
The ADACS Implementation of the UTAP Architecture
Robert T. Russell, Jr., John Michaloski and Keith Stouffer

Intelligent Systems Division
National Institute of Standards and Technology

Summary The Advanced Deburring and Chamfer System is robotic workcell designed to put precision chamfers on parts made
with hard metals. The project was funded by the United States Navy so that the technology developed could be applied to their air
defense systems. The Unified Telerobotic Architecture Project was a United States Air Force funded project to develop an open
architecture for robotic applications for servicing aircraft. The main focus was to develop an architecture with standard interfaces so
commercially available components could easily be substituted. This paper will describe how the ADACS workcell controller was
implemented through the use of the Unified Telerobotic Architecture Project’s architecture and interfaces.

1 NOTATION AND UNITS

ADACS refers to the Advanced Deburring and Chamfering
System. UTAP refers to the Unified Telerobotic Architecture
Project. RCS refers to the Real-Time Control System. CADET
refers to the Chamfering and Deburring End-of-arm Tool.
NCFS refers to Numerically Controlled Finishing System.

2 INTRODUCTION

The finishing operation is a critical step in the manufacture of
parts made with hard metals. Many thousands of dollars are
spent on machining processes for precision applications only
to be handed off to a human at a burr bench to perform a fin-
ishing process. This hand-crafting tends to be inaccurate and
produces a high scrap rate which in turn means that the money
spent on machining is also lost.

ADACS augments the human with a numerically-controlled
finishing system designed for putting precision chamfers on
aircraft engine components and helicopter parts. These aircraft
components are made of hard metals such as inconel and tita-
nium that require special tooling and exacting procedures to
produce suitable chamfers. The tolerances on many of these
parts approach 0.07mm.

As a numerically-controlled finishing system (NCFS),
ADACS is a study in integration of computer and control sub-
systems. ADACS has CAD modelling; graphical simulation,
real-time motion control; adaptive, force-based tooling; and
operator-supervisory control. Current proprietary or closed
controller technology does not span the breadth of the applica-
tion and also precludes the tight coordination of force-con-
trolled tooling with motion control required in chamfering.
The primary upshot of these constraints was the need for
ADACS to use and integrate off-the-shelf-components from
differing vendors in a distributed environment. The integration
of such differing system components requires a sound design

approach or implementation of a point-solution can result.

An open system built from open component technology was
the major design paradigm used to achieve the ADACS sys-
tem requirements for integration, flexibility, and extensibility.
System design using an open architecture reference model
with well-defined interfaces offers a sound approach to imple-
mentation that can be adapted to satisfy future requirements.
ADACS used the Unified Telerobotic Architecture Project
(UTAP) as the reference model in which to construct the
NCFS. UTAP is an open-architecture reference model with
well-defined interfaces. This paper will show how the ADACS
was designed and implemented used the UTAP architecture
and the UTAP component interfaces as a guideline.

The paper is organized as follows. The next section will
present an overview of the chamfering application. For cham-
fering applications under numerical control, the integration of
component processes will lead into the discussion of the
UTAP reference architecture as it applies to the ADACS appli-
cation. Next, a discussion of the system design will be pre-
sented which will include the hardware, software and
component integration. Finally, the conclusion will discuss the
merits and potential for the UTAP design approach.

3 APPLICATION

3.1 Automating the Chamfering Process

Parts manufacturing has evolved to the point that most parts
are designed using a CAD system. To machine the part, CAM
machining process parameters (e.g., specific feeds and tool-
ing) are combined with a CAD model to generate a part pro-
gram tuned to run on an actual machining workstation. This
marriage of CAD and CAM is sometimes done automatically
by computer-generation or may occur with the help of engi-
neering-supervised computer-generation.

Part finishing could greatly benefit from supplementing the
process with engineering-supervised computer-generation to
combine CAD data with finishing process parameters. Unlike
machining, however, chamfering uses different heuristics and
domain expertise in performing the chamfering process.
Chamfering requires a skill level that currently cannot be rea-
sonably duplicated by complete computer automation.
Instead, the ADACS finishing process makes use of the CAD
data that will utilize the expertise of engineers and chamfering
operators to tune the finishing process to a specific part. Figure
1 diagrams the NCFS data flow within the computer-assisted
finishing domain as implemented in the ADACS.

