use the submarine
terminology.  The main role of the ISD researchers at this stage of interaction was to be
goal driven, to be intelligent listeners, and to ask stimulating questions sparsely to catalyze
his stories.  The following section provides an illustrative submarine demonstration
scenario.  Note that, this scenario serves as the basis for the illustration of the submarine
automation knowledge revolution process, given in the sections that follow.

4.1 An illustrative scenario for the submarine automation model

A submarine is conducting a submerged transit of the open ocean at its standard speed (15
knots or nautical miles/hour, equivalent to 7.7 meters/second) and at a keel depth of 200
meters.  A watchstander (a submarine term, meaning a crew member who is assigned to a
designated onboard location to perform the pre-specified duties) reports that there is a lube
oil fire in the lower level Engine Room.  The Officer of the Deck (OOD) directs the Ballast
Control Panel (BCP) operator to pass the word on the general announcing system.  The
OOD completes the following actions for coming to periscope depth:  Clearing baffles,
Checking for sonar contacts and close contacts, Slowing and changing depth, and Raising
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the periscope.

The damage control party fights the fire in the engine room.  On indication of decreasing
main lube oil pressure the OOD orders "All stop, shift propulsion to the EPM (emergency
propulsion motor)."  The shaft rotation is stopped and the clutch is used to disengage the
shaft from the turbines and the EPM circuit breaker is closed.  The Engineering Officer of
the Watch (EOOW) reports to the OOD that he is prepared to answer bells on the EPM.
The OOD orders "Ahead two thirds" which maintains enough speed for depth and steering
control.

The damage control party reports that the fire is out.  The BCP selects the ventilation lineup
and sets it to emergency ventilate the engine room using the diesel engine. When the lineup
is proper, the OOD directs "Commence snorkeling."

4.2 Task analysis

To begin the submarine automation task analysis, the researchers establish the four
quadrants corresponding to the four hierarchies described in Figure 7.  This is
demonstrated in Figure 8.

Arrows show the sequence of the tasks, nodes, and events that we have identified.  Note
that the goal is to develop an intelligent control system to replace the manual operations
described in the scenario.  The first significant event, as described in the scenario, is the
report of a lube oil fire.  Accordingly, at the upper left corner of Figure 8, a fire_on event is
identified.  During simulation, this event is designed to be injected through a simulation
operator interaction node and to be sent to the env_sim simulator node.  This node
computes the changes in the air constituents (see smoke_contamination in the figure) which
are detected by the simulated sensors installed in the vent controller.  This illustrates how
developers realize that particular sensors and controller are required.  Within the control
hierarchy, that is located at the lower right quadrant of the figure, the fire report is sent up
the hierarchy to the highest level controller which has the responsibility of coordinating the
engineering system (labeled as eng. sys.) and maneuvering (labeled as maneu.) controllers.

Per the scenario, one of the commands that
Maneuver will receive is to prepare for
emergency ventilation (prep_emerg_vent).
Maneuver decomposes this command and
requests the propulsion controller to switch to
the EPM, or the emergency propulsion motor,
control.  In our control system configuration,
this particular switching operation is to be
done manually.  Therefore, such a request is
sent to the controller operator interface
hierarchy, shown in the upper right quadrant
of Figure 8.  A graphic display of this
operator interface module is illustrated in
Figure 9.  The operator reads the message,
disengages the main shaft, and reports a done
status.  The operator will receive another
command later describing the required EPM
speed, which he will dial the knob, as shown
in the figure, accordingly.

Figure 9: A Graphic Operator Interface
Panel
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Many iterations of these event, node,
and task identification activities are
required to finalize the multiple
hierarchies.  The resulting control
hierarchy is partially shown in
Figure 10, with some of the
developed controllers beyond the
scope of this paper omitted.  Note
that, this hierarchy further illustrates
the architectural framework, shown
in Figure 5, and the methodology,
shown in Figure 7.  The command
controller, at the highest level,
coordinates two subordinates:
maneuver and engineering systems.
Maneuvering involves the
coordination of the propulsion and
depth controllers.  The submarine
depth is further controlled by a
dive/rise controller which coordinates the sail and stern planes.  The propulsion controller
coordinates the turbine controller (which provides propulsion control in regular
conditions), the DC motor controller (which provides the control in emergency conditions),
and the clutch allowing switching between these two mechanisms.   The parts of the
engineering systems of our concern include a diesel engine and the ventilation system.

The tasks and events are identified before the plans are described for each controller node.
The illustration for these activities is omitted in this paper since state transition based
modeling is fairly well known.

4.3 Real-time control and simulation

This section illustrates some real-time depth control and simulation activities for the
submarine automation model.  In Figure 11, a mission command given to the commander
includes the depth requirements.  They must be converted to the electrical signals for the
sail and stern planes.  Intermediate levels are needed to provide smooth transitions between
these two extremes.  The intermediate levels facilitate human understanding, computation
efficiency, and control stability.  The command controller passes the depth requirements of
the mission, through a series of way points, down the hierarchy to the Maneuver
controller.  Maneuver computes the required ship depths accordingly and passes them
down for the Depth controller.  Depth computes a series of bubble angles required for
controlling the ship to the specified depths.  The Dive/Rise controller computes required
plane angle maneuvers, for the Sail and Stern Plane controllers, to achieve the required
bubble angles.  The plane controllers generate required electrical signals for the control
valves to move the planes to the commanded angles.
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Implementation
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The submarine depth simulator
is developed as a reverse of the
control hierarchy, as seen in the
lower portion of Figure 11.
The only input that the simulator
receives from the controllers is
the commanded electrical
signals.  The hydrodynamic
model for the submarine is
decomposed and distributed in
the simulator hierarchy.  At the
lowest level (shown at the top
of the simulator), the electrical
signals are used to compute for
the simulated plane angles,
which are integrated at the next
level to form simulated ship
bubble angles.  At the next
level, the dynamic model uses
the ship angles to compute the
ship depth.  All these
intermediate results may be used
as sensor input to feed back to
the appropriate controllers.

This example shows a rigorous
control system behavior as a
result of the rigorous system
analysis and design paradigm.

5. Conclusion and
Future Directions

The multiple dimensions in the architecture facilitate the descriptions of complex systems
from multiple perspectives.  This provides a framework for an open and scalable system
architecture.  A knowledge engineering methodology has been described and illustrated.
This process describes systematic structures to organize system knowledge and describes a
series of smooth transformations to assimilate system knowledge from raw forms to
computer executable forms.  A submarine automation model is used to illustrate the
application of this RCS reference model architecture and its knowledge engineering
methodology.  The simulation demonstrated the model performing intelligent tasks by
using the well-structured operational knowledge.

Researchers at NIST ISD and elsewhere has begun working to automate this process.  A
Joint Architecture project has been ongoing to describe, in detail, a generic architecture for
discrete parts manufacturing facilities.  We are currently investigating a specification for a
RCS computer-aided control system development (CACSD) tool.  The achievement of such
a tool would greatly enhance the inheritance aspect of the architecture.  Software templates
and reusable libraries have been generated to speed up implementations and to further
explore the inheritance property of RCS.  The ultimate goal is an automated environment
facilitating the development of intelligent systems covering from the very early
conceptualization stages to the final critical mission real-time operation stages.
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