Data is defined, translated, and merged in several steps along
the NCFS process. Part data from the CAD software goes to a
post processor to extract the feature information and process
information. This information is used by the next level down
to produce a motion plan and tool parameters that correspond
to the motions in the plan. From here the segment planner
breaks the motion up into smaller segments to send to the
robot and the tool parameters are set and maintained through
closed loop control. This is explained in greater detail in
Stouffer et. al. (1).

3.2 Typical Scenario

The ADACS is designed to have two operator interfaces. One
is for the manufacturing engineer who understands the process
and can assign chamfer depths, speeds and to specific part

Figure 1: ADACS Finishing Process Model

MOTION PLAN SPINDLET OOL SPEC

= PROCESS

= DATA

KEY

 FINISH PLANNING

PART DESIGN SYSTEM

MATERIAL
FINISHING WORLD

MODEL

FEATURE EXTRACTION

CUTTING DEPTH FINISHING FORCE FEED RATE SPINDLE
SPEED

FINISH SEGMENT PLANNING

TRAJECTORY TOOL FORCE
COMPENSATION

SPINDLE
SPEED

EDGE INFORMATION

WITH GRAPHICAL USER
INTERFACE

edges where the chamfers should occur. He produces a part
program for the shop floor to use. This is done on a CAD
package in which he can select edges and give parameters to
use on the edge. Next he runs the part information through a
workcell simulation to verify that no unexpected collisions
will occur between the tool and the part. The part program is
used by shop floor personnel operating the actual workstation
through the second operator interface. This interface allows
the operator to select a part program, run it and change various
settings (feed rate, force, etc.) on the fly. The part program is
interpreted by the controller with the motion control aspect of
the NCFS behaving as outlined in the previous section.

4 SYSTEM DESIGN

4.1 Architecture
Benefits of open architectures are numerous and include
lower-cost, flexibility, extensibility, interoperability, and port-
ability. The UTAP architecture goal is to accommodate differ-
ent types of kinematic devices - both machining and material
handling - with different degrees of freedom, accommodate
different part materials and part geometries, new tasks in the
workplace, and provide a facility to upgrade/change equip-
ment, sensors, and feedback mechanisms as technology
advances. The UTAP architecture is described in more detail
in NASA (2).

The UTAP reference model architecture serves as a guide as to
how to structure the components in a system - not as a man-
date. UTAP assumes a similar architecture for all modes of
control: teleoperation, shared control, supervised autonomy
and autonomous control. Depending on the application, a sim-
ilar, but not necessarily duplicate instance of the reference
architecture may be developed. The goal of the reference
model architecture is to provide a general model for defining
the relationships among elemental components in a system.

The UTAP architecture as shown in Figure 2 describes a con-
nected set of modules consisting of hardware components and
a software architecture built from software components. The
hardware components are distinguished as physical hardware
items that might be purchased. The software architecture is
separated into functional types of software modules, the soft-
ware modules themselves, and the application programs.

Application programs execute in a distributed fashion with a
parent module controlling a set of subsystems that are built
from a set of component modules. An application program is
separated into a parent task program and into subsystem task
programs. A subsystem is characterized by having a separate
task program. There may be separate task programs running
on the same or separate platform or control devices. Coordina-
tion between separate task programs is achieved by direct
communication between the subsystem task programs and/or
through communication with a parent task program which
communicates with the subsystem task programs to
coordinate their control.

Within the UTAP architecture, software modules have a
domain of functional capability. The ADACS functionality for
CAD and simulation is composed as several modules in the
UTAP architecture including - Task description and supervi-
sion, Object Knowledgebase, Object Modeling, Task Knowl-
edgebase, and Subsystem Simulation.

The bridge between the engineering and process description is
done by the Task Program Sequencing module which is
responsible for parsing the part program and interpreting its
contents. From this information it produces commands to the
Task Level Control. The Task Level Control is responsible for
coordinating control of the robot(s), and tool(s). It also
includes the trajectory generation functionality. It reads data
from sensors and maintains a database of this knowledge. The
robot and tool servo modules are responsible for robot config-
uration commands, tool control commands, and status.

ADACS uses feature based knowledge of the part. Each fea-
ture has associated robot motions and tool parameters. It is
critical that the correct tool parameters are executed for the
corresponding robot trajectory. Otherwise the tool may be
moving in free space chamfering air or worse yet, damage
may occur to the part. As goal points are placed on the trajec-
tory generator queue, a corresponding queue in the tool con-

troller is receiving tool commands that contain a marker for
the robot motion for which each set of parameters is to be exe-
cuted. The tool controller continuously monitors the robot
motions and sets the parameters when necessary.

4.2 Hardware Design

The approach used in the ADACS is called “around the arm
control.” It encompasses the use of one manipulator for gross
positioning and one for fine positioning. This is described in
Murphy et. al. (3). The ADACS is a robotic workcell consist-
ing of a six degree of freedom articulated robotic arm and an
active force controlled chamfering and deburring tool. This
setup allows the robot to position the tool tip close to the part
and the tool can then maintain contact as the robot travels
through its trajectories. The ADACS control structure is
shown in figure 3.

The CADET is an active chamfering and deburring tool that
uses force feedback to achieve precision chamfers. It was
designed by United Technologies Research Center. The design
is such that the tool is balanced so that no matter how it is ori-
ented there is no need for gravity compensation in the force
feedback loop. It also uses voice coil actuators so that is inher-
ently compliant. A more detailed description of the CADET is

Figure 2: Telerobot Architecture for aircraft maintenance and remanufacturing

Insert Figure 2

in Engel et. al. (4). The robotic arm is a Cincinnati Milacron
T3-646 six axis electric robot. Communication to the robot is
done via a serial port in which positions are sent every 60ms.
Both controllers run on 68040 processors on a VME platform.

4.3 Software

The ADACS makes use of various off the shelf software pack-
ages. Only products that supported openness were selected. In
general, a product provided openness by offering hooks to its
functionality that allowed modifications or enhancements. The
first of the products is Trellis NOMAD. NOMAD is a package
of software modules that assist in making robot controllers.
TMOS or Trellis MotionSystem is one particular element of
the package. TMOS comes with a high level C interface that
provides general motion control of robots. The TMOS is used
for the ADACS trajectory generation. It is designed to be a
part of an open system in that it is portable and interoperable

with other components of a system.

ProManufacture, a module that runs within ProEngineer, is
used to create tool paths. This data is run through a post-pro-
cessor that creates tag points for use within TeleGRIP, the sim-
ulation software. TeleGRIP has hooks into it that allow
customizing of the software. ADACS uses these hooks to
specify tool parameters in each robot path when planning
motion for a part. Once the edges have been selected to the
users satisfaction, a part program is produced as output from
TeleGRIP.

The workcell and robot controller runs on a 68040 processor
running in a VME backplane. The operating system used is the
LynxOS real-time operating system. This was chosen because
it is a POSIX compliant operating system and allows for port-
ability across different platforms. The Nomad motion control
software was used for generating trajectories for the robot.

Figure 3: ADACS Control Structure

TelegripPro Engineer/
Pro Manufacture

Developer - manufacturing engineer

User - factory floor

CADET
Controller

T3 - 646
Controller

NOMAD

TMOS
Trajectory
generator

Path description
60 mS

Tool parameters
60 mS

Pa
th

 d
es

cr
ip

ti
on

 f
or

 s
im

ul
at

io
n

LLTI

Part
description

Path
description

Calibration
information

Tool/robot
synchronizer

Machine description

CheckTMOS

RTI
interface
60 mS

• Path modification
• Path simulation and testing
• Collision detection
• Part program generation
 (for user)

Spindle speed
Force
Direction
Compliance

T3 Servo
Interface

1 mS

CADET Servo
Interface

1 mS

(On Motion Complete)

ADACS Control Structure

• Path generation
• Feeds and speeds
• Depth of cut

Tag points
(entered
through CLI)

us
in

g
T
M

O
S

tr
aj

ec
to

ry
 g

en
er

at
or

Linked list
of trajectory

points

Pa
th

 d
es

cr
ip

ti
on

 u
si

ng

T
el

eg
rip

 t
ra

je
ct

or
y

ge
ne

ra
to

r

The CADET controller also runs on a 68040 processor in a
VME backplane, but uses the VxWorks real-time operating
system. The CADET servo level control software was devel-
oped at UTRC.

4.4 Integration

The integration of these modules described above is done by
placing wrappers around the software that accept commands
that are specified in the UTAP Interface Document by Lumia
et al (5). By adhering to the interface standards specified in
UTAP, future components with greater functionality devel-
oped by commercial vendors can be substituted for current
components. The present state of control system integration is
stymied by the lack of standards, an its is hoped that the UTAP
architecture and interfaces can evolve into a standard.

Within the UTAP architecture, the description of module func-
tionality and a detailed interface definition for each module is
explained within the UTAP Interface document (5). This docu-
ment assumes that the functionality of a module will satisfy
the interface specification but the document does not mandate
the program or algorithm used within the module. Since stan-
dard interfaces do not exist, middleware was developed to
map each vendor-specific interface to the UTAP interface
specification.

To connect modules within the system, an infrastructure must
exist to provide common services for all component pieces. At
NIST, the infrastructure consists of a set of tools that have
been developed for module initialization and configuration,
communication between software modules, synchronization,
as well as other system services. As an example of a tool, a
communication library is available that supports the use of
either sockets and/or shared memory across many platforms.
To handle module initialization and configuration, each mod-
ule references an “.ini” files that defines its execution flags,
resource allocation, communication connections and paramet-
ric settings.

5 CONCLUSION

The design and development of the ADACS NC Finishing
System is described. Building an ADACS system from the
ground-up was not cost-effective nor was modifying an exist-
ing closed-controller since such controllers are not sophisti-
cated enough to provide the cohesive, real-time coordination
of force-controlled tooling and motion control required for
NCFS. Instead, ADACS was built using off-the-shelf hard-
ware and software components and offered a challenge in sys-
tem integration.

To facilitate system integration, the application of the Unified
Telerobotic Architecture Project (UTAP) for the design of
ADACS is described. Based on integration results, ADACS
demonstrated that open architectures are useful in designing
an NCFS. Real-time part finishing including coordination of

multi-vendor software components did chamfer airplane parts.
We found that a robust heterogeneous and distributed system
infrastructure and set of integration tools - including common
data structures, component naming, Interprocess Communica-
tion network communication, etc. - is imperative to facilitate
component integration. To satisfy the UTAP interface stan-
dard, in-house middleware was developed as a programming
front-end to the component. Applying this integration method-
ology, we would conclude that if you factor in software reus-
ability, then this design approach is cost-effective and would
be most useful in scaling the cost and performance to suit
other NCFS applications.

As beneficial as openness is, one must note that openness
alone does not produce the primary objective of NIST - stan-
dards. Openness provides benefits and savings through flexi-
bility and extensibility but does not address portability.
Interfaces under one vendor's open architecture generally will
not run under another vendor's system. Openness is the first
step towards standardization. The step after openness is to
gather a consensus of opinion to then define a standard open
architecture - as well as interfaces - that ultimately yields a
standard open solution. In this regard, the ADACS project will
serve as a testbed in an effort to design, test and disseminate
open architecture solutions to finishing problems within the
manufacturing industry.

6 References

1. Stouffer, K.A., Michaloski, J.L., Russell, R.T., Proctor,
F.M., “ADACS - An Automated System for Part Finishing”,
from Proceeding of IECON’93, Lahaina, Maui, HI, November
15-19, 1993.

2. NASA JPL, “Final Report: A Generic Telerobotics
Architecture for C-5 Industrial Processes”, Air Force Material
Command (AFMC), Robotics Center of Excellence (RACE),
San Antonio Air Logistics Center, Kelley AFB, TX 78241,
1993.

3. Murphy, K.N., Proctor, F.M., “An Advanced Deburring
and Chamfering System”, Proceedings of Third International
Symposium on Robotics and Manufacturing, British, Colum-
bia, Canada, July 1990.

4. Engel, T. W., Roberts, R. K., Proctor, F. M., “Specifica-
tion of an Active Force Control Tool for Performing Deburring
and Chamfering on a Robot Platform”, Proceedings of the
International Conference on Industrial Electronics, Control,
Instrumentation and Automation, November 1992, pp. 918-
926.

5. Lumia, R., Michaloski, J.L., Russell, R.T., Wheatley,
T.E., “Unified Telerobotic Architecture Project (UTAP) Inter-
face Environment”, NISTIR 5658, National Institute of Stan-
dards and Technology, Gaithersburg, MD, 20899, May 1995.

